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Abstract. This paper puts forward a location-routing problem with fuzzy demands (LRPFD). A fuzzy chance constrained pro-
gramming (CCPF) model is presented and a simuolation-embedded simulated annealing (SA) algorithm is proposed to solve it.
Moreover, an initialization heuristic is presented which is based on the well-known fuzzy c-means clustering algorithm. Numeri-
cal examples clearly show the effectiveness of the proposed solution procedure. In addition, the sensitivity analysis of the objective

function based on the dispatcher preference index is presented.
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1. Introduction

Supply chain Management (SCM) is the process of
planning, implementing and controlling the operations
of the supply chain in an efficient way. It spans all move-
ments and storage of raw materials, work-in-process
inventory, and finished goods from the point-of-origin
to the point-of-consumption [33]. There are many deci-
sions to be made in a supply chain varying from locating
facilities to determining the stock levels. These deci-
sions are often categorized as strategic, tactical, and
operational levels. Implementing a strategic or long-
term decision does not take place on a regular basis
andneeds major capital investments. A tactical decision
making is needed more often than a strategic decision.
Finally, the operational decisions such as scheduling

are those decisions that take place regularly. Facility
location and vehicle routing problem (VRP) are exam-
ples of strategic and tactical decisions respectively.
Location-routing problem (LLRP) integrates the strate-
gic (location) and tactical (routing) levels to form an
integrated, extremely important decision to be made in
many supply chains. LRP may be defined as a special
case of VRP in which there is a need to determine the
optimal number and location of depots simultaneously
with finding distribution routes. There are numerous
applications for LRP such as distribution of newspa-
pers, medical evacuation, and waste collection.

The dynamic and complex nature of supply chain
imposes a high degree of uncertainty in supply chain
planning decisions and significantly influences the
overall performance of the supply chain network
[22]. Even though uncertainty is omnipresent in SCM
problems, it receives relatively little attention from
the operations research community. A problem under



uncertainty may be modeled using various approaches
such as random variables or fuzzy variables. Although
many problems can be modeled using random vari-
ables, there are some instances in which it is almost
impaossible or irrational to use random variables, such as
when:

+ there are not enough data to model the problem
+ the available data is not reliable

Besides, using scenario-based approaches which are
employed in stochastic approaches, the large number of
scenarios used in representing the uncertainty can lead
to computationally challenging problems [38]. Hence,
using fuzzy logic to model some real-world problems
seems more reasonable. To put it insimpler terms, fuzzy
variables can represent the uncertainty inherent in some
problems in a better way and with less computational
need. Fuzzy LRP (FLRP) arises whenever some ele-
ments of the problem are uncertain or ambiguous. For
instance, the information about demand of a customer
may be imprecise to some extent and may be estimated
as “around 40 units” or “10 to 30 calls per day”.

Considering the literature of LRP, this paper brings
several new aspects to the literature. First, a chance-
constrained programming (CCP) model of LRP with
fuzzy demands is proposed. Moreover, a novel hybrid
procedure is presented to initialize feasible solutions. In
addition, a simulation-embedded simulated annealing
(SESA) is proposed and its performance is compared
with procedures in literature.

The rest of the paper is organized as follows. In the
next section, the literature review of location-routing
problems and credibility theory is presented. Fuzzy
variables and basics of credibility theory are discussed
insection 3. Section4 is dedicated tothe problem defini-
tion. The proposed methodology to solve the problem is
discussed in section 5. Numerical experiments and anal-
ysis are given in section 6. Finally, section 7 presents
several concluding remarks and future research direc-
tions.

2. Literature review

A survey of the LRP literature shows that the research
on LRP has attracted relatively less attention compared
to various VRP or location variants. There are several
review papers dedicated to the study of LRP such as
Nagy and Salhi [35]. Interested readers may refer to [4]
and referenices therein in order to get a comprehensive
review of LRP literature before 2007, Inn this paper, we

touch on some pertinent literature of LRP with a focus
onrecent publications.

Applications and numerous sclution procedures
varying from Lagrangean Relaxation (LR) to heuris-
tic and metaheuristic approaches have been proposed
in order to solve the LRP. Some location-routing mod-
els for realistic scenarios are reported in Ambrosino
et al. [3], Alumur and Kara [2] and Caballero et al.
[7]. Alumur and Kara [2] studied a multiobjective
LRP for collection, transportation, treatment and dis-
posal of hazardous materials. They presented a mixed
integer programming model for such a problem and
solved a real-world sample with 92 generation nodes.
Cappanera et al. [8] presented an obnoxious facility
location-routing (OFLR) problem in which LR was
used to decompose the problem into two subproblems
of location and routing and two Lagrangean heuristics
were presented. Marinakis and Marinaki [32] combined
Particle Swarm Optimization (PSO), Greedy Random-
ized Adaptive Search Procedure (GRASP), Expanding
Neighborhood Search (ENS) and Path Relinking (PR)
to solve LRP. Using a combination of GRASP and
Evolutionary Local Search (ELS), Duhamel et al. [16]
solved a capacitated LRP. Ambrosino et al. [3] con-
sidered a distribution network design problem and a
two-phase heuristic is presented to solve it. Barreto
et al. [5] considered integration of several hierarchical
and non-hierarchical clustering procedures, in addition
to several proximity measures to solve the LRP. Then,
they compared the results of running their procedure
on standard LRP datasets and results were analyzed.
Stenger et al. [43] studied a real-world LRP of small
package shippers and presented a hybrid of SA and vari-
able neighborhood search to solve it. The planar single
facility LRP was studied by Manzour-al-ajdad et al. [31]
for which a hierarchical heuristic is proposed. Derbel et
al. [14] combined genetic algorithm and iterated local
search to solve a LRP with multiple capacitated depots
and one uncapacitated vehicle per depot. The multi-
period LRP with decoupled time series is another recent
publication by Albareda-Sambola et al. [1] in which an
approximation based on spanning trees is proposed in
order tosolvethe problem. Another novel publication in
the literature is Xu et al. [45] in which the objective is to
minimize the maximum working time of the vehicles
and to reach high levels of balancing in the network.
The partitioning hub LRP was proposed by Catanzaro
et al. [9] in which instances with up to 20 vertices were
solved. Finally, Rath and Gutjahr [42] studied the ware-
house LRPwith three objectives and applied the Epsilon
constraint method to find the Pareto frontier.



Table 1
Some problems solved in fuzzy environment using credibility theory

Author Problem

Peng and Liu [37]
Zhao and Liu [48]
Zheng and Liu [49]

Liu and Li [27]

Zhou and Liu [50]
Erbao and Mingyong [17]
Lan et al. [23]

Liu and Gao [28]

Li etal. [25]

Keand Lin [21]

Lau et al. [24]

Fazel Zarandi et al. [18]
Fazel Zarandi et al. [19]
Davari et al. [11]
Davari et al. [12]

Parallel machine scheduling
Standby redundancy optimization
Vehicle routing problem

Quadratic assignment problem
Location-allocation problem
Vehicle routing problem
Multi-period production planning
Multi-job assignment problem
Portfolio selection

Project scheduling

Distribution system design
Location-routing problem
Location-routing problem

Maximal covering location problem
Maximal covering location problem
Lietal. [26] Trip distribution problem

Wang et al. [44] Inventory control

Davari and Fazel Zarandi [13] Hub location problem

Table 2
General information about the solution representation
Range of values Length
First section 1,2, ....n 7
Second section Some values between 1 and # "
Third section Some values between 1 and & W

In many real-world problems, it is almost impossible
to describe the parameters as deterministic parameters.
Some data such as customer demands, travel times,
loading/unloading times, or return rates are unknown
for decision makers. One may deal with such an uncer-
tainty using stochastic or fuzzy variables based on the
type of uncertainty in the problem. Fuzzy LRP (FLRP)
arises whenever some elements of the problem are
uncertain, ambiguous, or vague. Generally, fuzzy vari-
ables can be employed to deal with many uncertain
parameters. Zheng and Liu [49], and Fazel Zarandi
etal.[18, 19] surveyedrouting variants with fuzzy travel
times, and presented CCP models using credibility mea-
sure.

Credibility theory has been used in many problems
with fuzzy parameters so far, in parallel with some
metaheuristics. Table 1 gives a brief review of using
credibility theory to solve various mathematical pro-
gramming problems. In the following sections, the
applicability of this theory to solve LRPFD will be
presented.

From the above, it becomes clear that the LRP with
fuzzy variables is still a relatively unexplored problem.
Considering the different variants of LRP, it becomes
clear that there is a large area for future research among

which this paper addresses one. This paper contributes
to the literature by proposal of an efficient simulation-
embedded SA and a hybrid initialization algorithm for
the proposed SA.

3. Credibility theory

The term “Fuzzy variable” was first used by Kauf-
mann [20] and then discussed in Zadeh [46] and
Nahmias[36]. Later, possibility theory was proposed by
Zadeh [47] and its extensions and developments were
followed by Dubois and Prade (Interested readers may
referto [15]). A modificationto possibility theory which
is called credibility theory was founded by Liu [29] and
recently have been studied by many scholars all over the
world. Since a fuzzy version of LRP in credibility space
will be considered in this paper, a brief introduction to
basic concepts and definitions used in this paper are
presented:

Definition 1.[29] Let & be anonempty set, P the power
set of @, and Cr a credibility measure. Then the triplet
(8, P, Cr) is called a credibility space.

Definition 2. [29] A fuzzy variable is defined as a func-
tion from the credibility space (@, P(®), Cr) to the set
of real numbers.

Definition 3. [29] Let & be a fuzzy variable on the
credibility space (@, P(@), Cr). Then its membership
function is derived from the credibility measure Cr:

wx) = QCrig =xhal, xeh (1)

Definition 4. [29] Let £ be a fuzzy variable on a possi-
bility space (8,P(8),Pos). Then the set

£ = 1800110 € ©), Pos{f} = &} (2)
is called the «-level set of &.

Definition 5. [29] Let (®, P(@), Pos) be a possibil-
ity space, and A be a set in P(@). Then the credibility
measure of A is defined by Cr{A} which is a self-dual
measure (Possibility and necessity measures lack the
self-duality property).

If the membership function of & is given as . (u isan
event), then the possibility, necessity, and credibility of
the fuzzy event (£ > r} can be represented by:

Pos(é > 7} = sup p(u) )
Neclg > r} = 1 —sup p(u) @)

U<r
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Fig. 1. A tdangular fuzzy variable.

Cri§zr}= %(POS{%‘ zri+ Neclgzr)) (5

Considering Equation (5), the credibility of a fuzzy
event is defined as the average of its possibility and
necessity. The credibility measure is self-dual. A fuzzy
event may fail even though its possibility achieves 1,
and hold even though its necessity is 0. However, the
fuzzy event must hold if its credibility is 1, and fail if its
credibility is 0. Now, an example of a triangular fuzzy
variable £ = (r;, 12, ¥3) is considered as shown in Fig. 1
Then:

1 ifr=<rs

Posl =7} =3 1oy 2 =7 <73 (6)

0 if r>=r3

1 ifr=mr

2ry—F1—F

e | i & B o &
Hp—ry L =T =0
F3—F

2(rs—r2)

0 ifr=>rs

Crig =r} = (8)

ifrm<r<r;

4. Problem formulation

In this section, the fuzzy CCP model of LRPFD is
presented with the following assumptions:

¢ The capacities of vehicles are identical and limited
and denoted as C.

+ EBach vehicle is assigned to a single route.

¢ Bach node must be served by only one vehicle.

+ EBach route must begin from and end at a single
depot.

+ Bach potential depot has its distinct capacity @D,.

+ The number of depots to be located and vehicles
to be used are variable. Each depot and vehicle has
a fixed opening cost which are shown as + and 5
respectively.

¢ The unit cost of transportation is denoted as .

¢ The demands of customers are triangular fuzzy
numbers which are shown as d; = (dy;, da;, d3;).

For the last assumption, it is worth to be
noted that after serving the first t customers, the
available capacity of the vehicle will equal to
Oy =C— E£1di- Here, O is also a triangular
fuzzy numbers by using the rules of fuzzy arith-
meticwhere Q = (C — S°F d3;, € — 3% oy, € —
Ef;l d1i) = (gy 4» @ 5> s )~ The credibility that the
next customer demand does not exceed the remaining
capacity of the vehicle is obtained by:

Cr=Cridey = Qry = Crildy, k1 — 93, ks @2, 111 — 92, &

ds, k11— g1, k) <= 0}
0

&, k41, k1

ifdyxr1 = a3 ¢

2x{q3, p—d1, p+1t+da, v+1—g2, k)
s pr1—g1 g—2X(ds, pr1—a, )

ifdy k1 < g3, ks d2,041 = 42,k

©)

2x(gr, v—do, k1tds, k4141, &)

1
1 ifr<mn
Neclgzrj=< 70 n=r<n 7
0 ifr=mr

ifda kr1 < g2,k d3 601> g1,k

ifds, k41 < g1,k

Obviously, the chance of being able to serve the next
customer is higher, when the vehicle’s remaining capac-
ity is more and the demand of the next customer is less.
We introduce Cr < [0, 1] as the preference index, which
denotes the preference to send the vehicle to the next



customer. When Cr =0, it is known that the vehicle is
not able to serve the next customer and it must return
to the depot. When Cr=1, the vehicle is definitely able
to serve the next customer.

The decision to be made in each step is whether to
send a vehicle to serve the next customer or return to
the depot and dispatch another. The decision is made
using the dispatcher preference index which is denoted
as Cr*< [0, 1]. If Cr=Cr*, the vehicle should be sent
to the next customer. Otherwise, the vehicle returns to
its depot. Clearly, if the decision maker opts to take a
risk, they prefer a lower value for Cr* and the capac-
ity of the vehicle is used more efficiently. This policy
may lead to an increase in the number of cases when a
vehicle arrives at a customer without enough capacity
to serve it. On the contrary, while a higher value for
Cr* leads to a less efficient use of vehicle capacity, it
mitigates the number of cases without enough capacity
to serve customers. Hence, the selection of Cr* is of
utmost importance in reaching a solution.

In this paper, we consider an additional cost to calcu-
late the “failure” of the planned route. This idea derives
from Erbao and Mingyong [17] which considers the
additional distance that the vehicle makes due to “fail-
ure” arising in some customers along the route when
evaluating the planned route. The value of Cr* which is
subjectively determined has a great impact on both the
total length of the planned routes and on the additional
distance covered by vehicles due to “failures” at some
customers. The optimal value for Cr* which is denoted
as CrV* leads to the least total routing costs. Moreover,
the parameter CrD* determines the confidence level of
vigiting all the customers within the depot capacities.
In order to determine the additional distances due to
route failures, a simulation approach is employed. Now,
the notations, parameters, and variables of the proposed
model are presented.

Indices

i=1,2, ..., d: Depots

i=d+1,d+2, ..., d+n: Customers

k=1, 2, ..., m: Vehicles

Parameters

d;: The fuzzy demand of customer ¢

C: The physical capacity of vehicles

OD;: The physical capacity of depot i; 1<i<d

Dij: The travel distance from 7 to j; 4, j=1, 2,...,
d+n

Variables

Each operational plan can be encoded using three
decision vectors x, y and z, where

X=(xy, x3,..., X,) is an integer vector of decision
variables representing n customers as a rearrange-
ment of {I,....n} l<m=m x #x0+j) i
JE LDt

Y=(y1, y2, ..., ) 18 an integer vector of decision

variables where yo=0 <y1<w<... <yp_1=
H=Yp,

Z=(z1, z2,..., Im/) 18 a vector of integer decision

variables concerning depots 1<z <d; k=1,
2, ... .M

1, if vehicle k is assigned to depot i
fi = 0, otherwise

1, If depot i is used
L 0, otherwise
Objective function

Let g(x, y z) be the total travel cost of vehicles. Then,
we have:

g, ¥, D =(mxn)+ (9 x Y grlx, ¥, z))

k=1

)
+ (Z(u x wo) (10)
i=1

gi(x, ¥ 2) = Doy a1y

1
e Z DaH—xj, d+xji
J=w-1+1
+Dd+x(yk), k (1 1)
Constraints
Yk
Cr Z By 2 €
J=yzr-1+1

=CrVh k=12, ... ,m (12)

Hl Yk
Cr Z Z dx;fri = QD

k=1 j=ye_1+1
=CrD*i=1,2, ... ,d (13)

d
Sohi=1k=1h west (14)

i=1
w=Ui=1,2, ... .d;k=1,2, ... ,m (15)



The chance constraint (12) assures that all customers
are visited within the vehicle capacity with a pre-
determined confidence level. The chance constraint (13)
assures that all routes are visited within their depot
capacity with another pre-determined confidence level.
Equation (14) holds that each vehicle is assigned to one
and only one depot. Constraint (15) states that a vehicle
must be assigned to a depot, if and only if the depot is
opened. To minimize the total travel cost of vehicles,
one should solve the following model:

min g(x, y, z)
min ¢’
subject to

Y
Cr| ) dy=Cl=CrV:k=12 ...,m,
i=y—1tl1

mo %
Cr dej -l = OD;
. D 4

k=1 j=yp—1+1
=CrD*i=1,2, ... ,4,
l=x;=n,1=1,2, ... ,n,
XN FXLIFLL jJ=1,2, ... .m,
O=wy<yi<m<...<yy=n,
l<g=<d k=12, ... ,m,

d
Zrkizl,kzl,z e m,
i=1

ty = U;,1=1,2, ... ,d,k=1,2, ... ,m,
X, Vi Zi=12, ... ;]

k=12, ..., m, integer,
ty, U = {0, 1.

While the objective function g(x,vz) seeks to min-
imize the total plarmed travel distance, the objective
function ¢’ minimizes the total additional travel dis-
tance due toroute failures. The value of ¢’ is determined
using a simulation algorithm which will be elaborated
in the next section.

LRP is easily reducible to VRP considering one
located depot. Therefore, knowing that VRP is a NP-
Hard problem, LRP is proven to be more combinatorial
and is NP-Hard. This means that for larger instances
of LRP, exact solution procedures are handicapped to
solve the problem efficiently. Hence, one should resort

to heuristics and metaheuristics to solve the problem. In
this paper, an SA is proposed to solve the crisp version
of the problem. Then, a fuzzy simulation procedure is
embedded within the proposed SA in order to form a
SESA. This combined procedure is employed to solve
the fuzzy version of the problem.

5. Solution algorithm

The problem in this paper is not of deterministic
nature, due to the fuzziness of demands. Therefore,
a fuzzy simulation algorithm is embedded within the
proposed SA to form a SESA.

SA is a local search procedure which is capable of
exploring the solution space stochastically and effec-
tively trying to escape from being trapped into local
minima. To escape local minima, SA accepts worse
solutions during its search with a probability which
is monotonically decreasing by temperature. SA was
first introduced by Metropolis et al. [34] in 1953 and
has been applied to various combinatorial optimization
problems as well as real world problems, such as vehi-
cle routing, scheduling, and facility location variants.
Inthe following sections, the proposed SA of our paper
will be discussed in detail, including solution represen-
tation, neighborhood generation, tuning SA parameters,
and simulation algorithm.

5.1. Fuzzy simulalion

In the real world, the actual demand of a customer is
known when the vehicle reaches the customer. Hence,
there is a need to use some simulation algorithms for
determination of additional distances (¢’) which are
caused by route failures. The proposed simulation algo-
rithm is as follows:

Repeat steps 1 and 2 for M times.

Step 1. For each customer, estimate the additional
distances by simulating actual demands. To generate
the actual demands, first a real number x is gener-
ated randomly in the interval between the left and right
boundaries of the triangular fuzzy number representing
demand of the customer and its membership u is com-
puted. Then, a random number @ < [0, 1] is generated
and its value is compared with z. If @ is less than u, then
the actual demand of the customer is adopted as being
equal to x. On the contrary, if the value of « is greater
than or equal to #, x and @ are generated again and
again until the relation w=<u is satisfied. These steps



are followed to find the values of demands for each
customer.

Step 2. Find the additional costs of each customer by
moving along the designed route.

Step 3. Compute the average value of additional dis-
tances to find the additional distances.

5.2. Solution representation and initial solution
generation

In this paper, a solution is represented using a string
of numbers. A solution representation must determine
the assigned customers to each vehicle, the depots to
be established and the sequence of customers to be
served by a specific vehicle starting and ending at
a depot. Considering n customers, m vehicles and d
candidate locations for depots, our proposed solution
representation is comprised of n + 2 m elements which
incorporates three sections. While the first two sec-
tions of the solution representation (first n + m elements)
should be used together to decode the solution, the final
m elements representing the depots to be established
should be decoded separately. The first n elements show
the sequence of customers to be served by vehicles. The
second section (m elements) determines the customer
indices to be served by a vehicle and the third section
(m elements) shows the vehicles to start from each of
the established depots.

To clarify the encoding, a simple example of eight
customers, four vehicles and three candidate locations
is presented. The representation and its counterpart are
shown in Fig. 2. The first section of the string shows
that customers should be served according to the order
[1-8]. The second section determines which customers
are served by each vehicle. Since there are four vehi-
cles in this example, the second section is comprised of
four elements. In the proposed representation, the cus-
tomers with indices lying between the values of ith and
(i + 1)th elements in the second section are served by a
single vehicle. Clearly, the last element of the second
section must be equal to n, considering n customers.
In addition, the values in the second section must be
ordered from smallest to the largest. In our sample solu-
tion representation, the customers with indices 1 and
2 (first and seventh customers) are served by a single
facility, the customer with index 3 is served by a dif-
ferent vehicle, demand nodes with indices 4, 5, and 6
(second, third, and fourth customers) in the first section
are served separately, and finally demands of customers

[71ie[3]4]2[s[8]2]3]6]8]1]2]3[3]

First Section Second Section  Third Section

Fig. 2. A sample solution representation of eight customers and three
available depots.

with indices 7 and 8 in the first section (fifth and eighth
customers) are served by the fourth vehicle. Moreover,
the third section shows that vehicle 1 starts from the first
depot, the second vehicle starts from the second depot,
and the last two vehicles start serving customers from
the third depot. It is easy to validate that the proposed
representation is effective, short and easily decodable.

Initialization of solutions plays a pivotal role in
reaching good solutions using local search procedures.
Here, a procedure is introduced to generate feasible
initial solutions (fulfilling the relation Cr>Cr*) before
allocating next customer to the current route. To do so, a
fuzzy c-means (FCM) algorithm is employed to cluster
the customers. In addition, the sweep procedure is used
to generate the customer arrangements.

5.3. Fuzzy c-means

Fuzzy clustering has been a valuable tool in various
fields such as data mining, medicine, etc. Contrary to
hard clustering algorithms, in a soft clustering algo-
rithm such as FCM, gradual membership functions
of data points to clusters are possible. FCM was first
proposed by Bezdek [6] and has been used in many
applications around the world. In FCM, there are n data
to be allocated to ¢ clusters; m is a number greater than
1 (often equals 2), x; is the ith data, ¢; is the center
of the jth cluster, and ||*|| is a norm representing the
similarity of two vectors. The main virtue of FCM vari-
ants is the softness incorporated in assigning degrees of
memberships.
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Fig. 3. A sample of using the sweep procedure for clustered data.

5.4. The proposed sweep algorithm

In this procedure, the result of previous clustering of
the customers is used. For this purpose, in each cluster
we follow these steps:

e Set the cluster center as the core of sweeping.

e Set the sweep line in zero degree.

e For each customer in the current cluster, calculate
the angle between the zero line (the line from clus-
ter center through the zero degree) and a line from
customer to cluster center.

e Sort the customers by the angles in an ascending
order.

e Sweep the customer with the sweep line from the
low angles to high.

A sample output of the sweep algorithm is shown in
Fig. 3.

Then, all routes are checked to find out whether the
chance constraints are satisfied. To do so, the first cus-
tomer of sequence is selected according to the customer
demand and the remaining capacity of the vehicle.
Then, the estimated credibility of vehicle capacity
Cry and the estimated depot capacity Crp are found.
For dispatcher preference indices CrV* and CrD*, if
Cr1>=CrV* and Crp>CrV*, the customer is assigned
to the current vehicle and depot. Otherwise, another
vehicle (but the same depot) is used to serve this cus-
tomer. Finally, if Cry  CrD*, another vehicle and depot
are used to serve the customer. Then, this customer is
removed from the sequence and the process is followed
to obtain a feasible solution.

somin L7 1]6]3[4]2][5]8]2]3]6[8]1]2]3]3]
weon [7 6 [3]4]2 8|2 3]6]8]1]2]3]3]
swre [7]1 |NENEEN 5 [8]2]3 68| 1[2]3]3]
rewter (711161341258 |INEIEA 8] 1[2[3]3]
wae [T[1]6]3]4]2]5]8]2[3[6[8]1[2 3]

Fig. 4. The four moves used in this paper.

5.5. Neighborhood search structure

A neighborhood search structure (NSS) is a mecha-
nism to obtain new solutions by slightly changing the
current solution. An efficient set of NSS types should
guarantee the accessibility of all the solutions and lead
to a balance in diversification and intensification. In this
paper, four NSS types are used which are called as two-
opt, shuffle (used for first section), reorder (used for
the second section), and mutate (used for the third sec-
tion). A sample for each of these four moves is shown
in Fig. 4. Generally, in an r-opt move, the values of r
randomly selected elements are substituted. A solution
is r-optimal when it cannot be improved by any r-opt
move and is shown as r-opt*. In this paper, a two-opt
move follows the same rule. In a shuffle move, two ran-
dom indices are selected and the values between these
two are shuffled randomly to get a new solution. Such a
move has a stochastic character and is used in order to
diversify the solutions. Moreover, whenever a solution
is reordered, the second part is modified considering the
rule that the last element of this section must be equal to
the number of customers. In other words, while the last
element does not change at all, the other sections are
modified. Finally, to change the allocation of vehicles
to depots, a mutation is used. To mutate, the value of
one element is changed to get a new allocation plan of
vehicles to depots. While mutation does not change the
number of vehicles in the solution, the solution space is
searched for a better utilization of vehicles. Itis worth to
note that in each iteration of the algorithm, one of these
moves is employed based on a Monte-Carlo approach.
Figure 4 shows the four moves which are mentioned
above.

5.6. Initial temperature and cooling schedule

Determination of initial temperature and type of cool-
ing schedule are of utmost importance in design of a SA



algorithm. There exist several types of cooling schedule
such as linear or nonlinear procedures. Three of these
procedures are linear, exponential, and hyperbolic cool-
ing schedules which are stated below. Further details
can be obtained in Lundy & Mees [30]:

+ Linear cooling rate:
Lh—-T
hi=To—12—"L.1=1,2,... N
N

+ Bxponential cooling rate

A —
I S ¢ i o )
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where Ty, Ty, and T} represent initial temperature,
stopping temperature, and temperature of iteration /,
respectively. Moreover, ¥ is the number of temperatures
between Ty and Ty, and fgh is the tangent hyperbolic
function

To set the initial temperature, we have used the pro-
cedure of Crama and Schyns [10]. The aim of this
procedures is to get roughly equal probabilities of
acceptance (xo=0.8 in this paper) during the first 7.
steps of SA. Therefore, in a preliminary phase, SA is
run for L steps without rejecting any move at all. Then,
the average deterioration of the objective function over
this period is calculated and noted as A. So, the initial
temperature is set equal to:

B A
~In xo

Ty (16)

6. Numerical experiment and discussions

This section is devoted to the computational exper-
iments. Here, we present an example to show models
that we have discussed before and how SESA works.
It should be stated that all the experiments were coded
and run on a 2.53 GHz laptop with 4 GB of RAM. To
validate our solution approach, we first show its perfor-
mance on five crisp problems in[51]. To do some tuning
of the proposed SA, we first used various combinations
of move ratios. To this end, the chance of shuffle was
set to 5% and then excluding the infeasible cases, the

Table 3
The ratio of moves used in the proposed model
Two-opt Shuffle Reorder Mutate
0.15 0.05 03 0.50
Table 4
Comparing some solution procedures using the 20-5-1 dataset [51]
GRASP* MAPM**
Cost Ca**  Cr™** Gap Cost Cd Cr  Gap
55021 25549 20472 042 54793 25549 29244 0
LRGTS* e+ Our algorithm
Cost Cd Cr Gap Cost Cd Cr  Gap
55131 25549 20582 0.62 54793 25549 29244 0

*“Greedy adaptive search procedure” [40], **“Memetic algorithm
with population management™ [40]; **The cost corresponding to
the setup of the depots; ****The cost corresponding to the routing;
*##r<Lagrangean Relaxation-granular Tabu Search” [41].

value of two-opt and reorder moves were changed from
zero to one with steps of 0.05. Among all the 210 pos-
sible combinations, the one with the best fitness was
selected to solve test problems. Table 3 represents the
results of this step and the ratio of moves to be used.
Results of this step clearly show that changing the loca-
tion of depots should beregarded as the most significant
factor to reach better solutions. Furthermore, the next
effective change of a solution is changing the allocation
of customers to vehicles.

Table 4 shows the performance of the proposed SA
for a test instance of [51] compared with three other
procedures. Results show that the proposed procedure
is able to reach optimal solutions.

Afterwards, instances from Prins and Prodhon [39]
and Barreto [4] were solved as reported in Table 5.
These instances were solved using a random initial-
ization approach and also the proposed FCM-based
initialization. Each sample problem was solved for
ten times and the best, average, and worst solutions
are reported. Table 5 shows that the proposed solu-
tion approach is able to solve problems with negligible
errors. Moreover, results verify that the FCM-based
initialization approach contributes to getting better
solutions in all the cases solved.

From above, it becomes clear that the proposed SA is
able to solve instances to optimality or with negligible
errors. Hence, we embed the already presented fuzzy
simulation in the proposed SA to solve fuzzy instances.
In order to solve the fuzzy version, we generated some
test problems as follows. We assumed that ¥ =30 and
D =5.In other words, there are thirty customers and five
depots. Besides, the coordinates of all the customers and



Table 5
Comparing results of the proposed approach and the exact solutions of two well-known datasets

Problem Initialization
name Random Heuristic Gap
Min Max Min Max
Prins et al. [39] 20-5-1a 55835 60159 5493 57396 0.0
20-5-1b 41478 48858 39253 43439 0.38%
20-5-2a 49199 53272 48908 50362 0.00%
20-5-2b 37936 43095 37542 41096 0.00%
50-5-1 99524 115317 94084 100908 4.40%
Barreto [4] 21 x5 4437 586.9 430.5 500.4 1.33%
22 x5 599.6 801.2 586.7 636.7 0.27%
32x5 623.8 758.3 589.4 684.4 3.10%
32 x 5b 576.9 674.6 510.6 629.1 1.26%
Table 6 x10°
The parameters of model moves used in this paper 6 L ——
N D C M CrD Vehicle cost —_———\’,_/ e
30 5 10 100 1 1000 5 o
4 Ea
Table 7 -
The average results with different Crv*
Crv* Planned distance Additional distance Total 3r ;
0 23200.1 26996.7 50196.8 £
0.1 36177.1 13807 49984.1 2F '\
0.2 37157.3 13301.9 50459.2 \
0.3 40708.2 8662.6 49370.8 ~——
0.4 45738.3 3413.5 49151.8 1+ ™ Total Cost
0.5 46852.2 3670.7 50522.9 ‘N, — - Planned Cost
0.6 50441 608.1 51049.1 EE TN e —— - Additional ost
0.7 56244.4 0 56244.4 0 5 . . ' . ) - : ——
08 50693 .4 0 50693.4 0 0.1 02 03 04 05 06 07 08 09 1
0.9 59693.4 0 59693.4 . s
1 50693 4 0 50693 4 Fig. 5. The costs of the problem with different CrV*.

depots are generated randomly in [1000x 1000]. Owing
to the strategic nature of depots, we assume that CrD* is
equal to 1. In other words, the depot has sufficient capac-
ity to serve a route. The fuzzy demands of customers
that are triangular fuzzy numbers which are generated
randomly within vehicle capacity C. We obtain the addi-
tional distances due to routes failure by the simulation
algorithm which has been explained before to obtain the
planned distances and total distances by the SA algo-
rithm. The remaining parameters of the problem are
listed in Table 6.

The value of dispatcher preference index for vehicles
CrV* varied with the interval of O to 1 with a step of 0.1.
The average computational results of ten runs are given
in Table 7. Figure 5 shows the tendencies about the
planned distances, additional distances due to failures,
and the total distances of the problem with different
dispatcher preference indices for vehicles.

Figure 5 shows that when dispatcher preference
index for vehicles CrV* is increased, a strictly upward
trend in the planned routes and a strictly downward
trend are observed in the additional distances. More-
over, when the dispatcher preference index CrV* is
equal to 0.4, the value of total distance is the lowest.
Besides, lower values of CrV* correspond to routes
with shorter planned distances. On the other hand, lower
values of CrV* increase the number of cases in which
vehicles arrive at a customer and are unable to serve
that customer, thereby increasing the total additional
distance they cover due to the “failure”. In addition,
higher values of CrV* are characterized by less utiliza-
tion of vehicle capacity along the planned routes and
less additional distance to cover due to failures. Fig-
ure 6 shows the output of the proposed SESA for a
sample problem and its output.
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7. Conclusions and future research

In this paper, an LRP is presented assuming fuzzy
demands and a fuzzy chance-constrained programming
formulation is given for it. To solve the problem, a SESA
algorithm is proposed and its effectiveness is shown
by a numerical example. The paper contributes to the
knowledge pool of LRP in the following aspects:

e Proposing a CCP model of LRP

e Using FCM and the sweep procedure to initial-
ize feasible solution for proposed algorithm which
satisfies the chance constraints.

e Determining the best value of dispatcher prefer-
ence index for vehicles considering the preference
index for depots.

It should be noted that the fine tuning of both SA
and the fuzzy simulation are critical in success of the
algorithms proposed. Our experiments clearly showed
that the results are highly sensitive to the tuning of
algorithms, especially the cooling schedule in the SA
phase.

The paper has several potential future works. It is
possible to solve some other variants of the problem
considering some assumptions such as LRPs with back-
hauls or even LRP with pickup/delivery. Also some
other parameters may be considered as fuzzy variables
such as travel times. Moreover, replacing SA with some
other solution algorithms such as tabu search seems
to be a good research area. Moreover, the model may
be enriched assuming heterogeneous vehicles. Finally,
there is the possibility of using some other hybrid

systems to solve the problem or finding alternative pro-
cedures to simulate results.
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