
1 
 

Capacitated location-routing problem with time windows under 

uncertainty 

Mohammad Hossein Fazel Zarandia, Ahmad Hemmatia,b, Soheil Davaria, I. Burhan Turksenb,c 

a Department of Industrial Engineering, Amirkabir University of Technology 

b Department of Industrial Economics and Technology Management, Norwegian University of 

Science and Technology, Norway 

c TOBB University of Economics and Technology, Ankara, Turkey 

d Department of Mechanical and Industrial Engineering, University of Toronto 

Abstract   

This paper puts forward a location-routing problem with time windows (LRPTW) under 

uncertainty. It has been assumed that demands of customers and travel times are fuzzy 

variables. A fuzzy chance constrained programming (CCP) model has been designed 

using credibility theory and a simulation-embedded simulated annealing (SA) algorithm 

is presented in order to solve the problem. To initialize solutions of SA, a heuristic 

method based on fuzzy c-means (FCM) clustering with Mahalanobis distance and sweep 

method has been employed. The numerical experiments which were carried out, clearly 

attest that the proposed solution approach is both effective and robust in solving problems 

with up to 100 demand nodes in reasonable times.  
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1. Introduction 

Supply chain management (SCM) is the process of planning, implementing and 

controlling the operations of the supply chain in an efficient way. SCM spans all 

movements and storage of raw materials, work-in-process inventory, and finished goods 

from the point-of-origin to the point-of-consumption (Melo, Nickel et al. 2009). Design 

of a distribution network is a fundamental step in building an efficient supply chain. In 



2 
 

design of a distribution network, there are many decisions to be made varying from 

determination of number of supply chain layers to finding the optimal location(s) of 

facilities. These decisions are often categorized as strategic, tactical, and operational 

levels. A strategic or long-term decision does not take place on a regular basis and needs 

major capital investments. A tactical decision is made more often than a strategic 

decision. An instance of a tactical decision is vehicle routing problem (VRP). Finally, the 

operational decisions such as scheduling are those decisions that take place regularly. The 

location-routing problem (LRP) integrates the strategic (location) and tactical (routing) 

levels. A location-routing problem (LRP) may be defined as a special case of vehicle 

routing problem (VRP) in which there is a need to determine the optimal number and 

location of depots simultaneously with finding distribution routes. LRP is an NP-hard 

problem, as it encompasses two NP-hard problems (Nagy and Salhi 2007) and has many 

real-life applications of which some have been addressed in the literature such as 

management of hazardous wastes (Alumur and Kara 2007). Many 21st century managers 

believe that the success of their organizations highly depends on the location and routing 

decisions. 

 The dynamic and complex nature of supply chain imposes a high degree of uncertainty 

in supply chain planning decisions and significantly influences the overall performance 

of the supply chain network (Klibi, Martel et al. 2010). A problem under uncertainty may 

be modeled using various approaches such as using random variables or fuzzy variables. 

Whether to use fuzzy or random variables in a model directly depends on the semantic of 

the problem and also the availability of reliable data. Although many problems can be 

modeled using random variables, there are some instances in which it becomes almost 

impossible or irrational to use random variables, such as: 

(a) where there are not enough data to be used to model the problem 

(b) the available data is not reliable and error-prone 

Besides, using scenario-based approaches which are employed in stochastic approaches, a 

large number of scenarios used in representing the uncertainty can lead to 

computationally challenging problems (Pishvaee and Torabi 2010) Hence, using fuzzy 
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logic to model many real-world problems seems more reasonable. To put it in simpler 

terms, fuzzy variables can represent the uncertainty inherent in some problems in a better 

way. Fuzzy location routing problem (FLRP) arises whenever some elements of the 

problem are uncertain or ambiguous. For instance, the information about demand of a 

customer may be imprecise to some extent and may be estimated as “around 10 units” or 

“between 15 and 20 containers”. Moreover, as is shown in figure 1, the time to travel 

between the nodes in a graph can be estimated as a fuzzy variable.  
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Figure 1. A sample network with fuzzy travel times 

 

 To the best of our knowledge, the problem of LRP under fuzziness has not been 

addressed enough in the literature. Hence, our paper makes the following contributions to 

the knowledge pool. First, a chance-constrained programming model (CCP) of LRPTW 

has been proposed with fuzzy demands and fuzzy travel times (FLRPTW). As far as we 

know, this is the first attempt to model and solve LRPTW with fuzzy demands and fuzzy 

travel times simultaneously. Secondly, a simulation-embedded simulated annealing has 

been presented to solve the LRPTW. Moreover, an effective initialization method based 

on fuzzy clustering has been presented which provides the solution algorithm with good 

initial solutions.  
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 The rest of the paper is organized as follows. In the next section, the literature review 

of location routing problems and credibility theory is presented. A concise review of 

fuzzy variables and basics of credibility theory are presented in section 3. Section 4 is 

devoted to our problem definition and the mathematical formulation of the problem. The 

solution methodology is elaborated in section 5 and numerical experiments appear in 

section 6. Finally, conclusions are made and some possible future research outlooks are 

proposed. 

 

2. Literature review  

A survey on LRP literature shows that the research on LRP has attracted relatively less 

attention compared to various vehicle routing problems or location variants. There exists 

some review papers dedicated to the LRP literature such as (Balakrishnan, Ward et al. 

1987), (Laporte 1989), (Min, Jayaraman et al. 1998), and (Nagy and Salhi 2007). 

Interested readers are recommended to refer to (Nagy and Salhi 2007) and references 

therein for a more detailed review of LRP models, extensions and solution methods. 

 Different variants of LRP have been targeted in the literature and various solution 

methods have been employed in order to solve them. These solution methods may be 

categorized as exact, heuristic, and metaheuristic approaches. For instance, (Cappanera, 

Gallo et al. 2003) presented an obnoxious facility location-routing (OFLR) problem in 

which lagrangean relaxation (LR) was used to decompose the problem into two 

subproblems of location and routing and two lagrangean heuristics were presented. 

(Marinakis and Marainaki 2008) combined particle swarm optimization (PSO), greedy 

randomized adaptive search procedure (GRASP), expanding neighborhood search (ENS) 

and path relinking (PR) to solve LRP. Using a combination of GRASP and evolutionary 

local search (ELS), (Duhamel, Lacomme et al. 2010) solved a Capacitated LRP. 

(Ambrosino, Sciomachen et al. 2009) considered a distribution network design problem 

and a two-phase heuristic is presented to solve the problem. A single depot LRP was 

studied by (Schwardt and Fischer 2009) and a self-organizing map (SOM) approach was 

proposed to solve it. (Nguyen, Prins et al.) proposed a multi-start iterated local search and 
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compared the performance of their method with four published metaheuristics. (Barreto, 

Ferreira et al. 2007) considered integration of several hierarchical and non-hierarchical 

clustering methods in addition to several proximity measures to solve the LRP. They 

compared the results of running their procedure on standard LRP datasets and results 

were analyzed. In another attempt to solve LRPs with metaheuristics, (Nguyen, Prins et 

al. 2012) presented a hybrid of GRASP, learning process, and also path relinking to solve 

a two-echelon LRP. (Derbel, Jarboui et al.) considered a LRP with multiple capacitated 

depots and one uncapacitated vehicle per depot. They presented a combination of genetic 

algorithm and iterated local search. 

 Moreover, some location-routing models for realistic scenarios have been published. 

(Alumur and Kara 2007) studied a multiobjective LRP for collection, transportation, 

treatment and disposal of hazardous material. They presented a mixed integer 

programming model for such a problem and solved a real-world sample with 92 

generation nodes. (Ambrosino, Sciomachen et al. 2009) is another real-world case of 

LRP in Italy addressing the problems of location, fleet assignment and routing with one 

central depot and heterogeneous fleet of vehicles. Moreover, they solved the problem 

using a large neighborhood search algorithm. Another real-world case study of LRP is 

(Caballero, González et al. 2007) in which a multiobjective LRP in Andalusia, Spain is 

presented and a tabu search approach is presented to solve the problem. 

 As mentioned earlier, FLRP arises whenever some elements of the problem are 

uncertain, ambiguous, or vague. Generally, fuzzy variables can be emplyed to deal with 

many uncertain parameters. (Zheng and Liu 2006) and (Zarandi, Hemmati et al. 2011) 

surveyed routing problems with fuzzy travel times, and presented chance constrained 

programming (CCP) models using the credibility measure. They integrated fuzzy 

simulation and metaheuristics to design a hybrid intelligent algorithm to solve their 

models. The FLRP presented in this paper differs from its deterministic counterpart in 

several fundamental respects.  

 Credibility theory has been used in many problems with fuzzy parameters so far, in 

parallel with some metaheuristics. Table 1 gives a brief review of using credibility theory 
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to solve various problems. Each of the publications cited in table 1 shows the 

applicability of credibility theory to a real-world problem. In the following sections, the 

applicability of this theory to solve FLRPTW will be presented.  

Table 1. Some problems solved in fuzzy environment using credibility theory 

 

3. Credibility theory  

The term “Fuzzy variable” was coined by (Kaufmann 1975) and then discussed in (Zadeh 

1975) and (Nahmias 1978). Later, possibility theory was proposed by (Zadeh 1978) and 

its extensions and developments were followed by (Dubois and Prade 1988). A 

modification to possibility theory which is called credibility theory was founded by (Liu 

2009) and recently have been studied by many scholars all over the world. Since a fuzzy 

Author Problem Solution Procedure 

(Peng and Liu 2004) Parallel machine scheduling Genetic algorithm 

(Zhao and Liu 2005) Standby redundancy optimization Genetic algorithm 

(Zheng and Liu 2006) Vehicle routing problem Genetic algorithm 

(Liu and Li 2006) Quadratic assignment problem Genetic algorithm 

(Yang and Liu 2007) Fixed charge solid transportation Tabu search 

(Zhou and Liu 2007) Location-allocation problem Genetic algorithm 

(Xiaoxia 2008) Portfolio selection Genetic algorithm 

(Erbao and Mingyong 2009) Vehicle routing problem Differential evolution 

(Lan, Liu et al. 2009) Multi-period production planning  Particle swarm optimization 

(Liu and Gao 2009) Multi-job assignment problem Genetic algorithm 

(Li, Zhang et al. 2009) Portfolio selection Simulated annealing 

(Ke and Liu 2010) Project scheduling Genetic algorithm 

(Lau, Jiang et al. 2010) Distribution system design Genetic algorithm 

(Zarandi, Hemmati et al. 2011) Location-routing problem Simulated annealing 

(Davari, Fazel Zarandi et al.) Maximal covering location problem Simulated annealing 

(Li, Qin et al. 2011) Trip distribution problem Genetic algorithm 

(Wang, Fu et al.) Inventory control Differential evolution 

(Davari and Fazel Zarandi 2011) Hub location problem Variable neighborhood search 
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version of LRP in credibility space will be considered in this paper, a brief introduction to 

basic concepts and definitions used in this paper are presented as follows: 

Definition 1 (Liu 2009). Let  be a nonempty set,  the power set of , and Cr a 

credibility measure. Then the triplet (, P, Cr) is called a credibility space. 

Definition 2 (Liu 2009). A fuzzy variable is defined as a function from the credibility 

space (, P(), Cr) to the set of real numbers. 

Definition 3 (Liu 2009). Let 
 
be a fuzzy variable on the credibility space (, P(), Cr). 

Then its membership function is derived from the credibility measure Cr by: 

μ(x)=(2Cr{=x})1,    x (1) 

Definition 4 (Zheng and Liu 2006). Let  be a fuzzy variable on a possibility space 

(,P(),Pos). Then the set 

}}{Pos,|)({    (2) 

is called the -level set of  . 

Definition 5 (Zheng and Liu 2006). Let (, P(), Pos) be a possibility space, and A be a 

set in P(). Then the credibility measure of A is defined by 

}){Nec}{Pos(
2

1
}{Cr AAA  which is a self-dual measure. (Possibility and necessity 

measures lack the self-duality property) 

If the membership function of  is given as μ (u is an event), then the possibility, 

necessity, credibility of the fuzzy event {ξ r} can be represented by: 

(u) sup}{Pos
ru




 r  (3) 

(u) sup1}{Nec
ru




 r  (4) 

}){Nec}{Pos(
2

1
}{Cr rrr    (5) 

 Considering equation (5), the credibility of a fuzzy event is defined as the average of 

its possibility and necessity. The credibility measure is self-dual. A fuzzy event may fail 

even though its possibility achieves 1, and hold even though its necessity is 0. However, 
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the fuzzy event must hold if its credibility is 1, and fail if its credibility is 0. Now let us 

consider an example of a triangular fuzzy variable ξ=(r1, r2, r3) as shown in figure 2. 

From the definitions of possibility, necessity and credibility, it is easy to obtain: 
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Figure 2. A triangular fuzzy variable 
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4. FLRPTW model 

In this section, the fuzzy chance constrained programming (CCP) model of FLRPTW is 

presented. It is assumed that:  

 The capacity of each vehicle is limited and denoted as C.  

 A vehicle must be assigned to one and only one route.  

 Each demand node must be served by one and only one vehicle. 

 Each route must begin from and end at a single depot. 

 Each potential depot has its distinct capacity QDi.  

 The numbers of depots to be located and vehicles to be used are variable. Each depot 

and vehicle has a fixed opening cost, which are denoted as  and η respectively. 

Moreover, there is a unit cost of transportation which is shown as θ. 

 The demand of customers can be estimated as triangular fuzzy numbers di=(d1i, d2i, 

d3i). 

 It is worth to note that after serving the first k customers, the available capacity of the 

vehicle will equal to 



k
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ik dCQ
1

. It can be deduced that Qk is also a triangular fuzzy 

number by using the rules of fuzzy arithmetic, where, 
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. The credibility that the next customer’s 

demand does not exceed the remaining capacity of the vehicle can be obtained by (9) as 

follows: 
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 Obviously, the vehicle’s chance of being able to serve the next customer is higher if 

there is more remaining capacity in the vehicle and the demand at the next customer is 

less. 

 The value of Cr[0,1] shows the level of certainty about the ability of a vehicle to 

serve a new customer. When Cr=0, the vehicle is not at all able to serve the next 

customer and it must return to the depot. On the other side, when Cr=1, the vehicle will 

be definitely able to serve the next customer. Clearly, the values of Cr between 0 and 1 

represent a partial certainty about the ability of a vehicle to serve the next customer. 

 In this paper, a decision must be made whether to send a vehicle to serve the next 

customer or return to depot and to dispatch another vehicle to start serving the new 

demand node. In other words, a vehicle can serve a customer and dispatched to the 

location of new customer provided that CrCr*. Otherwise, the vehicle returns to its 

depot and starts a new tour. Cr*[0,1] is the dispatcher preference index which can affect 

the solution considerably. If the dispatcher desires to take a risk, the lower values of Cr* 

are preferred which indicates that the dispatcher tries to use vehicle’s capacity as much as 

possible. This can bring about some problems when the vehicle arrives at the next 

customer and is not able to carry out planned service due to insufficient available 

capacity. On the other hand, if the dispatcher is risk-averse, they choose the greater Cr* in 

order to send the vehicle to the next customer with higher certitude, but they use the 

capacity of the vehicles less efficiently. 

 In this paper, an additional cost is considered to calculate the "failure" of the planned 

route. This idea derives from (Erbao and Mingyong 2009) which considers the additional 

distance when the vehicle needs to travel due to "failure" arising in some customers along 

the route when evaluating the planned route. As already stated, Cr* which is subjectively 

determined can have a considerable impact on both the total length of the planned routes 

and on the additional distance covered by vehicles due to "failures" at some customers. 

Although higher values of Cr* result in shorter planned distances, the lower values 

increase the number of situations in which vehicles arrive at a customer and are unable to 

serve them. In addition, higher values of parameter Cr* are characterized by less 
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utilization of vehicle capacity along the planned routes and less additional distance to 

cover due to failures. The problem logically arises of determining the value of parameter 

CrV* which results in the least total sum of planned route lengths and additional distance 

covered by vehicles due to failure. 

 In this research, we use a simulation-based approach to evaluate the additional distance 

due to route failure. Before presenting the mathematical model of the problem, notations, 

parameters and variables are introduced as follows. In this problem, i=1, 2,…, d represent 

the indices of depots, i=d+1, d+2,…, d+n are allocated to customers, and k=1, 2,…, m are 

indices of vehicles. The demand of each node i is shown as di. The physical capacity of 

vehicles and depots are represented as C and QDi respectively. The parameter Si is the 

unloading time at customer i=d+1, d+2, …, d+n. Moreover, Dij and Tij are the travel 

distance and fuzzy travel time between nodes i=1,2,…,d+n and j=1,2,…,d+n. Finally, [ai, 

bi] is the time window of node i where ai and bi are the lower and upper limits of the time 

window and i = 1, 2, ..., d+n. 

 In this paper, the operational plan is encoded by three decision vectors x, y and z, 

where X=(x1,x2,...,xn) is an integer decision vector representing n customers as a 

rearrangement of {1,…,n} 1xin, xixj (ij), i, j=1, 2,…, n. Moreover, Y=(y1,y2,...,ym) is 

a vector of integer decision variables where y00y1y2…ym-1nym. In addition, 

Z=(z1,z2,...,zm) is an integer decision vector concerning depots 1zkd, k=1,2,…, m 

 Let fi(x, y, z) show the arrival time of a vehicle at customer i. We assume that a vehicle 

which arrives at a customer before the start of time window must wait till the time 

window. On the contrary, if a vehicle arrives within the time window, the service is 

immediately started.  For each used vehicle k, we have: 
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where   is the maximum operator. It is easy to know that since travel times are 

considered to be fuzzy variables, fi(x, y, z) is a fuzzy variable for each i-1, 2, …, n. Let 

g(x, y, z) be the total travel cost of vehicles. Then, we have: 

))*(()),,(()(),,(
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 Knowing that travel times are fuzzy variables and not known precisely, a chance 

constraint is added to the model estimating the credibility that customers are visited 

within their time windows. This constraint can be modeled using the credibility measure 

as follows: 

ndibazyxfCr iii  ,...,2,1      ]},[),,({    (13) 

 In addition, there are two additional chance constraints in the model. Constraint (14) 

assures that all customers are visited within the vehicle capacity with a confidence level. 

Moreover, constraint (15) assures that all routes are visited within their depot capacity 

with a predetermined confidence level. 

mkCrVCdCr
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 Equation (16) states that the assignment of a vehicle to a depot is a binary variable. 

Constraint (17) holds that each vehicle is assigned to one and only one depot. Constraint 

(18) guarantees that U variables are binary. Constraint (19) holds that a vehicle is 

assigned to a depot, if and only if the depot is opened.  Because of the strategic nature of 

determining depots in this paper, we assume that CrD* is equal to 1. It means that the 

depot has sufficient capacity to serve a route. 
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 Thus, the objective of our model is to minimize the total travel cost of vehicles which 

is represented as g(x,y,z). Moreover, the objective function c' seeks to minimize total 

additional travel distance due to route failures which is found using the proposed 

simulation mechanism. The model of this paper can be summarized as follows: 
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 LRP is easily reducible to VRP considering one located depot. Therefore, knowing 

that VRP is an NP-Hard problem, LRP is proven to be more combinatorial and is NP-

Hard. This means that for larger instances of LRP, exact solution procedures are 

handicapped to solve the problem efficiently. Hence, one should resort to heuristics and 
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metaheuristics to solve the problem efficiently. In this paper, a simulation-embedded 

simulated annealing is proposed in order to solve the fuzzy version of the proposed LRP. 

 

5. Solution approach 

In this work, due to the fuzzy nature of the travel times and the demands for each 

customer, the problem is not deterministic. Therefore, a simulation-embedded procedure 

is applied to solve the problem in the fuzzy environment. Moreover, to increase the 

efficiency of the proposed SA, an efficient initialization approach based on FCM is 

presented.  

 One may pose a question regarding the reasons behind selection of SA as the solution 

algorithm of this paper. Based on some preliminary experiments and results obtained in a 

relatively similar paper (Zarandi, Hemmati et al. 2011), it has been found out that SA can 

perform well in reaching high-quality solutions for LRPTW. Moreover, (Arostegui, 

Kadipasaoglu et al. 2006) showed that SA provides the best performance under solution 

limited situations of facility location problems and their variants. Due to the fact that the 

proposed solution algorithm needs simulation, there is a need to limit the runtime of 

solution algorithm. Hence, SA is preferred to be used in order to solve FLRPTW. In 

addition, the fuzzy simulation can be easily embedded within SA. Another justification to 

use SA is the fact that local search algorithms are easier to be employed in solving 

LRPTW and their runtimes are relatively less. These issues have led us to prefer SA to 

solve FLRPTW. 

 The following sections will elaborate these modules and how they contribute to the 

solution algorithm. 

 

5.1. The proposed simulation algorithm 

As mentioned above, it has been assumed that the travel times and the demand of each 

customer are triangular fuzzy numbers. In many of the real-world problems, the actual 

demand of a customer is known when the vehicle reaches the customer. In other words, 
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there is not a pre-defined demand to be considered when routes are defined. The most 

prominent application of such an assumption is in reverse logistics where the amount of 

returns from a customer is completely unknown before meeting the customer’s site. 

Hence, a simulation algorithm is useful to determine an approximation of additional 

distances (c') due to route failures. The proposed simulation algorithm of this paper is 

summarized as follows. Let T={Tij,i,j=0,1,2,…,n} and Tij as the travel time between 

nodes i and j. Then, N random numbers Tij
l are generated from the -level set of Tij where 

l is the index of iteration number. In this step, N should be large enough and  must be a 

sufficiently small number. Then, we set Tl={Tij
l; i,j=0, 1, …, n} for l=1, 2, …, N and 

(Tl)=11(T11
l)12(T12

l)…(n-1)n(T(n-1)n
 l)nn(Tnn

 l) where ij is the membership degree 

of Tij, i, j=0,1,…,n. Then, the credibility can be estimated by the equation (21). 

]}),[))(,,(|)(1{min]},[))(,,(|)({max(
2

1
]),([Cr

11
baTtyxfTbaTtyxfTba ll

Nl

ll

Nl



  (21) 

Now, the additional distance to travel can be estimated by getting the average extra 

distance in M iterations. 

 

5.2. Simulated annealing 

Simulated annealing (SA) is a local search procedure which is capable of exploring the 

solution space stochastically and effectively. It tries to escape from local optima by 

accepting worse solutions during its search with a probability which is monotonically 

decreasing by temperature. SA was first introduced by (Metropolis, Rosenbluth et al. 

1953) and has been applied to various combinatorial optimization problems such as 

scheduling (Damodaran and Vélez-Gallego 2012), facility layout (Wang, Wu et al. 2001), 

and network design (Xu, Wei et al. 2009). 

 In the following sections, the proposed SA of our paper will be discussed in detail, 

including solution representation, neighborhood generation, and fitness evaluation. 

Moreover, the tuning steps of the algorithm are presented. 

 

5.2.1. Solution representation and initialization of solutions 
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In this paper, each solution is represented using a string of numbers. A solution 

representation should determine the assigned customers to each vehicle, the depots to be 

established and the sequence of customers to be served by a specific vehicle starting and 

ending at a depot. Considering n customers, m vehicles and d candidate locations for 

depots, a solution representation is comprised of n+2m elements and incorporates three 

sections. The first section of each solution which has n elements is the X vector which has 

been already explained. This section shows the sequence of customers to be served by 

vehicles. The second and third sections of a solution representation show the Y and Z 

vectors respectively. The second section which is comprised of m elements is used to 

determine the customer indices to be served by a vehicle. Finally, the last section which 

has m elements exhibits the vehicles to start from each established depots. While the first 

two sections of the solution representation (The first n+m elements) should be used 

together to decode the solution, the final m elements which represent the depots to be 

established may be decoded separately.  

 To clarify the encoding, a simple example of six customers, four vehicles and three 

candidate locations is presented. The representation and its counterpart are shown in 

figure 4. The first section of the string shows that customers should be served according 

to the order [7 1 6 3 4 2 5 8]. The second section determines which customers are served 

by each vehicle. Since there are four vehicles in this example, the second section is 

comprised of four elements. In the proposed representation, the customers with indices 

lying between the values of ith and (i+1)th elements in the second section are served by a 

single vehicle. Clearly, the last element of the second section must be equal to n, 

considering n customers. In addition, the values in the second section must be ordered 

from smallest to the largest. In our sample solution representation, the customers with 

indices 1 and 2 (first and seventh customers) are served by a single facility, the customer 

with index 3 is served by a different vehicle, demand nodes with indices 4, 5, and 6 

(second, third, and fourth customers) in the first section are served separately, and finally 

demands of customers with indices 7 and 8 in first section (Fifth and eighth customers) 

are served by the fourth vehicle. Moreover, the third part shows that vehicle 1 starts from 



17 
 

the first depot, the second vehicle starts from the second depot, and the last two vehicles 

start serving customers from the third depot. It is easy to validate that the proposed 

representation is effective, short and easily decodable. Table 2 summarizes our 

representation considering n customers, m vehicles and d candidate locations for depots.  

1

8

3

2

5 2 4

3

6

1

7

7 1 6 3 4 2 5 8 2 3 6 8 1 2 3 3

First Section Second Section Third Section  

Figure 4. A sample solution representation of 8 customers and 3 available depots 

Table 2. General information about the solution representation 

 Range of values Length Note 

First section 1, 2, …, n n  

Second section Some values between 1 and n m The last element must equal to n 

Third section Some values between 1 and d m  

 

 Initialization of solutions plays a significant role in reaching good solutions using local 

search methods. Hereby, a heuristic is proposed to generate initial solutions which are 

feasible and satisfy the relation CrCr* before allocating any other customer to the 

current route. To do so, first a fuzzy c-means (FCM) algorithm is employed to cluster the 

customers, and then the sweep method is used to generate the customer arrangements. 

Finally, the proposed approach (which is derived from the idea presented in (Erbao and 
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Mingyong 2009)) is used to assign customers to routes and vehicles to depots, 

considering the chance constraints. 

 

5.2.1.1. Fuzzy c-means clustering 

Since the introduction of fuzzy partitioning by (Ruspini 1969), fuzzy clustering has been 

a valuable tool in various fields such as data mining, medicine, etc. Contrary to hard 

clustering algorithms, in a soft clustering algorithm, gradual membership values of data 

points to clusters are allowed. Later, the proposal of fuzzy c-means algorithm (Bezdek 

1973) was a great move towards popularity of fuzzy clustering among scientists all over 

the world. 

 In a classic FCM, there are n data to be allocated to c clusters; m is a number greater 

than 1 (often equals 2), xi is the ith data, cj is the center of jth cluster and ||*|| is a norm 

representing the similarity of two vectors (in this paper, the Mahalanobis norm is used). 

Since its introduction, various extensions have been made to the classical hard clustering 

approach such as fuzzy c-means and possibilistic c-means algorithms; the main virtue of 

these methods is the softness they incorporate in assigning degrees of membership to the 

data points. The objective function of FCM is as follows (Bezdek 1973) and (Dunn 

1973): 
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The procedure of FCM can be summarized as follows (Bezdek 1973) and (Dunn 1973): 

I. Initialization of the U matrix (the size of matrix is c*n) representing the 

membership value of the ith data to the kth cluster. 

II. In each step (step k), update the cluster centers using the following equation: 
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III. Update the U matrix using: 
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IV. If ||Uk+1-Uk||<ϵ, then stop the algorithm, otherwise go to step II. 

For instance, figure 5 shows the clustered data (customers and depots) using FCM. 

Figure 5. Left: FCM behavior for clustering random customers and depots 

Right: Clustered customers (points) and depots (stars) 

 

5.2.1.2. The proposed sweep method 

In this paper, we use the results of the clustering of the customers and also depots for 

generating a sequence of customers such as the one shown in figure 6. To do so, in each 

cluster we follow the following steps: 

 Set the cluster center as the core of sweeping. 

 Set the sweep line in zero degree. 

 For each customer in the current cluster, calculate the angle between the zero line 

(the line from cluster center through the zero degree) and a line from customer to 

cluster center. 

 Sort the customers ascendingly by the angles. 

 Sweep the customer with the sweep line from the lowest angle to the highest.  
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Figure 6. A sample of using the sweep method for clustered data 

 

5.2.1.3. Feasibility of solutions 

In the proposed solution procedure, the feasibility of routes are examined against both of 

the chance constraints. Verification of the chance constraints is composed of the 

following steps. 

I. Select the first customer of a sequence according to the customer demand and the 

remained vehicle capacity and obtain the credibility of the solution using (9). For a 

dispatcher preference indices value CrV* and CrD*, if Cr1CrV*
 and Cr2CrD*, then the 

customer is assigned to the current vehicle and depot; Cr1 is related to the vehicle’s 

capacity and Cr2 is related to the depot capacity. Otherwise if Cr1<CrV*, another vehicle 

(but the same depot) is used to service the customer. Finally, if Cr2<CrD*, another vehicle 

is used in addition to a new starting depot. 

II. Remove the first customer from the sequence. 

III. Repeat steps I and II. If all of the customers have been assigned to routes, a feasible 

chromosome is obtained. 
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5.2.2. Neighborhood Structure 

A neighborhood search structure (NSS) is a mechanism to get new solutions by slightly 

changing the current solution. In this paper, four NSS types are used called two-opt, 

shuffle (used for the first section), reorder (used for the second section) and mutate (used 

for the third section). A sample of these four moves is shown in figure 8. Generally, in an 

r-opt move, the values of r randomly chosen elements are substituted. A solution is r-

optimal when it cannot be improved by any r-opt move and is shown as r-opt*. In this 

paper, a two-opt move follows the same rule. In a shuffle move, two random indices are 

selected and the values between these two are shuffled randomly to get a new solution. 

Such a move has a stochastic character and is used in order to diversify the solutions. 

Moreover, when a solution is reordered, the second section is modified considering the 

rule that the last element of this section must be equal to the number of customers. In 

other words, while the last element does not change at all, the other elements may be 

changed completely. This move changes the group of customers served by each vehicle. 

Finally, a mutation is employed to change the allocation of vehicles to depots. To mutate, 

the value of one element is changed, so a new allocation plan of vehicles to depots is 

achieved. While the mutation move keeps the number of vehicles in the solution constant, 

it searches the solution space for a better utilization of vehicles.  

 In each itearation, one of these moves is used based on a Monte-Carlo approach. Then, 

the new generated solution is considered as the current solution, provided that the SA 

rules are not violated.  
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7 1 6 3 4 2 5 8 2 3 6 8 1 2 3 3

7 5 6 3 4 2 1 8 2 3 6 8 1 2 3 3

7 1 2 4 6 3 5 8 2 3 6 8 1 2 3 3

7 1 6 3 4 2 5 8 1 4 5 8 1 2 3 3

7 1 6 3 4 2 5 8 2 3 6 8 1 2 2 3

Original 

Solution

2-opt

Shuffle

Reorder

Mutate

Figure 7. The four moves used in this paper 

 

5.2.3. Initial temperature and cooling schedule 

Initial temperature and the procedure to update temperatures are extremely important in 

success of any SA. As already mentioned, SA avoids getting trapped in local minima by 

letting worse moves based on a cooling schedule. There exist several types of cooling 

schedule such as linear or nonlinear methods. Three of these methods are linear, 

exponential, and hyperbolic cooling schedules as follows. Further details are obtainable 

in Lundy & Mees (Lundy and Mees 1986): 

 Linear cooling rate: N1,2,...,l      ;
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In these equations, T0, Tf, and Tl represent initial temperature, stopping temperature, and 

temperature of iteration l, respectively. Moreover, N is the number of temperatures 

between T0 and Tf, and tgh is the tangent hyperbolic function. It should be noted that our 
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proposed SA uses the exponential cooling rate based on outputs from some preliminary 

experiments. 

 To set the initial temperature, we have used the method of (Crama and Schyns 2003). 

The aim of this method is to get roughly equal probabilities of acceptance (χ0=0.8 in this 

paper which has been selected among twenty values between 0.7 and 0.9) during the first 

L steps of SA. Therefore, in a preliminary phase, SA is run for L steps without rejecting 

any move at all. Then, the average increase of the objective function over this period is 

calculated and noted as. Then, the initial temperature is found using (25):  

0

0
 ln 


T  

(25) 

 

6. Numerical experiments and discussion 

This section is devoted to the computational evaluation of test problems and some 

discussions. Hereby, an example is presented to show models that we have discussed 

before and how the proposed simulation-embedded simulated annealing performs. 

 It has been assumed that there are 100 customers and 5 depots and the coordinates of 

all customers and depots are generated randomly. The triangular fuzzy variables of travel 

times including the travel times between candidate depots are determined randomly based 

on the distance matrix. It should be noted that the time windows are identical for all the 

depots and also for all the non-depot nodes. 

 The fuzzy demands of customers are generated as a triangular fuzzy variable within 

the vehicle capacity C. The additional distances are obtained due to routes failure by the 

simulation algorithm which has been already explained. The relative parameters of the 

problem are listed in Table 3. We obtain the planned distances, additional distances and 

the total distances, and reveal the dispatcher preference index for vehicles CrV* how 

influence these traveling distances. 

 

Table 3. The parameters of the test problem used in this paper 
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n D C l M CrD* 

100 5 10 10000 100 1 

 

 Using a Monte-Carlo approach as neighborhood search, needs finding the best 

combination of move ratios. In other words, the rates by which each move is used should 

be tuned, in order to achieve good results. In this paper, five instances of (Prodhon) have 

been targeted using various combinations of moves. First, the chance of shuffle was set to 

5% and then excluding the infeasible cases, we increase the value of two-opt and reorder 

moves from 0 to 1 with steps of 0.05. Among all the 210 possible combinations, the one 

with the best fitness is selected to solve test problems of this paper. Table 4 represents the 

optimal ratios of moves and the ratio of moves to be used. Results of this step clearly 

show that changing the location of depots should be regarded as the most significant 

factor to reach better solutions. Furthermore, the next effective change of a solution is 

changing the allocation of customers to vehicles. 

 

Table 4. The ratio of moves used in the proposed model 

 

 

 Then, to show the performance of the proposed SA, the “20-5-1a” instance of 

(Prodhon) was solved using the proposed SA and results were compared with some other 

methods in the literature as is shown in table 5. The results show that the proposed SA 

reaches the optimal solution. 

 

 

Table 5. Comparing results of the proposed approach and the exact solutions of two well-known datasets 

 Problem Name 
Random initial solution Heuristic initial solution Optimal 

Gap 

 
Min Mean Max Min Mean Max Solution 
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2
00

4
) 20-5-1a 55835 57020 60159 54793 55835 57396 54793 0.00% 

20-5-1b  41478 42847 48858 39253 41928 43439 39104 0.38% 

Two-opt Shuffle Reorder Mutate 

0.15 0.05 0.3 0.50 
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20-5-2a 49199 50597 53272 48908 49457 50362 48908 0.00% 

20-5-2b  37936 40553 43095 37542 39280 41096 37542 0.00% 

50-5-1  99524 103304 115317 94084 98006 100908 90111 4.40% 

B
ar

re
to

 

(B
ar

re
to

 

2
0

0
4

) 

Gaskell67-21x5 443.7 499.4 586.9 430.561 469.8 500.4 424.9 1.33% 

Gaskell67-22x5 599.6 690.5 801.2 586.698 607.6 636.7 585.1 0.27% 

Gaskell67-32x5 623.872 691.4937 758.3425 589.467 647.0904 684.3992 571.7 3.10% 

Gaskell67-32x5b 576.957 638.379 674.628 510.66 579.697 629.08 504.3 1.26% 

 

Table 6. Comparing some solution procedures using the 20-5-1 dataset of (Prins and 

Prodhon 2004) 

GRASP* MAPM** 

Cost SC*** RC**** Gap Cost SC RC Gap 

55021 25549 29472 0.42 54793 25549 29244 0 

        
LRGTS***** Proposed Alg. 

Cost SC RC Gap Cost SC RC Gap 

55131 25549 29582 0.62 54793 25549 29244 0 
 

* “Greedy adaptive search procedure” Presented in (Prins, Prodhon et al. 2006) 
** “Memetic algorithm with population management” presented in (Prins, Prodhon et al. 

2006) 
*** The cost corresponding to the setup costs of the depots 
**** The cost corresponding to the routing 
**** “Lagrangean relaxation-granular tabu search” presented in (Prins, Prodhon et al. 2007) 

 

 The value of dispatcher preference index for vehicles CrV* varied within [0,1] with a 

step size of 0.1. The computational results are presented in Table 6. Moreover, figure 9 

shows the tendencies about the planned distances, additional distances due to failures at 

the customers, and total distances of the problem with different dispatcher preference 

indices for vehicles. 

Table 7. The results with different CrV* 

CrV* 
Planned 

Distance 

Additional 

Distance 

Total 

Distance 

0 71,211.51 27,611.72 98,823.23 
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0.1 80,506.69 18,357.26 98,863.95 

0.2 86,754.3 16,763.13 103,517.4 

0.3 85,915.81 16,188.48 102,104.3 

0.4 90,226.42 10,747.92 100,974.3 

0.5 95,553.26 12,78.374 96,831.64 

0.6 93,549.4 0 93,549.4 

0.7 97,206.98 0 97,206.98 

0.8 96,873.37 0 96,873.37 

0.9 102,561 0 102,561 

1 102,454.6 0 102,454.6 

 

 

Figure 8. The costs of the problem with different CrV* 

 

 Table 6 shows that when dispatcher preference index for vehicles CrV* is higher, a 

strictly rising tendency in the planned routes and a strictly decrease in the additional 

distance that vehicles had to make due to failures at the customers is observed. When the 
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dispatcher’s preference index CrV* is equal to 0.6, the value of total distance is 

minimized. Consequently, lower values of CrV* bring about maximum use of the vehicle 

capacity. These values correspond to routes with shorter planned distances. On the other 

hand, lower values of parameter CrV* increase the number of cases in which vehicles 

arrive at a customer and are unable to service that specific customer. This leads to 

increasing the total additional distance they cover due to the "failure". Higher values of 

parameter CrV* are characterized by less utilization of vehicle capacity along the planned 

routes and less additional distance to cover due to failures. Therefore, the dispatcher 

preference index for vehicles should be around 0.6 to get the optimal performance of the 

system. 

 Then, to examine the sensitivity of the best solution with respect to the values of α, 

another complementary test was carried out and results are reported in figure 10. The 

fuzzy version of the problem was solved using various levels of α between 0.9 and 1 with 

step sizes of 0.01. Figure 10 indicates that larger values of confidence level leads to 

larger values for optimal costs. Moreover, such an increase in the cost level is almost 

linear. This clearly shows that restricting the model to meet customer time windows 

strictly adds to the total cost. This finding seems reasonable and can be regarded as both a 

validation criterion for the proposed algorithm and also a sensitivity index.  

 

Figure 9. The sensitivity of solution with respect to the value of α 
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 Figure 11 represents the performance of the proposed simulation-embedded simulated 

annealing and the final output of the problem.  

 

Figure 10. The performance of the proposed algorithm for a LRPTW under uncertainty 

 

7. Conclusions and outlooks for future research 

In this paper, an LRPTW is presented under uncertainty and a fuzzy chance-constrained 

programming formulation is given for it. To solve the problem, a simulation-embedded 

simulated annealing algorithm is proposed and its effectiveness was shown by a 

numerical example. 

 The paper contributes to the knowledge pool of LRP in the following respects. First, a 

chance-constrained mathematical formulation has been proposed for FLRPTW assuming 

fuzzy demands and travel times. Besides, a combination of FCM with Mahalanobis norm 

and a sweeping method has been employed to generate high-quality initial solutions 

which satisfy chance constraints. Another clear contribution of this paper is the proposal 
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of a simulation-embedded SA which shows promising performance in dealing with 

various test problems.  

 However, there is still much opportunity to extend our work in some respects. One 

may approach other variants of the  LRP such as LRPs where backups and deliveries are 

needed. Another valuable avenue for future research is to consider some other parameters 

of the problem as fuzzy variables, such as time windows. We believe that this can add to 

the ability of our paper to model real-world problems and will be a valuable extension. 

Although SA has shown an outstanding ability to solve the problem at hand, there is a 

possibility to use other heuristics or metaheuristics to solve the same problem or to 

conduct an empirical study to compare the strength of various approaches in solving the 

problem of this paper. This can be carried out on larger datasets available in the literature 

to show the strengths and weaknesses associated with each solution method. Last but not 

least, there is the possibility to extend our work using heterogeneous vehicles. 

 

References 

Alumur, S. and B. Y. Kara (2007). "A new model for the hazardous waste location-routing problem." 
Computers &amp; Operations Research 34(5): 1406-1423. 

Ambrosino, D., A. Sciomachen, et al. (2009). "A heuristic based on multi-exchange techniques for a 
regional fleet assignment location-routing problem." Computers &amp; Operations Research 
36(2): 442-460. 

Arostegui, J. M. A., S. N. Kadipasaoglu, et al. (2006). "An empirical comparison of Tabu Search, 
Simulated Annealing, and Genetic Algorithms for facilities location problems." International 
Journal of Production Economics 103(2): 742-754. 

Balakrishnan, A., J. E. Ward, et al. (1987). "Integrated facility location and vehicle routing models: 
Recent work and future prospects." American Journal of Mathematical and Management 
Sciences 7: 35-61. 

Barreto, S., C. Ferreira, et al. (2007). "Using clustering analysis in a capacitated location-routing 
problem." European Journal of Operational Research 179(3): 968-977. 

Barreto, S. S. (2004). Análise e Modelização de Problemas de localização-distribuição (Analysis and 
modelization of location-routing problems)(in Portuguese), University of Aveiro, campus 
universitário de Santiago. 

Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification, Cornell University Ithaca. 
Caballero, R., M. González, et al. (2007). "Solving a multiobjective location routing problem with a 

metaheuristic based on tabu search. Application to a real case in Andalusia." European Journal 
of Operational Research 177(3): 1751-1763. 

Cappanera, P., G. Gallo, et al. (2003). "Discrete facility location and routing of obnoxious activities." 
Discrete Applied Mathematics 133(1-3): 3-28. 



30 
 

Crama, Y. and M. Schyns (2003). "Simulated annealing for complex portfolio selection problems." 
European Journal of Operational Research 150(3): 546-571. 

Damodaran, P. and M. C. Vélez-Gallego (2012). "A simulated annealing algorithm to minimize 
makespan of parallel batch processing machines with unequal job ready times." Expert 
Systems with Applications 39(1): 1451-1458. 

Davari, S. and M. H. Fazel Zarandi (2011). "The single-allocation hierarchical hub median location 
problem with fuzzy demands." African Journal of Business Manegement In press. 

Davari, S., M. H. Fazel Zarandi, et al. "Maximal Covering Location Problem (MCLP) with fuzzy travel 
times." Expert Systems with Applications In Press, Accepted Manuscript. 

Derbel, H., B. Jarboui, et al. "Genetic algorithm with iterated local search for solving a location-routing 
problem." Expert Systems with Applications(0). 

Dubois, D. and H. Prade (1988). Possibility Theory: An Approach to Computerized Processing of 
Uncertainty. , Plenum, New York. 

Duhamel, C., P. Lacomme, et al. (2010). "A GRASP×ELS approach for the capacitated location-routing 
problem." Computers &amp; Operations Research 37(11): 1912-1923. 

Dunn, J. C. (1973). "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-
Separated Clusters." Journal of Cybernetics 3: 32-57. 

Erbao, C. and L. Mingyong (2009). "A hybrid differential evolution algorithm to vehicle routing 
problem with fuzzy demands." Journal of Computational and Applied Mathematics 231(1): 
302-310. 

Kaufmann, A. (1975). Introduction to the Theory of Fuzzy Subsets, Academic Press, New York. 
Ke, H. and B. Liu (2010). "Fuzzy project scheduling problem and its hybrid intelligent algorithm." 

Applied Mathematical Modelling 34(2): 301-308. 
Klibi, W., A. Martel, et al. (2010). "The design of robust value-creating supply chain networks: A critical 

review." European Journal of Operational Research 203(2): 283-293. 
Lan, Y.-F., Y.-K. Liu, et al. (2009). "Modeling fuzzy multi-period production planning and sourcing 

problem with credibility service levels." Journal of Computational and Applied Mathematics 
231(1): 208-221. 

Laporte, G. (1989). "A survey of algorithms for location-routing problems." Investigacion Operativa 1: 
93–123. 

Lau, H. C. W., Z.-Z. Jiang, et al. (2010). "A credibility-based fuzzy location model with Hurwicz criteria 
for the design of distribution systems in B2C e-commerce." Computers &amp; Industrial 
Engineering 59(4): 873-886. 

Li, X., Z. Qin, et al. (2011). "Entropy maximization model for the trip distribution problem with fuzzy 
and random parameters." Journal of Computational and Applied Mathematics 235(8): 1906-
1913. 

Li, X., Y. Zhang, et al. (2009). "A hybrid intelligent algorithm for portfolio selection problem with fuzzy 
returns." Journal of Computational and Applied Mathematics 233(2): 264-278. 

Liu, B. (2009). Theory and Practice of Uncertain Programming. 
Liu, L. and X. Gao (2009). "Fuzzy weighted equilibrium multi-job assignment problem and genetic 

algorithm." Applied Mathematical Modelling 33(10): 3926-3935. 
Liu, L. and Y. Li (2006). "The fuzzy quadratic assignment problem with penalty: New models and 

genetic algorithm." Applied Mathematics and Computation 174(2): 1229-1244. 
Lundy, M. and A. Mees (1986). "Convergence of an annealing algorithm." Mathematical Programming 

34: 111-124. 
Marinakis, Y. and M. Marainaki (2008). "A Particle Swarm Optimization Algorithm with Path Relinking 

for the Location Routing Problem." Journal of Mathematical Modelling and Algorithms 7: 59–
78. 



31 
 

Melo, M. T., S. Nickel, et al. (2009). "Facility location and supply chain management - A review." 
European Journal of Operational Research 196(2): 401-412. 

Metropolis, N., A. W. Rosenbluth, et al. (1953). "Equations of state calculations by fast computing 
machines." Journal of Chemical Physics 21: 1087–1092. 

Min, H., V. Jayaraman, et al. (1998). "Combined location-routing problems: A synthesis and future 
research directions." European Journal of Operational Research 108(1): 1-15. 

Nagy, G. and S. Salhi (2007). "Location-routing: Issues, models and methods." European Journal of 
Operational Research 177(2): 649-672. 

Nahmias, S. (1978). "Fuzzy variables." Fuzzy Sets and Systems 1(2): 97-110. 
Nguyen, V.-P., C. Prins, et al. "A multi-start iterated local search with tabu list and path relinking for 

the two-echelon location-routing problem." Engineering Applications of Artificial 
Intelligence(0). 

Nguyen, V.-P., C. Prins, et al. (2012). "Solving the two-echelon location routing problem by a GRASP 
reinforced by a learning process and path relinking." European Journal of Operational 
Research 216(1): 113-126. 

Peng, J. and B. Liu (2004). "Parallel machine scheduling models with fuzzy processing times." 
Information Sciences 166(1-4): 49-66. 

Pishvaee, M. S. and S. A. Torabi (2010). "A possibilistic programming approach for closed-loop supply 
chain network design under uncertainty." Fuzzy Sets and Systems 161(20): 2668-2683. 

Prins, C. and C. Prodhon (2004). Nouveaux algorithmes pour le problème de localisationetroutage 
sous contraintes de capacité. 

Prins, C., C. Prodhon, et al. (2007). "Solving the Capacitated LRP by a Cooperative Lagrangean 
Relaxation-Granular Tabu Search Heuristic." Transportation Science 41(4): 470-483. 

Prins, C., C. Prodhon, et al. (2006). A Memetic Algorithm with Population Management (MAPM) for 
the Capacitated Location-Routing Problem. Lecture Notes in Computer Science. J. Gottlieb and 
G. R. Raidl, Springer. 3906: 183-194. 

Prins, C., C. Prodhon, et al. (2006). "Solving the Capacitated Location-Routing Problem by a GRASP 
complemented by a Learning Process and a Path Relinking." 4OR - A Quarterly Journal of 
Operations Research 4(3): 221-238. 

Prodhon, C. "http://prodhonc.free.fr/Instances/instances_us.htm." 
Ruspini, E. (1969). "A new approach to clustering." Information and Control 15: 22–32. 
Schwardt, M. and K. Fischer (2009). "Combined location-routing problems-a neural network 

approach." Annals of Operations Research 167: 253-269. 
Wang, L., Q.-L. Fu, et al. "Continuous review inventory models with a mixture of backorders and lost 

sales under fuzzy demand and different decision situations." Expert Systems with 
Applications(0). 

Wang, T. Y., K. B. Wu, et al. (2001). "A simulated annealing algorithm for facility layout problems 
under variable demand in Cellular Manufacturing Systems." Computers in Industry 46(2): 181-
188. 

Xiaoxia, H. (2008). "Risk curve and fuzzy portfolio selection." Computers &amp; Mathematics with 
Applications 55(6): 1102-1112. 

Xu, T., H. Wei, et al. (2009). "Study on continuous network design problem using simulated annealing 
and genetic algorithm." Expert Systems with Applications 36(2, Part 2): 2735-2741. 

Yang, L. and L. Liu (2007). "Fuzzy fixed charge solid transportation problem and algorithm." Applied 
Soft Computing 7(3): 879-889. 

Zadeh, L. A. (1975). "The concept of a linguistic variable and its application to approximate reasoning--
I." Information Sciences 8(3): 199-249. 

http://prodhonc.free.fr/Instances/instances_us.htm.


32 
 

Zadeh, L. A. (1978). "Fuzzy sets as a basis for a theory of possibility." Fuzzy Sets and Systems 1(1): 3-
28. 

Zarandi, M. H. F., A. Hemmati, et al. (2011). "The multi-depot capacitated location-routing problem 
with fuzzy travel times." Expert Systems with Applications 38(8): 10075-10084. 

Zhao, R. and B. Liu (2005). "Standby redundancy optimization problems with fuzzy lifetimes." 
Computers & Industrial Engineering 49(2): 318-338. 

Zheng, Y. and B. Liu (2006). "Fuzzy vehicle routing model with credibility measure and its hybrid 
intelligent algorithm." Applied Mathematics and Computation 176(2): 673-683. 

Zhou, J. and B. Liu (2007). "Modeling capacitated location-allocation problem with fuzzy demands." 
Computers & Industrial Engineering 53(3): 454-468. 

 

 


