
Strength differential effect in age hardened aluminum alloys

Jens Kristian Holmen∗, Bjørn Håkon Frodal, Odd Sture Hopperstad, Tore Børvik

Structural Impact Laboratory (SIMLab), Department of Structural Engineering, Norwegian University of Science and Technology
(NTNU), NO-7491 Trondheim, Norway

Centre for Advanced Structural Analysis (CASA), NTNU, NO-7491, Trondheim, Norway

Abstract

The strength differential (SD) effect, as reported in literature over the past decades, is a discrepancy between

the axial stresses in compression and tension. This study investigates the SD effect in aluminum alloys using

both experiments and numerical simulations. We present compressive and tensile tests of four aluminum

alloys in several tempers with yield strengths varying from 27 MPa to 373 MPa: a total of thirteen differ-

ent material configurations. The axial stresses measured in compression tests are significantly higher than

corresponding tensile stresses for nearly all material configurations. In our tests, the SD effect generally

increases with material strength, indicating that aluminum alloys are pressure sensitive. The physical mech-

anism responsible for the SD effect was not investigated in this paper, but a plasticity model based on the

hypothesis that dislocation motion is affected by hydrostatic pressure, as put forth by several authors, gives

an accurate description of the material behavior in compression and tension.

Keywords: Experiments, 6xxx aluminum alloys, SD effect, Pressure sensitivity, Drucker-Prager, Stress

triaxiality ratio

1. Introduction

For certain metals, the flow stress in compression has been reported to be higher than the flow stress in

tension. This difference in strength between compression and tension is called the strength differential (SD)

effect and can be defined as

S D = 2
|σc| − |σt|

|σc| + |σt|
(1)
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where σc is the compressive stress and σt is the tensile stress. The SD effect was first accounted for in high-

strength steels (Hirth and Cohen, 1970; Chait, 1972; Spitzig et al., 1975, 1976). Later, it was also observed

in aluminum alloys (Spitzig and Richmond, 1984; Wilson, 2002; Bai and Wierzbicki, 2008). The exact

reason for this behavior is to some degree still uncertain. But the finding of the SD effect demonstrated a

need to include hydrostatic pressure in plasticity models for metals as for example in the model of Drucker

and Prager (1952) where flow stress increases linearly with pressure.

Early accounts of the SD effect in high-strength steels were made by Hirth and Cohen (1970), Chait

(1972), and Spitzig et al. (1975, 1976), among others; and later confirmed by for example Singh et al.

(2000). What was initially seen as a shortcoming of the compressive test (e.g. friction) was now inves-

tigated thoroughly and several hypotheses for the origin of the SD effect were put forth. Some of these

hypotheses were systematically reviewed by Hirth and Cohen (1970) and Drucker (1973). Microcracking

due to quenching, for example, was dismissed as an explanation since materials that were resistant to mi-

crocracking also displayed SD effects. Residual stress resulting from prior deformations, varying cooling

temperatures, or phase transformations was examined, but refuted as the main reason for the SD effect since

the difference between compression and tension should in this case be wiped out after plastic strains of a

few percent. Drucker (1973) further suggested that the stresses used to define the SD effect should be de-

termined after substantial plastic deformation of for instance two or three times the strain at initial yielding.

This eliminates contributions from residual stresses and reveals the actual pressure sensitivity of the mate-

rial. Note that even though residual stresses and microcracking can influence the bulk material behavior and

lead to an SD effect for small strains, this is not the same as pressure sensitivity.

In this paper, we use the term SD effect as the discrepancy between measured axial stress in compression

and tension tests with the same geometry, while pressure dependence, or pressure sensitivity, is assumed to

be the main physical phenomenon responsible for the SD effect. An overestimation of the axial stress in

pre-notched tension tests using the pressure independent von Mises yield surface can also indicate pressure

dependence of the material being simulated although this overestimation might also be explained by void

growth or plastic anisotropy as will be discussed later.

Spitzig and Richmond (1984) conducted compression and tension tests of aluminum alloy AA1100

under superimposed hydrostatic pressure. Superimposing hydrostatic pressure can increase ductility and

is utilized in metal forming (Peng et al., 2009; Wu et al., 2009). However, it was applied by Spitzig and
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Richmond (1984) to reduce the influence of anisotropy, inhomogeneity, residual stresses, specimen geom-

etry, and Bauschinger effects, thus helping to isolate the true pressure sensitivity of the material. The data

for aluminum was presented along with previously obtained data for steel (Spitzig et al., 1975, 1976) and

the authors concluded that flow stress is sensitive to superimposed hydrostatic pressure, but that the mag-

nitude of the SD effect is not. They found a linear relationship between equivalent stress σeq =
√

3J2 and

hydrostatic pressure P on the form

σeq = σ0 (1 + 3αP) . (2)

Here the hydrostatic pressure P is defined as

P = −
I1

3
= −

σkk

3
= −

σ1 + σ2 + σ3

3
(3)

where I1 is the first invariant of the stress tensor and σ1, σ2, and σ3 are the principal stresses. Further,

J2 = 1/2σ′i jσ
′
i j is the second invariant of the deviatoric stress tensor (σ′i j = σi j + Pδi j), σ0 is the value

of σeq at zero hydrostatic pressure (1 atm), and α is a pressure coefficient which they found to be about

19.2 TPa−1 for all iron-based materials. For aluminum, they suggested a pressure coefficient of 56.0 TPa−1.

These values, which are in accordance with dislocation models (Spitzig and Richmond, 1984), imply that α

is a function of the lattice structure, and thus that the SD effect is a manifestation of the effect of pressure on

dislocation motion. Further, they discovered that an associated flow rule severely overestimates the volume

changes when using a pressure dependent yield surface, so a non-associative flow rule is needed when

modeling pressure sensitive metals. Atomistic simulations by Bulatov et al. (1999) later confirmed that

pressure dependence of aluminum is not associated with volume expansion and that it is, indeed, a result of

the effect of pressure on dislocation motion.

More recently, Bai and Wierzbicki (2008) presented a large experimental and numerical study on the

behavior of aluminum alloy AA2024-T351. They conducted various compressive and tensile experiments

that revealed an SD effect that likely derives from pressure dependence. The plastic behavior was also found

to be sensitive to the third deviatoric stress invariant J3 = det(σ′i j). The authors obtained excellent results

when modeling pressure sensitivity similar to Eq. (2) with a non-associative flow rule, and by incorporating

the effect of J3 they managed to model plane strain tests as well. Later, Gao et al. (2009) investigated the
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effects of stress state on plasticity of aluminum alloy AA5083-H116 by using various tension specimens,

but no compression specimens. Thus, they only found a small pressure sensitivity. However, just like in the

tests of Bai and Wierzbicki (2008), the effect of J3 was significant. Seidt and Gilat (2013) confirmed that

aluminum alloy AA2024-T351 is both pressure sensitive and J3 dependent. They reported an SD effect of

4%.

Wilson (2002) presented tension experiments on smooth and notched specimens and showed that the

pressure independent von Mises yield surface overestimated the axial stress of the notched specimens. The

pressure dependent model of Drucker and Prager (1952) was on the other hand capable of predicting the

correct stress level. Guo et al. (2008) applied Gurson’s homogenization to obtain a constitutive model for

voided materials with a pressure sensitive matrix material. Yoon et al. (2014) put forth a general anisotropic

yield function where the difference between the tensile and compressive strengths can be incorporated either

through a linear pressure dependence or through J3-dependence. Due to the linear pressure dependence, this

model is consistent with the results of Spitzig and Richmond (1984).

The desire to predict the behavior of anisotropic metal sheets seems to be the main catalyst for the

interest in the SD effect. Models that account for this phenomenon, regardless of its physical cause, have

been proposed by for instance Brünig (1999), Stoughton and Yoon (2004), Kuroda (2004), Gao et al. (2011),

Lou et al. (2013), Smith et al. (2013), and Kleiser et al. (2015). A discrepancy between the stress levels in

compression and tension is often identified in tests of hexagon-closed packed (HCP) metals where plastic

deformation occurs not only by slip, but also by twinning (Hosford and Allen, 1973). This is the case for

titanium (e.g., Nixon et al., 2010; Tuninetti et al., 2015) and magnesium alloys (e.g., Cazacu and Barlat,

2004; Habib et al., 2017). To this end, Cazacu and Barlat (2004) presented a model that is capable of

capturing the SD effect due to direction-sensitive twinning. For magnesium alloys the compressive strength

is commonly lower than the tensile strength and the yield locus is often highly anisotropic. This type of SD

effect is not addressed in the current study.

This study is mainly experimental and reveals the possible intrinsic pressure dependence of age hard-

ened aluminum alloys. We present compressive and tensile test data for four different age hardened alu-

minum alloys in several different tempers. Almost all the tempers exhibit an SD effect. We demonstrate

the inability of the pressure independent von Mises yield surface to describe this behavior. Based on the

work of Spitzig and Richmond (1984), we presume that hydrostatic pressure affects the dislocation motion

and we use a pressure dependent non-associative Drucker-Prager plasticity model to simulate the tests. The
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Table 1: Chemical composition of the aluminum alloys considered in this study (in wt-%).

Alloy Si Mg Mn Cu Fe Cr Ti Al

6060 0.42 0.47 0.02 <0.01 0.19 <0.01 <0.01 Balance

6070 1.38 1.23 0.54 0.26 0.22 <0.01 <0.01 Balance

6082.25 0.88 0.60 0.53 0.02 0.18 0.15 0.01 Balance

6082.50 1.02 0.67 0.54 <0.01 0.20 <0.01 <0.01 Balance

work contributes experimental evidence that age hardened aluminum alloys exhibit an SD effect, and the

numerical simulations suggest that the observed SD effect can be attributed to pressure sensitivity of dislo-

cation motion. The intention of this work was not to propose a new model for the SD effect, but to show

that it exists and can be important for age hardened aluminum alloys.

2. Material

Four aluminum alloys, all delivered by Hydro Aluminium, were investigated in this study: AA6060,

AA6070, AA6082.25, and AA6082.50. The chemical compositions can be found in Table 1. The alloys

were heat treated to tempers O (annealed), T6 (peak strength), and T7 (over aged). Additional data for tem-

per T4 (naturally aged) of AA6070 will also be presented. Figure 1 shows the flow stress curves represented

by an extended Voce hardening rule for all configurations. Processing routes and aging heat treatments are

summarized below.

AA6070 was provided as 20 mm thick hot-rolled plates. All the plates were direct chill (DC) cast to

a thickness of 126 mm, machined to 103 mm, homogenized at 550 ◦C for 4 h, and then hot-rolled to the

ultimate thickness of 20 mm. Solution heat treatment took place at 560 ◦C for 90 min before the plates were

instantly water-quenched leaving the plates in the T4 condition. Subsequent artificial aging to obtain temper

T6 was 64 h at 160 ◦C before slow cooling, while temper T7 required 8 h at 200 ◦C before slow cooling.

Temper O was held for 24 h at 350 ◦C before slow cooling; this extended heat treatment was considered

sufficient to obtain the soft state regardless of the solution heat treatment. Test specimens were extracted

after aging for this alloy. All the data we present for AA6070 comes from specimens oriented along the

rolling direction of the plate since it is the most ductile orientation.

AA6060, AA6082.25, and AA6082.50 were delivered as rectangular extruded profiles. These alloys

were first cast into billets with a diameter of 200 mm, then extruded to rectangular profiles with a thickness

of 10 mm and a width of 83 mm, before they were homogenized using industrial practice. Test specimens
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Figure 1: Flow stress curves represented by an extended Voce hardening rule (Eq. (18)) from uniaxial tension tests for the materials

in this study. Note that the curve for 6070-T4 is from a uniaxial compression test.

were extracted from these profiles prior to the subsequent aging heat treatment. After solution heat treatment

at 540 ◦C for 15 min the specimens were instantly water-quenched. Temper O was held at 350 ◦C for 24

h, temper T6 was held at 185 ◦C for 5 h, while T7 required 185 ◦C for one week. All the data we present

for these three alloys come from specimens oriented transversely to the extrusion direction of the profile.

This was done to minimize the scatter due to possible spatial variations in material properties over the cross

section of the extruded profile.

The AA6060 alloy has a strong cube texture with a minor Goss component. It is recrystallized and the

grains are equiaxed with an average size between 60 µm and 70 µm. AA6070 exhibits a rotated cube texture.

The grains are elongated in the rolling direction and they can be several mm long while being between 0.5

mm and 1 mm in the plane perpendicular to the rolling direction. This structure is also recrystallized. The

AA6082.25 alloy has fibrous grain structure and displays cube texture with components along the β-fibre.

The grains are several mm long in the extrusion direction (ED), about 10 µm in the thickness direction (ND),

and about 150 µm in the transverse direction (TD) of the profile; they contain sub-grains approximately 2

µm to 10 µm in diameter with low-angle grain boundaries. AA6082.50 is recrystallized and exhibits a

rotated cube texture. The grains are elongated along the ED and are several mm long and between 300 µm

and 400 µm wide. More information regarding the AA6060, AA6082.25, and AA6082.50 alloys can be

found in Khadyko et al. (2014) and Frodal et al. (2017), while further details about AA6070 can be found
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in Johnsen et al. (2013) and Holmen et al. (2013, 2016).

3. Mechanical tests

3.1. Test program

We present results from four types of mechanical tests in this study: Uniaxial tension tests on smooth

cylindrical specimens (Figure 2a), uniaxial compression tests on right cylindrical upsetting specimens (Fig-

ure 2b), and tension and compression tests on pre-notched diabolo specimens (Figure 2c). Uniaxial com-

pression tests were only conducted on AA6070. Table 2 summarizes the experimental program. Three

to twelve repetitions were done of each test, allowing us to evaluate the repeatability of the experimental

setups. No effort was made to determine the volume change of the materials during the experiments.

6 mm

40 mm

R = 6 mm

R = 3.6 mm

6.4 mm

10 mm

D = 10 mm

(a)

(c)(b)

1
0

 m
m

1
0

 m
m

Figure 2: Geometries of the cylindrical test specimens: (a) Uniaxial tension specimen, (b) upsetting specimen, and (c) pre-notched

diabolo specimen.

The stress state in the tests can be conveniently described by the dimensionless stress triaxiality ratio T

and Lode parameter Lµ. The stress triaxiality ratio is related to I1 and defined by

T =
I1

3
√

3J2
= −

P
√

3J2
. (4)

The Lode parameter Lµ which is related to J3 and thus describes the deviatoric state of the material is

defined in terms of the principal stresses (σ1 ≥ σ2 ≥ σ3) as

Lµ =
2σ2 − σ1 − σ3

σ1 − σ3
. (5)
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Table 2: Overview of the experimental tests.

Configuration Uniaxial Upsetting Diabolo Diabolo

tension compression tension compression

6060-O X X X

6060-T6 X X X

6060-T7 X X X

6070-O X X X X

6070-T4 X X X X

6070-T6 X X X X

6070-T7 X X X X

6082.25-O X X X

6082.25-T6 X X X

6082.25-T7 X X X

6082.50-O X X X

6082.50-T6 X X X

6082.50-T7 X X X

Due to the axisymmetric nature of the test specimens in this study, the Lode parameter Lµ equals -1 for

all the tension tests and 1 for all the compression tests. The stress triaxiality ratio T varies during tests,

but the initial value T0 can be roughly estimated by the Bridgman formula (Bridgman, 1952; Hancock and

Mackenzie, 1976)

T0 = ±

(
1
3

+ ln
(
1 +

a0

2R

))
(6)

where R is the radius of curvature of the neck, and a0 is the minimum cross-section radius of the specimen.

A positive sign is used for tension tests while a negative sign is used for compression tests. As expected,

T0 = 0.33 for the uniaxial tension specimen and T0 = −0.33 for the uniaxial compression specimen. Eq. 6

estimates T0 ≈ 0.70 for the pre-notched diabolo specimens tested in tension and T0 ≈ −0.70 for pre-notched

diabolo specimens tested in compression which correspond well with results from numerical simulations.
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3.2. Uniaxial tension tests

Figure 3 shows typical true stress-strain curves until necking for cylindrical specimens of aluminum

alloy AA6070. Their initial diameter was 6 mm (Figure 2a). We conducted the tests in a hydraulic testing

machine at an initial strain rate of 5 × 10−4 1/s. A laser micrometer continuously measured the diameters

D⊥ in the transverse direction of the of the specimen and Dt in the thickness direction of the component

(Fourmeau et al., 2011; Frodal et al., 2017). By using the force measurements F from a calibrated load

cell and the diameter measurements we calculated the axial component of the Cauchy stress (σ11) and the

logarithmic strain (εl = ε11), both averaged over the cross-section area, as

σ11 =
F
A
, ε11 = ln

A0

A
+ (1 − 2ν)

σ11

E
, (7)

where plastic incompressibility was assumed. The current cross-section area of the test specimen is given

by

A =
πD⊥Dt

4
, (8)

and A0 = πD2
0/4 is the initial cross-section area of the test specimen. Young’s modulus and Poisson’s ratio

for aluminum are taken as E = 70, 000 MPa and ν = 0.3, respectively. Note that we assume that the cross

section is elliptical during deformation. Only results from the rolling direction are reported here, but tests

with their loading axis oriented 45◦ and 90◦ with respect to the rolling direction were also conducted for

AA6070 in uniaxial tension and uniaxial compression. The orientation had little effect on the stress level,

but in tension tests the fracture strains were significantly lower in the 45◦ and 90◦ directions compared to

the rolling direction. This is, however, not the focus of this study and more information can be found in

Holmen et al. (2013, 2016).

The uniaxial tension tests conducted on AA6070 were done more than two years prior to the rest of the

tests. This means that temper T4 experienced additional aging after the tensile testing and was, thus, not

fully developed when those tests were conducted. Therefore, the uniaxial tension tests cannot be directly

compared to the upsetting tests for AA6070-T4 as will be commented on below. The other alloys (AA6060,

AA6082.25, and AA6082.50) were also tested in uniaxial tension, but these results were solely used to

calibrate the hardening curves for numerical simulations.
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Figure 3: True stress-strain curves from the uniaxial tension and compression tests for aluminum alloy AA6070 plotted until point

of necking in the tension tests.

3.3. Uniaxial compression (upsetting) tests

In addition to the tension data, Figure 3 shows true stress-strain curves for upsetting tests on the four

different tempers of AA6070. They were conducted on right cylinders with both height and diameter equal

to 10 mm (Figure 2b). During testing the cylinders were compressed between two hardened steel platens at

an initial strain rate of 5.0×10−4 1/s. We applied graphite paste to the machine-specimen interfaces to reduce

the effects of friction. The force F was measured by a calibrated load cell while two MTS extensometers

measured the displacement on diametrically opposite sides of the cylinders. The longitudinal true stress-

strain curves for the upsetting tests were found as

σ11 =
F
A

=
4FL
πD2

0L0
, ε11 = ln

L
L0

(9)

where L is the length, L0 is the initial length, and D0 is the initial diameter of the specimens. Plastic

incompressibility and negligible elastic strains were assumed to calculate the stress. Eq. (9) also assumes

frictionless machine-specimen interfaces, although friction is nearly impossible to eliminate completely.

The curves are plotted in the same quadrant as the tensile tests to simplify the comparison.
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3.4. Pre-notched diabolo tension and compression tests

Pre-notched diabolo specimens (Figure 2c) of all configurations were tested both in tension and com-

pression using the same setup as for uniaxial tension tests in Section 3.2. The initial notch radius R was 3.6

mm and the minimum initial cross-section diameter was 6.4 mm. Eq. (8) was used to find the current area

based on the two continuously measured perpendicular diameters D⊥ and Dt. The true stress-strain curves

shown for all configurations in Figure 4 were determined as

σ11 =
F
A
, ε11 = ln

A0

A
(10)

where we have assumed both negligible elastic strains and plastic incompressibility. As in Figure 3, all

the curves in Figure 4 are shown in the tensile quadrant to simplify comparison between compression and

tension results. The true stress-strain curves for the pre-notched diabolo specimens were plotted until a

logarithmic strain of 0.1 unless failure occurred earlier.

4. Experimental results

Representative results from tests on the uniaxial tension specimen and cylindrical upsetting specimen in

Figure 2a and b, respectively, are shown in Figure 3. This set of tests was only obtained for aluminum alloy

AA6070. Temper O seemingly exhibits no SD effect, while axial stresses in compression are noticeable

higher than the axial stresses in tension for tempers T6 and T7, even at substantial strains, confirming that

residual stress is not the cause. The SD effect in temper T4 is exaggerated due to natural aging, and the

results are viewed as qualitative at best. The SD effects calculated from the measured axial stress σ11 after a

logarithmic strain of 0.02 using Eq. (1) are listed in Table 3. Disregarding temper T4, the data could suggest

that friction affects the results from the upsetting tests. However, friction cannot account for the main part

of the discrepancy between compressive and tensile behavior, as will be seen in the following.

Figure 4 shows the true stress-strain curves from tests of all the material configurations with the pre-

notched diabolo specimens in Figure 2c. One representative curve is shown from each data set. Table 4

summarizes the test data and shows the measured axial stress σ11 at a logarithmic strain of 0.02 along with

the SD effect calculated by Eq. (1). The scatter is indicated by the columns listing maximum, average, and

minimum SD effect. The maximum SD effect was calculated based on the tension test with the lowest axial

stress and the compression test with the highest axial stress. The minimum SD effect was calculated based
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Table 3: SD effect and the measured axial tensile stress for uniaxial tests on AA6070. The listed values are taken at a logarithmic

strain of 0.02.

Configuration σ11 SD effect

6070-O 99 MPa 4.0%

6070-T4∗ 226 MPa 11.3%

6070-T6 397 MPa 6.3%

6070-T7 356 MPa 2.5%

∗Note that the listed SD effect for T4 is ex-

aggerated due to natural aging.

Table 4: Summary of experimental test data from the pre-notched diabolo compression and tension tests. All the values are taken

at a logarithmic strain of 0.02. The SD effect is calculated directly from the measured axial stress while β is calculated from the

Bridgman corrected stress (σ̄t). The measured axial stress σ11 from the pre-notched diabolo tensile tests is shown to illustrate the

strength of the material.

Configuration
σ11 SD effect β

(Test) Max. Avg. Min. Max. Avg. Min.

6060-O 73 MPa 6.8% 5.3% 4.0% 5.9◦ 4.6◦ 3.0◦

6060-T6 250 MPa 7.2% 3.1% 0.2% 6.3◦ 2.7◦ 0.1◦

6060-T7 200 MPa 7.6% 5.6% 3.7% 6.4◦ 4.8◦ 2.9◦

6070-O 124 MPa 0.4% -0.3% -1.2% 0.0◦ -0.4◦ -1.0 ◦

6070-T4 326 MPa 4.0% 3.4% 2.9% 3.4◦ 3.0◦ 2.4◦

6070-T6 525 MPa 6.9% 6.1% 5.4% 6.0◦ 5.2◦ 4.6◦

6070-T7 465 MPa 4.4% 3.6% 2.5% 3.9◦ 3.3◦ 2.3◦

6082.25-O 123 MPa 3.0% 1.5% 0.2% 2.6◦ 1.3◦ 0.0◦

6082.25-T6 423 MPa 5.7% 4.5% 3.1% 4.7◦ 3.7◦ 2.5◦

6082.25-T7 256 MPa 3.5% 2.8% 1.9% 2.9◦ 2.4◦ 1.7◦

6082.50-O 88 MPa 9.0% 4.4% -2.1% 8.1◦ 3.7◦ -2.1◦

6082.50-T6 436 MPa 9.1% 6.3% 3.9% 7.9◦ 5.5◦ 3.3◦

6082.50-T7 294 MPa 8.7% 6.0% 4.0% 7.2◦ 5.2◦ 3.5◦
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Figure 4: Representative true stress-strain curves from the pre-notched diabolo tension and compression tests for aluminum alloy

(a) 6060, (b) 6070, (c) 6082.25, and (d) 6082.50.

on the tension test with the highest axial stress and the compression tests with the lowest axial stress. The

average SD effect was calculated based on the average stress from all the tension tests and the average stress

from all the compression tests. The scatter is significant for some of the configurations; however, the overall

trend shows that the SD effect increases with the axial stress.

Figure 5 illustrates the evolution of the maximum, average, and minimum SD effect from the pre-
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Table 5: Lankford coefficients in tension and compression from the pre-notched diabolo tests.

Configuration Tension Compression

6060-O 1.24 1.40

6060-T6 1.27 1.36

6060-T7 1.24 1.27

6070-O 0.79 0.79

6070-T4 0.81 0.84

6070-T6 0.69 0.77

6070-T7 0.76 0.84

6082.25-O 0.82 0.85

6082.25-T6 0.97 0.95

6082.25-T7 0.85 0.83

6082.50-O 0.45 0.51

6082.50-T6 0.36 0.55

6082.50-T7 0.41 0.59

notched diabolo specimens for all alloys in T6 temper. SD effect is calculated from the measured axial

stress σ11 using Eq. (1). The scatter for AA6060-T6 is large and the magnitude of the SD effect lies

somewhere between -2% and 8%. This is mainly due to spread in the compression tests. AA6070-T6

exhibits less scatter, and the SD effect lies between 4% and 8%; here it increases slightly with the strain.

For AA6082.25-T6, the scatter is moderate and the SD effect decreases with straining. Frodal et al. (2017)

observed internal buckling of the elongated grains under large compressive strains which might explain why

the SD effect decreases with increasing strain for this particular configuration. For AA6082.50-T6 the SD

effect varies between around 4% and 10% and it hardly changes with the strain.

Measuring two perpendicular diameters through the tests allowed us to calculate the Lankford coeffi-

cients for the thirteen material configurations. They are shown in Table 5. The Lankford coefficient is the

ratio between the two transverse strains, which for AA6060, AA6082.25, and AA6082.50 is the ratio be-

tween the incremental strains in the extrusion direction (ED) and thickness direction (ND) of the extrusion.

For AA6070 it is the ratio between the incremental strain transverse to the rolling direction and the incre-

mental strain in the thickness direction of the plate. The Lankford coefficients for all materials are different

from unity. This indicates plastic anisotropy which was expected from the crystallographic textures of these

materials. In some cases, the Lankford coefficients have different values in tension and compression.
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Figure 5: Evolution of the SD effect in the pre-notched diabolo tests from the T6 temper of (a) 6060, (b) 6070, (c) 6082.25, and (d)

6082.50. Note that the SD effect is calculated based on the axial stress σ11 measured in the tests.

5. Numerical simulations

There are two reasons for conducting the numerical simulations in this study: (1) to evaluate if the

specimen geometry and boundary conditions contributed to the observed SD effect; and (2) to investigate

if the hypothesis of Spitzig and Richmond (1984) about pressure sensitivity of the dislocation motion can

describe the SD effect. Simulations with both a pressure independent plasticity model and a pressure de-
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pendent plasticity model are presented in the following. Note that the pressure sensitivity of the model in

Section 5.2 is not calibrated from our experimental data but based on the results of Spitzig and Richmond

(1984).

5.1. Pressure independent plasticity modeling

The pressure independent von Mises yield surface is first used to simulate the tests. The von Mises

model assumes volume conserving and pressure independent plasticity (Figure 6) which is customary when

modeling metals. Further, the yield surface is a circle in the deviatoric plane, and thus a cylinder in the

principal stress space. This means that the plastic behavior is a function of the second deviatoric invariant

J2, hence the name J2-plasticity. The von Mises yield criterion reads

f (σi j, p) =
√

3J2 − σY = 0 (11)

where σY is the quasi-static flow stress that can be determined from a simple material test. As is common,

an associative flow rule is used and the plastic rate-of-deformation tensor is defined by

Dp
i j = λ̇

∂ f
∂σi j

(12)

where λ̇ is the plastic multiplier. Associative flow implies that the plastic strain increment is normal to the

yield surface and it is often referred to as the normality rule.
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Figure 6: Geometric representation of the von Mises (dashed red line) and the Drucker-Prager (solid red line) yield surfaces.
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5.2. Pressure dependent plasticity modeling

We also applied the yield surface proposed by Drucker and Prager (1952) to simulate the various tests.

This is an isotropic and pressure dependent model where the deviatoric strength increases with increasing

pressure. The Drucker-Prager yield criterion is a right circular cone in the principal stress space shown in

the
√

3J2 − P-plane in Figure 6. It can conveniently be defined as (Abaqus Documentation, 2014)

f (σi j, p) =
√

3J2 − P tan β −
(
1 +

1
3

tan β
)
σY = 0 (13)

where β is the friction angle that controls the pressure sensitivity of the material. The pressure independent

von Mises yield criterion is obtained by setting β = 0. Note that with this formulation of the criterion σY is

the quasi-static flow stress in tension.

As put forth by Bridgman (1952), Spitzig and Richmond (1984), Bulatov et al. (1999), and others,

plastic deformation of metals should be volume conserving. For a pressure sensitive yield surface as the

one in Eq. (13), the associative flow rule predicts significant volume changes. We therefore assume non-

associated plastic flow. The plastic flow rule now reads

Dp
i j = λ̇

∂g
∂σi j

(14)

where g ≥ 0 is the plastic flow potential which is different from the yield function f . Volume conser-

vation is obtained by using the same plastic potential function as in J2 flow theory, i.e., g =
√

3J2. In

Abaqus/Standard, which is used in this study, this particular isotropic and volume conserving version of the

Drucker-Prager criterion can be obtained by setting the flow stress ratio K to 1.0 and the dilatation angle ψ

to 0.0. The friction angle β can be determined from uniaxial tension and compression tests as

β = tan−1
(
3
|σ̄c| − |σ̄t|

|σ̄c| + |σ̄t|

)
(15)

where the bar denotes uniaxial values, i.e., σ̄t is the stress in uniaxial tension and σ̄c is the stress in uniaxial

compression. Note that β is presented in degrees and that Eq. (15) has solely been used to evaluate the

numerical results in this paper, nothing else.
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As outlined previously, we assume that the conjecture of Spitzig and Richmond (1984) is correct, which

means that the pressure coefficient α is a material constant and that it can be used in the calibration of

the non-associated Drucker-Prager plasticity model. By choosing α as 56.0 TPa−1 we can calculate the

appropriate value of the friction angle β for numerical simulations as

α =
tan β

(3 + tan β)σ̄t
⇔ β = tan−1

(
3ασ̄t

1 − ασ̄t

)
(16)

which was found by combining Eq. (2) and Eq. (13). The magnitude of β depends on the stress and is

not constant for work hardening materials. Evolution of β with work hardening is not accounted for in this

study.

Spitzig et al. (1976) pointed out that in a simple case of uniaxial compression or tension, I1 = σ̄ and
√

3J2 = |σ̄|, where σ̄ is the uniaxial stress in either tension or compression with tension being positive. In a

uniaxial state which for example exists in a smooth tensile specimen before necking or in an upsetting test

with no barreling, σ̄ is equal to the measured axial stress σ11. However, most of our tests were conducted

using pre-notched diabolo specimens. In such tests the magnitude of the average axial stress is higher than

it would have been in the uniaxial condition due to hydrostatic stress introduced by the notch. We can

compensate for the hydrostatic stress by following Bridgman’s mathematical analysis (Bridgman, 1944).

According to Bridgman, the uniaxial stress σ̄ that would exist in the test without the tri-axial stresses

introduced by the notch is

σ̄ =
σ11(

1 +
2R
a0

)
ln

(
1 +

a0

2R

) . (17)

As in Eq. (6), R is the radius of curvature of the neck, and a0 is the radius of the minimum cross section of

the specimen. For the pre-notched diabolo specimens in Figure 2c, R = 3.6 mm and a0 = 3.2 mm.

The results from the pre-notched diabolo tension tests were scaled with Eq. (17) to approximate the

uniaxial flow stress. By using Eq. (16) we could then estimate the Drucker-Prager friction angle of all the

material configurations. The results are summarized in Table 6, where β is the angle of friction (in degrees)

and σ̄t is the Bridgman corrected (compensated for the triaxial stress state) tensile stress at a logarithmic

strain of 0.02. Keep in mind that there are several assumptions that are required for the Bridgman correction

to be valid, all of which are not strictly fulfilled here (Dieter, 1988). However, the Bridgman analysis was
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Table 6: The friction angle β estimated from Eq. (16) which is used as input in the numerical simulations. The listed stress σ̄t is

the Bridgman corrected tensile stress taken from the diabolo tests at a logarithmic strain of 0.02.

Configuration
σ̄t β

(Bridgman)

6060-O 61 MPa 0.7◦

6060-T6 209 MPa 2.2◦

6060-T7 167 MPa 1.7◦

6070-O 104 MPa 1.2◦

6070-T4 273 MPa 3.0◦

6070-T6 439 MPa 4.3◦

6070-T7 389 MPa 3.9◦

6082.25-O 103 MPa 1.2◦

6082.25-T6 354 MPa 3.5◦

6082.25-T7 214 MPa 2.2◦

6082.50-O 73 MPa 0.9◦

6082.50-T6 364 MPa 3.6◦

6082.50-T7 246 MPa 2.5◦

necessary to use the data from pre-notched diabolo tests, both to calculate β from the experimental tests

with Eq. (15), and to estimate β with the pressure sensitivity parameter from Spitzig and Richmond (1984)

with Eq. (16).

5.3. Finite element models

All the simulations reported in this paper are run with Abaqus/Standard. We exploit the inherent sym-

metry of all the test specimens and apply axisymmetric boundary conditions. The finite element models

are shown in Figure 7. Only the upper half of the uniaxial tension and pre-notched diabolo specimens

were modeled. In the model of the upsetting test, we included the entire height of the specimen, but we

neglected friction. Since the machine-specimen interfaces are not completely frictionless, the compressive

stresses in the simulations will be slightly underestimated. However, the correct experimental trends cannot

be predicted by merely including friction in the simulations, indicating that the effects of friction do not

dominate the behavior at these strains. Eight-node biquadratic axisymmetric quadrilateral elements with

reduced integration (CAX8R) were used in all the simulations and the element size was approximately 0.1

mm in all models.
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Figure 7: Finite element models used in the numerical simulations: (a) Uniaxial tension specimen, (b) upsetting specimen, and (c)

pre-notched diabolo specimen.

Work hardening is represented by an extended Voce hardening rule that reads

σY (p) = A +

2∑
i=1

Qi
(
1 − exp(−Ci p)

)
(18)

where σY is the quasi-static flow stress in tension, p is the equivalent plastic strain, A represents the initial

yield stress, while Qi and Ci are parameters controlling the shape of the hardening curve. The parameters

A, Q1, C1, Q2, and C2 are tabulated in Table 7 and were all, except for AA6070-T4, determined by curve-

fitting Eq. (18) to the flow-stress curves from uniaxial tension tests. The hardening curves were introduced

into Abaqus/Standard in tabular form with 100 data points for equivalent plastic strains from 0 to 0.6. For

equivalent plastic strains above 0.6, the solver assumes perfect plasticity. In practice, this means that the flow

stress saturates at a plastic strain of 0.6 which should be adequate since the highest strain value reported

in this study is approximately 0.25. To illustrate the diversity of the flow stress behavior of the different

materials Figure 1 shows the flow stress curves approximated by Eq. (18). Note that the curve for 6070-T4

is based on the quasi-static flow stress in compression, as opposed to tension as it is for the other materials.

This is accounted for in Abaqus/Standard by defining the plasticity curve as a compression curve instead

of a tension curve which slightly changes the formulation of the Drucker-Prager yield criterion (Abaqus
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Table 7: Parameters of the isotropic extended Voce hardening rule.

Configuration A (MPa) Q1 (MPa) C1 Q2 (MPa) C2

6060-0 25.0 57.6 38.6 85.9 1.3

6060-T6 167.0 40.6 26.7 136.2 0.5

6060-T7 128.0 54.3 33.4 875.2 0.04

6070-0 50.5 80.4 41.5 90.4 2.6

6070-T4∗ 146.8 74.3 226.9 256.2 8.9

6070-T6 372.5 21.0 217.7 75.1 6.8

6070-T7 341.0 32.5 38.9 33.0 3.2

6082.25-0 55.0 65.5 54.4 103.0 2.4

6082.25-T6 323.0 55.8 14.2 161.5 0.5

6082.25-T7 174.0 74.8 34.8 1118.9 0.06

6082.50-0 27.0 59.8 60.0 109.0 3.2

6082.50-T6 318.0 74.2 10.6 - -

6082.50-T7 203.0 71.2 28.9 - -

∗Note that the parameters for 6070-T4 are determined from an upsetting

test, and thus represent the quasi-static flow stress in compression.

Documentation, 2014).

5.4. Simulation results

Figure 8 compares true stress-strain curves from simulations of AA6070 with the pressure insensitive

von Mises yield surface to the pressure sensitive Drucker-Prager yield surface. The compression tests in

Figure 8a were simulated with frictionless interfaces between the test specimen and the platens, meaning

that these results merely confirm that the von Mises yield surface predicts the same response in compression

and tension and that the Drucker-Prager surface does not. Figure 8b shows that geometrical effects are

minor since the compressive and tensile stresses are practically equal in the von Mises simulations of pre-

notched diabolo geometry. This means that the observed SD effect is not a geometric artifact. Further,

the practical implication of the pressure dependence of the Drucker-Prager model reveals itself here. Since

the uniaxial tension tests were used to calibrate tempers O, T6, and T7, the Drucker-Prager model predicts

identical axial stresses to the von Mises model for this specimen geometry. Similarly, the upsetting test

was used to calibrate AA6070-T4, and the Drucker-Prager result is identical to the von Mises result for this

configuration. In accordance with the experimental data, the Drucker-Prager model predicts higher stresses

in the upsetting tests than for uniaxial tension tests for tempers T4, T6, and T7, while there is almost no
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difference for temper O. Since the pre-notched diabolo tensile test has a higher stress triaxiality ratio than

the corresponding uniaxial tests the axial stresses are lower using the Drucker-Prager yield criterion than

the von Mises criterion. Conversely, for the compression tests the Drucker-Prager yield criterion predicts

higher axial stresses in compression than the von Mises yield criterion.
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Figure 8: True stress-strain curves from simulations with the von Mises (J2) and Drucker-Prager (DP) models for (a) uniaxial tests

and (b) pre-notched diabolo tests for aluminum alloy AA6070.

Figure 9 shows the numerical simulations from Figure 8a alongside the representative experimental

curves. As expected, the simulations correlate with the tests their material models were calibrated from.

Further the Drucker-Prager simulations predict approximately the correct magnitude of the SD effect. Fig-

ure 10 and Figure 11 show the simulation results compared to experimental data for pre-notched diabolo

specimens. To compare the entire data set to the simulations, results from every test are plotted in diffuse

red for tension and diffuse gray for compression. In general, Figure 10 shows that the von Mises results are

close to, but slightly above the test results in tension and significantly below the test results in compression

except for 6082.25. The von Mises yield surface cannot capture the behavioral trends of the pre-notched

diabolo tests.

Numerical simulations of pre-notched diabolo specimens with the Drucker-Prager model in Figure 11

show that due to the low stress levels, the SD effect for temper O are low in the simulations of all alloys,

just as in the experiments. For the AA6070, AA6082.25, and AA6082.50 alloys, the magnitude of the SD
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Figure 9: Simulations of uniaxial specimens for 6070 compared to the experimental tests: (a) von Mises (J2) and (b) Drucker-

Prager (DP) model. Note that the hardening for 6070-T4 is from a uniaxial compression test and that 6070-T4 was not fully

developed when the uniaxial tensile test were conducted.

effect for temper T6 and temper T7 is also captured. However, the predicted stress levels for AA6082.25

are generally too high. We attribute this discrepancy to the anisotropy of the material. The experimental

results show that AA6082.25 exhibits a higher axial stress in uniaxial tension than AA6082.50, while it is

the other way around for the pre-notched diabolo tension tests, indicating that the isotropic model cannot

fully predict the material behavior. For aluminum alloy AA6060, the SD effect is underestimated for T6

and T7 meaning that the pressure sensitivity of this alloy is larger than predicted by Eq. (16).

6. Discussion

As discussed in the introduction of the paper, several explanations for the SD effect have been postu-

lated in the last decades. In the majority of our experiments there is a clear difference between the axial

stresses in compression and tension. This difference seems to increase with the yield strength of the material

which indicates that aluminum alloys are pressure sensitive. We conducted the modeling presuming that the

difference between compressive and tensile stresses is due to effects of pressure on dislocation motion. In

other words, we presumed that Spitzig and Richmond’s proposition is correct. This presumption accounts

for parts of the observed SD effect. However, the discrepancies between modeling and experiment in Figure
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Figure 10: Simulations of pre-notched diabolo specimens with the von Mises (J2) yield surface compared to the experimental tests:

(a) 6060, (b) 6070, (c) 6082.25, and (d) 6082.50.

9b and Figure 11 show that this near-linear relationship between axial stress and SD effect does not pro-

vide the complete explanation. Figure 12 shows the friction angles β calculated from Eq. (16) as a black

dashed line that increases with the stress. The friction angle represents the pressure sensitivity of the ma-

terial, and the dashed line represents the input to the numerical simulations that were presented in Section

5. Table 6 provides the corresponding β-values. The experimentally determined maximum, average, and
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Figure 11: Simulations of pre-notched diabolo specimens with the Drucker-Prager (DP) yield surface compared to the experimental

tests: (a) 6060, (b) 6070, (c) 6082.25, and (d) 6082.50.

minimum friction angles β calculated using Eq. (15) are plotted as markers in Figure 12. Here, the values

are provided in Table 4. The solid lines illustrate the trends of the different alloys. The friction angles for

AA6060 and AA6082.50 are underestimated by Eq. (16), but the predictions for AA6070 and AA6082.25

are good. These results show that the compressive stress is higher than the tensile stress in age hardened

6xxx aluminum alloys which, again, strongly suggest that AA6xxx aluminum alloys are pressure sensitive.
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However, the discrepancies between the tests and the model indicate that other factors also come into play.
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Figure 12: Friction angle β plotted against axial stress σ11 at a logarithmic strain of 0.02 for every material configuration. The

dashed line represents the Spitzig and Richmond (1984) (S&R) prediction from Eq. (16). The point markers are the maximum,

average, and minimum friction angles determined from the experiments (Table 4). The solid trend lines are drawn to aid the eye.

Bai and Wierzbicki (2008) previously conducted a study similar to ours for aluminum alloy AA2024-

T351, but they also incorporated the effect of the Lode parameter by conducting plane strain tension tests.

From these tests they saw that changing the Lode parameter from -1 to 0 affected the results significantly,

but when the Lode parameter changed sign, that is when the stress state went from axisymmetric tension

(Lµ = −1) to axisymmetric compression (Lµ = 1), the pressure sensitivity governed. Thus, our work

confirms with significant experimental evidence the results of Bai and Wierzbicki (2008). These results

considered in light of the study of Spitzig and Richmond (1984) who varied the hydrostatic pressure while

keeping the Lode parameter constant, indicate that aluminum is pressure sensitive and that this type of SD

effect is not a result of tension-compression asymmetry in the deviatoric plane. The results also confirm the

experimental results of Wilson (2002). He obtained similar simulation results with an associative Drucker-

Prager model and a similar pressure sensitivity parameter as we did in this study.

When modeling notched tension tests with a pressure independent yield surface, the stress level is

often overestimated. This overestimation of the stress level in pre-notched tensile tests can be substantially

reduced by using anisotropic plasticity models as shown in Fourmeau et al. (2011). The overestimation

can also be reduced by using porous plasticity models (Westermann et al., 2014), but since the initial void-

volume fraction is usually small and that voids close in compression, the effect of porous plasticity is minor.
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It appears that neither anisotropy nor void growth can explain the entire difference which again suggests

pressure dependence.

The SD effect was by Fourmeau et al. (2011) found to be a function of the orientation of the test

specimens, meaning that it matters if the specimen is extracted from the rolling/extrusion direction or the

transverse direction. In the current study, AA6070 in uniaxial conditions exhibits the same trend in all

orientations. However, the pre-notched diabolo tests were only extracted from the rolling direction for

AA6070, and only from the transverse direction for the other alloys.

Our experiments were conducted for materials with different crystallographic textures and grain struc-

tures: AA6060 is recrystallized with equiaxed grains, AA6082.25 is non-recrystallized with pancake-shaped

grains and sub-grains, AA6082.50 and AA6070 are recrystallized with large elongated grains. We know

from previous studies that plastic anisotropy induced by the crystallographic texture influences the plastic

deformation and stress distribution during necking of a tension test. The different crystallographic textures

and thus different plastic anisotropy of the alloys have affected the results in this study. We also expect that

there has been some influence from the differences in grain size. In further work, it would be of great inter-

est to perform tension and compression tests on aluminum alloys of different strengths with random texture,

isotropic behavior, and equiaxed and equal-sized grains. This way the significance of plastic anisotropy and

grain structure could be removed and the effect of hydrostatic pressure isolated.

The main implication of the SD effect is that the classical J2 flow theory where the plastic behavior

of the material is independent of the hydrostatic stress cannot be used to obtain accurate results even in

engineering applications. The buckling capacity of columns can for example be underestimated if the SD

effect is not taken into account. Due to the SD effect, the stress level in notched tensile tests are often

overestimated in numerical simulations. Kuwabara (2007) highlights that accurate predictions of metal

forming processes are dependent on knowledge of the SD effect. Pressure dependence will also affect the

stress distribution in specimens at various stress triaxiality ratios and thus the point of incipient fracture,

making it important in ductile fracture modeling.

7. Concluding remarks

There is a discrepancy between the measured compressive and tensile stress-strain curves for nearly all

the material tests presented in this paper. This strength differential (SD) effect was in some cases as large as

6.3% and the magnitude increased with increasing stress, suggesting that AA6xxx-series aluminum alloys
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are pressure dependent. Our results are consistent with other results on aluminum alloys from the literature

and indicate that the macroscopic pressure dependence can be a consequence of the effect of pressure on

dislocation motion.

Numerical simulations with the pressure independent von Mises yield surface are only capable of repro-

ducing the uniaxial tests that were used for calibration. At higher stress triaxiality ratios (lower pressures)

the von Mises results overestimate the axial stress, and at lower stress triaxiality ratios (higher pressures)

the von Mises results underestimate the axial stress. The pressure dependent yield surface of Drucker and

Prager assumes that yielding of the material is linearly dependent on the pressure. By calculating the pres-

sure dependence from a presumption that dislocation motion is affected by the pressure as suggested by

Spitzig and Richmond (1984), numerical simulations using the Drucker-Prager yield surface correctly pre-

dict the trends seen in the experiments. This particular approach to the model requires no additional tests

for calibration compared to the von Mises model.

We can say with some certainty that yielding of aluminum alloys is pressure dependent. The importance

of the third invariant of the stress tensor J3 has been highlighted in literature but the main reason for the

SD effect observed in this study is most likely not J3-dependence. However, the plastic anisotropy and

grain structure of the investigated materials can have influenced the SD effect; this requires additional work.

Accurately determining the SD effect in a uniaxial condition is difficult due to the friction between the test

specimens and the machine platens in upsetting tests, and this might obscure experimental results. In this

study we observed SD effects in pre-notched diabolo test specimens which do not suffer the same problems

as the uniaxial upsetting test.
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