
Market power, fuel substitution and infrastructure –
A large-scale equilibrium model of global energy markets∗

Daniel Huppmann† & Ruud Egging‡

July 18, 2014

Abstract

Assessing and quantifying the impacts of technological, economic, and policy shifts
in the global energy system requires large-scale numerical models. We propose a dy-
namic multi-fuel market equilibrium model that combines endogenous fuel substitu-
tion within demand sectors and in power generation, detailed infrastructure capacity
constraints and investment, as well as strategic behaviour and market power aspects
by suppliers in a unified framework. This model is the first of its kind in which market
power is exerted across several fuels.

Using a dataset based on the IEA World Energy Outlook 2013 (New Policies
scenario, time horizon 2010–2050, 30 regions, 10 fuels), we illustrate the functionality
of the model in two scenarios: a reduction of shale gas availability in the US relative
to current projections leads to an even stronger increase of power generation from
natural gas in the European Union relative to the base case; this is due to a shift in
global fossil fuel trade. In the second scenario, a tightening of the EU ETS emission
cap by 80% in 2050 combined with a stronger biofuel mandate spawns a renaissance
of nuclear power after 2030 and a strong electrification of the transportation sector.
We observe carbon leakage rates from the unilateral mitigation effort of 60–70%.
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1 Introduction
The global energy system is constantly changing, driven by technological advances and economic
shifts as well as regulatory interventions. The shale gas boom in the United States, for example,
drastically shifted the economics between the different fossil fuels. Other trends are a result of
governmental regulation, such as the establishment of an Emission Trading System (ETS) by the
European Union, or biofuel mandates in North America and Europe. Many of these regulations
are motivated by potential threats of global warming and climate change (cf. IPCC, 2014), and
intend to curb greenhouse gas (GHG) emissions – most importantly carbon dioxide (CO2) – or
reduce local air pollution. Other measures are motivated by public pressure, for instance the
nuclear phase-out in several OECD countries following the Fukushima incident. Another driver
of energy policy interventions are concerns regarding security of supply and import dependency,
which have been raised in Europe in particular by the recurring natural gas transit disputes
between Russia and Ukraine (Lévêque et al., 2010).

When combined, these trends may create paradoxical effects. For example, the shale gas
boom in North America led to an increase of coal exports from the US to Europe, and Germany
saw an increase in the use of coal and lignite in recent years (AGEB, 2014). This occurred despite
the EU ETS, as well as ambitious national policy goals to reduce CO2 emissions and substantial
renewable energy feed-in. At the same time, European policy makers express concerns about a
loss of competitiveness with North America due to low energy prices overseas (IEA, 2013) – while
European utilities consider mothballing natural gas power plants, because they are not able to
compete with subsidized renewables and coal at current low CO2 permit prices.

There is one further intricate aspect with regard to energy and emissions: carbon leakage.
Unilateral or regional emission reduction may shift fossil fuel consumption to other regions and
thus have limited benefit to the global climate. This effect can work either directly through
reduced world prices for fossil fuels, increasing consumption in other regions; or it may work
indirectly via the goods market channel, where production of consumer goods is shifted to regions
with lower environmental standards, and the goods are then exported to the high-standards
countries. Energy-intensive and trade-exposed (EITE) industries such as steel or pulp-and-paper
are particularly vulnerable in this regard, further fuelling the fear of reduced competitiveness and
industry relocation.

These examples illustrate the complex and integrated nature of global energy markets and
climate policy. This interdependence poses various challenges to companies, governments and
supra-national entities when considering long-term trends. To gauge the economic impacts of
technology-related shifts as well as the effects of regulation and policy measures on the global
energy system, policy makers and academics rely on large-scale numerical models of the energy
sector.

There is an inherent trade-off in energy modelling: a broad research scope requires substantial
aggregation, which necessarily omits many details; on the other hand, many relevant questions
with regard to energy, in particular infrastructure investment, can only be tackled adequately
while accounting for operational or seasonal detail. Depending on the research question posed,
models therefore set different priorities and vary with respect to spatial disaggregation, the time
horizon under consideration, and the level of detail with which fuels and technologies (e.g., in
power generation) are modelled. They also treat different variables as endogenous (i.e., deter-
mined by the model) or exogenous (i.e., taken as a given parameter from some external source
or assumption).

Energy market modelling approaches can be broadly classified into four categories, albeit the
distinction is not always clear-cut and there is some overlap. Integrated assessment models (IAM)
such as ETSAP-TIAM (Loulou and Labriet, 2008) and MIT-EPPA (Jacoby et al., 2006) typically
have a global and long-term scope and explicitly capture the interaction between the economy,
the energy sector, and climate. Several computable general equilibrium (CGE) models specifically
include emissions and climate aspects, for example PHOENIX (Wing et al., 2011) or GTAP-E
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(McDougall and Golub, 2007).
Energy system models (ESM) abstract from other sectors of the economy and focus only on

the energy sector; this allows for an even more detailed analysis. ESM are usually based on an
explicit optimization or equilibrium model.1 Examples include the PRIMES model (EC, 2011)
and the many applications based on TIMES-MARKAL.2

Lastly, sector models only cover one particular fuel (e.g., natural gas, Egging et al., 2010)
or sector (e.g., power generation, Leuthold et al., 2012); this focus allows for the inclusion of a
high level of detail with regard to market characteristics, infrastructure constraints (e.g., flow of
electricity in a network), or variability over time. Some models in this area of research focus on
market structure and strategic behaviour by certain dominant players, which we discuss in more
detail below.

The model we propose in this article combines the advantages of partial-equilibrium modelling
(strategic behaviour and a high level of infrastructure detail) with the broad scope of energy sys-
tem modelling. In particular fuel substitution is included endogenously in the final demand
sectors and in power generation. Furthermore, we make provisions for taxes and emission quota
on multiple emissions and pollutants at various levels (nodal, regional, global), and we include
constraints on the fuel mix in transformation and final demand to represent governmental regu-
lation. This enables us to conduct detailed analyses of the impact of various energy and climate
policies on global fossil fuel markets and the integration of renewable energy.

Compared to Egging and Huppmann (2012), this work extends the framework in the following
respects: i. it is a multi-period model allowing for endogenous investments in and depreciation
of all infrastructure types; ii. it includes seasonality, storage, and load variation; iii. it allows
for endogenous fuel substitution in the final demand sectors; iv. the data set is more detailed in
terms of geographical coverage, demand sectors, and with respect to the fuels.

The remainder of this paper is organized as follows: the next section details how different
model classes tackle fuel substitution, infrastructure, and market power. Section 3 provides the
mathematical formulation of the model; Section 4 gives a brief overview of the current data set
and presents two scenarios to illustrate the types of analysis that can be performed with the
model: a pessimistic scenario regarding the future of shale gas in North America, and a scenario
where the EU unilaterally reduces its CO2 emissions by 80% until 2050. Section 5 concludes and
proposes a number of potential avenues for further research and model development.

2 Three modelling aspects of particular interest
Numerical models for assessing potential developments of the global energy landscape have been
used for decades. We refer to Hirth (2015) and Connolly et al. (2010) for a detailed classifi-
cation and a comparison of models currently used for policy analyses. Instead of providing an
extensive overview, we focus on three key aspects, and how they are covered in state-of-the-art
models. These aspects are: fuel substitution within demand sectors as well as in power gen-
eration; infrastructure for production, transportation, storage, and transformation of different
energy carriers; and finally, the explicit consideration of strategic behaviour by certain suppliers,
i.e., Nash-Cournot market power exertion. This allows us to highlight how the proposed model
departs from and extends the current state-of-the-art in energy modelling.

1Some ESM are “simulation” models, which are not based on any optimization rationale. Rather, there are
certain if-then-assumptions or rules underlying the model. To simulate a scenario, the future energy demand or
fuel mix is extrapolated based on these rules. Some hybrid models employ a combination of optimization and
simulation approaches. For the sake of conciseness, we do not address simulation approaches in detail, but focus
on optimization or partial equilibrium-based ESM.

2See http://www.iea-etsap.org for more information.
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Endogenous fuel substitution
There are, in principle, two approaches for incorporating fuel substitution: a top-down formu-
lation follows the computable general equilibrium methodology (CGE), using elasticities of sub-
stitution. This approach is advantageous because the energy sector can be embedded in the
broader economy, thereby allowing for well-founded welfare analyses specifically including the
interdependence between economic activity and energy prices. However, due to the large ag-
gregation necessary for such models, many details are lost. In addition, a drawback of using
elasticities is that, if a fuel is not used at all in the base year (or only to a small extent relative
to total energy consumption), such models are rather inert and are not capable of showing large
future penetration rates of these fuels even when economic considerations would warrant that.
This is a significant disadvantage when modelling potentially “game-changing” technologies.

In contrast, energy system models (ESM) usually start from a bottom-up assessment of the
energy sector such as production/generation and investments costs. They are based on opti-
mization or partial equilibrium techniques and often follow a (linear) least-cost approach where
pre-specified demand levels (often determined by another, CGE-type model) must be met at
lowest total cost. Alternatively, the objective may be welfare maximization, where a decreasing
willingness-to-pay for energy (or inverse demand function) is assumed. This approach may have
the opposite drawbacks of CGE-type models, namely “bang-bang”-results: if a small shift in
relative costs makes one fuel cheaper than the one currently used, the entire energy demand by
the respective sector shifts from one fuel to the other.3 This is obviously unrealistic, so these
models need to specify (assumptions on) limits or costs of fuel substitution.

Some models only investigate fuel substitution within the electricity sector; this can be prob-
lematic due to the implicit assumption that parameters outside the scope of the analysis do not
change even in drastic scenarios. For example, studying the effects of a nuclear phase-out while
keeping the price of fossil fuels fixed obviously neglects the interdependence between gas and coal
prices and their use in power generation to replace nuclear power (cf. Knopf et al., 2014).

Supply chain infrastructure
In typical CGE models, a long-term equilibrium perspective combined with yearly averages en-
sures that each sector attracts “just enough” capital to execute all activities. Hence, such models
cannot account for explicit capacity constraints. This, in combination with taking yearly av-
erages, makes such an approach unsuitable for analysing infrastructure bottlenecks in detail or
addressing the many short-term operational considerations important in energy markets.

Energy system models, in comparison, can easily capture “hard” infrastructure capacity con-
straints, and can be extended to include seasonal or hourly variation and stochasticity. In ad-
dition, many multi-period models allow for endogenous investments, and explicitly account for
the lead-time of capacity expansions, which is neglected by the “just enough” capital approach
in CGE models.

The simplifications regarding the economy made in sector models allow more sector-specific
peculiarities to be tackled, such as loop flows in an electricity network. This enables a correct
analysis where bottlenecks occur in the transmission networks. The problem with such an ap-
proach is one of scaling; extending such a detailed model to a realistic hourly disaggregation will
quickly reach the limit of computational tractability.

The model REMIND-R (Leimbach et al., 2010) and the approach proposed by Böhringer and
Rutherford (2009, 2008) combine the advantages of CGE-type models to capture the economy
at large and the detail allowed by sector models. In these hybrid models, the energy sector is
represented with the technological detail common for partial equilibrium models, and the rest of
the economy is modelled according to the top-down approach typical for CGE models. They can

3Mathematically speaking, the solution jumps from one corner of the feasible space to another corner (or
vertex); this is a common characteristic in particular of linear optimization problems.
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thereby capture the feedback loops between the market for various fuels and the economy at large,
which are typically overlooked by partial equilibrium models. At the same time, their approach
allows for completely inactive energy technologies to develop over time (thereby addressing the
inertia issue discussed above) and for consideration of hard capacity limits, which standard CGE
models cannot address. However, REMIND-R does not incorporate the third aspect relevant to
energy markets, which we consider important – market power.

Strategic behaviour and market power
Energy system models usually apply a least-cost or welfare maximization approach, and therefore,
they cannot incorporate strategic behaviour. Rather, market structure analysis is frequently
conducted using a sector-specific modelling approach: for example, Trüby (2013) and Haftendorn
and Holz (2010) test several market power assumptions for the global coal market in a partial-
equilibrium framework; Huppmann and Holz (2012) conduct a similar analysis for crude oil, with
a specific emphasis on the role of OPEC members. For natural gas, a large number of models
have been developed over the last years; several of these compute market equilibria for the next
decades taking into account Nash-Cournot behaviour by certain suppliers (e.g., Abada et al.,
2013; Egging et al., 2010; Lise and Hobbs, 2008). The generalization of Nash-Cournot market
power are conjectural variations (CV): each supplier has an expectation (or conjecture) regarding
how its rivals will react to a variation in its own output. This allows to model “intermediate”
cases of market power exertion. As recently discussed by Huppmann (2013b), the assumption
of Nash-Cournot behaviour (or any fixed CV parameter) to represent strategic interaction is in
itself a strong simplification, but it may still be a useful approximation.

CGE-type models can – in principle – incorporate imperfect competition; however, to our
knowledge, most large-scale applications used in the policy evaluation arena assume perfectly
competitive behaviour by all players. Böhringer et al. (2014) are the exception; in their article,
they compare several assumptions concerning OPEC market power in a CGE framework and
discuss the implications on carbon leakage. However, they only treat oil as a homogeneously
traded fuel, and thus (to some extent) omit carbon leakage via other fossil fuels.4

Another application of a CGE-type model with market power is presented by Golombek
et al. (2013): they use the market power version of the LIBEMOD model (Aune et al., 2008) to
investigate how different energy market liberalization trajectories affect prices and social welfare in
Western Europe.5 They model market power through incorporating price mark-ups, representing
various market imperfections, to the supply cost curves. The values of these mark-ups are based
on data observations and determined in the model calibration phase. As such, the origins and
magnitudes of the various market imperfections are neither assessed nor quantified. Merely the
aggregate effect in each agent’s behaviour is accounted for. The market liberalization in a specific
market can then be represented by removing the mark-ups for the agents involved in that market.

The approach used by Golombek et al. follows the reasoning of Smeers (2008); he argues that
just adding a mark-up in addition to marginal costs is an easier way to include non-competitive
behaviour than conjectural variations. We disagree; in spite of some theoretical shortcomings,
using a CV allows to incorporate a relation between the level of market power exertion and the
market share of the respective supplier in various markets. As a consequence, a supplier exerting
market power will seek to diversify its sales. Standard optimization energy models, in contrast,
implicitly minimize transportation costs. For this reason, one will not observe trade flows of the
same fuels in opposite directions in such models – but such trade flows do occur in the real world.
Assuming Cournot behaviour or a CV by (some) suppliers result in trade flows that are more

4Böhringer et al. (2014) assume that there exists a global integrated market only for crude oil; they use
Armington elasticities for other fossil fuels, which implicitly assumes that coal or gas from different regions are
not perfect substitutes.

5Strictly speaking, the LIBEMOD model is a hybrid between a CGE model and a bottom-up energy system
model. It is a partial equilibrium model for the energy sectors using mathematical expressions that are commonly
used in CGE models, in particular nested constant elasticity of substitution (CES) functions.
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diverse, and thus allow for a better matching of actually sales and trade patterns; just increasing
marginal costs cannot capture such an effect. Using CV assumptions therefore offers a significant
practical advantage when calibrating a model to replicate real-world observations.

We discuss the solution approach and some mathematical and game-theoretic considerations
in more detail in Section 3.8, after presenting the structure and the mathematical formulation of
the model.

Combining fuel substitution, infrastructure, and market power
The model presented in this article follows the bottom-up approach and allows for linear sub-
stitution between fuels in the final demand sectors. Nevertheless, to avoid the problem of bang-
bang-results, we introduce fuel-specific end use costs increasing in the amount of each specific
fuel used in a sector. This represents stickiness of fuel usage due to existing capital stock, the
fact that fuels are used for various purposes within a sector, as well as the costs associated with
installing additional equipment.

Regarding infrastructure, we allow for the level of technological detail common in bottom-up
energy system models. In particular, we consider endogenous investment in production capacity
and transport, transformation, and storage infrastructure. The model covers multiple periods
(i.e., years) and includes seasonality within each year. It is therefore able to address both short-
term operational concerns as well as long-term trends.

Because the model is formulated as a partial equilibrium model derived from individual play-
ers’ profit maximization problems (mathematically, a mixed complementarity problem, MCP),
it allows for the inclusion of Nash-Cournot market power of several suppliers using a conjectural
variations (CV) approach. To our knowledge, this is the first large-scale model that is spatially
disaggregated and explicitly models “cross-fuel” market power – a supplier is able to consider
how its sales of one fuel affect not only the price of that fuel, but also the price of other fuels it
is selling in the same market.

3 A multi-fuel market equilibrium model
The model represents the entire supply chain of multiple fossil fuels and renewable energy sources
in a spatially disaggregated framework. It captures game-theoretic considerations (i.e., supplier
market power), infrastructure capacity constraints, endogenous fuel substitution by consumers
in various end use sectors, multiple governmental regulatory constraints, and greenhouse gas or
other pollutants’ emission caps in an integrated mathematical framework.

There are three levels of the supply chain: first, fuels are produced (upstream activities);
then, they are transformed, stored and/or transported to other nodes by the service providers
(midstream); and finally, they are sold to the demand sectors (downstream). We solve for a
Nash equilibrium of profit-maximizing players using a deterministic open-loop approach (i.e.,
assuming perfect foresight and full information). The players are suppliers and infrastructure
operators, each aiming to maximize profits. Final demand sectors seek to optimize their welfare
from consuming energy. When formulating the model, we took great care to develop a flexible
and generic framework; the following examples should be understood as motivation for the model
formulation and functionality.

The suppliers produce various energy carriers and use infrastructure services purchased from
service providers to transport fuels, to transform them into other types of energy, and to store
fuels across seasons. They ultimately sell the fuels to final demand sectors which endogenously
substitute between different fuels depending on relative costs, efficiencies, as well as regulatory
and technical constraints. The suppliers may be modelled as Nash-Cournot players, exerting
market power vis-à-vis consumers, or as price-takers (i.e., perfectly competitive). Suppliers may
control production capacity at several nodes and of several fuels.
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Figure 1: Illustration of the supply chain in a two-node, six-fuel setup; © represents the nodal
mass balance of each supplier regarding a fuel at the node.

The transformation technology operators can be parametrized with multiple input fuels and
several output fuels; hence, this can represent crude oil refineries, power generation, and combined
power-and-heat plants. This setup also provides flexibility to model different technologies for the
same input-output combination, for example single vs. combined cycle gas turbines to generate
electricity from natural gas.

The arc operators can represent pipelines, tanker ships, the LNG supply chain components,
and power transmission lines (albeit no consideration is given to alternate-current power flow
characteristics). The storage operators allow the supplier to shift fuels between different seasons
within a year; one may think of natural gas storage (summer-winter) or pump-hydro electricity
storage (night-day). All service providers are assumed to act perfectly competitive; whenever
capacity is scarce, an implicit auction between the suppliers using the infrastructure allocates
capacity according to the highest willingness-to-pay.

The emission permit auctioneer allocates permits and collects taxes on emissions of green-
house gases or other pollutants. Both the taxes and the emission quota can be set on a nodal,
regional and global level, and are additive. The model is thereby able to replicate a situation
where, for example, Norway is part of the EU ETS, but levies an additional methane emissions
tax within its borders. The constraints can also be set such that only one sector is faced with a
tax or a quota, so that the model is able to replicate sector-specific carbon prices (IEA, 2013).

The suppliers and the service providers face infrastructure constraints, i.e., limited production,
transportation or transformation capacity, or maximum injection (extraction) rates into (from)
storage. The players invest endogenously in additional capacity if this is economically viable.

Figure 1 illustrates how the supply chain is modelled in a simplified two-node, four-fuel setup:
In Country A, Supplier A produces both natural gas and crude oil, which it can either sell
domestically or export via ship (oil) or pipeline (natural gas). There are two demand sectors,
Industry and Residential & Transport. Only the industry sector can use crude oil directly; natural
gas, oil products (crude oil processed by a refinery), biofuels, and electricity can be used by both
sectors. Nuclear power, “produced” by supplier B in country B, is modelled as an input to the
power sector. For illustrative purposes, the power sector is very stylized here: it converts any
input fuel except crude oil into electricity. There exists a natural gas storage facility in country
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B and an electricity storage plant in country A; the latter can be used by both suppliers, since
both can convert some of their fuels into electric power.

In this example, there is one supplier per node to keep the illustration simple, but one could
easily include a supplier active at several nodes, or multiple suppliers producing identical fuels
at the same node, each supplier with an individual capacity and cost function. We assume that
each supplier remains the owner of the fuel it produces, even after transformation and storage.
This is necessary to properly account for market power exertion. We discuss this in more detail
below.

3.1 General notation
First, we introduce some general notation before presenting the optimization problem of each
player in detail. Table 1 lists the most important sets and mappings used in the model. The
remaining notation is introduced in the explanation of each player’s problem. A complete list of
sets, parameters and variables is provided in Appendix A. In general, q~ are decision variables
of the supplier, where ~ is to be replaced by a letter representing the activity in the supply
chain. Accordingly, f~ are decision variables of the service providers, and z~ are the respective
infrastructure investment variables.

The relative duration of season h is given by durh; the sum of all season durations (over a
year) must equal to 1. The discount factor of future revenues and costs is dfy. We use y′ < y as
shorthand for “all years y′ prior to year y”, and y′ > y for the inverse statement.

y ∈ Y ... years
h ∈ H ... hours/days/seasons
v ∈ V ... loading (injection/extraction) cycles of storage
s ∈ S ... suppliers
n, k ∈ N ... nodes
d ∈ D ... demand sectors
a ∈ A ... arcs
c ∈ C ... transformation technology (e.g., oil refineries, power plants)
o ∈ O ... storage operators/technology
e, f ∈ E ... energy carriers/fuels
r ∈ R ... regions
g ∈ G ... emission types (greenhouse gases)
n, k ∈ Nr ... node-to-region mapping
r ∈ Rn ... region-to-node mapping (any node can be part of several regions)
a ∈ A+

ne ... subset of arcs ending at node n transporting fuel e
a ∈ A−ne ... subset of arcs starting at node n transporting fuel e
e ∈ EA

a ... fuel(s) transported via arc a (singleton)
nA+(a) ... end node of arc a (singleton)
nA−(a) ... start node of arc a (singleton)
f ∈ EC+

c ... subset of output fuel(s) f obtained from transformation technology c
e ∈ EC−

c ... subset of input fuel(s) e for transformation technology c
(e, f) ∈ EC

c ... input/output fuel mapping of transformation technology c
o ∈ OE

e ... subset of technologies storing fuel e
h ∈ HV

vo ... mapping between loading cycle and hour/day/season

Table 1: Selected sets and mappings
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3.2 The supplier
The supplier maximizes its profits earned by producing and selling fuels while considering costs for
production, transport, transformation and storage. Losses during each step of the supply chain
are considered by the supplier in the nodal mass balance constraint. Final demand emission costs
as well as fuel-specific end use costs are paid by the consumers, which are introduced later. The
supplier’s profit optimization problem is given by the following; variables in parentheses denote
the duals of the constraints.

max
qP ,qA,qC

qO−,qO+,qD

zP

∑
y∈Y,h∈H
n∈N,e∈E

dfydurh

(∑
d∈D

[
courS

ysndΠD
yhnde(·) + (1− courS

ysnd)pD
yhnde

]
qD

yhsnde

− costPyhsne(·)−
∑

a∈A+
ne

pA
yhaq

A
yhsa −

∑
c∈C

pC
yhnceq

C
yhsnce

−
∑

o∈OE
e

(
pO−

yhnoq
O−
yhsno + pO+

yhnoq
O+
yhsno

)

−
∑
g∈G

pG
yngems

P
ysnegq

P
yhsne − invP

ysnez
P
ysne

)
(1a)

s.t. qP
yhsne ≤ avlPyhsne

capP
ysne +

∑
y′<y

depP
y′ysnez

P
y′sne

 (αP
yhsne) (1b)

∑
h∈HV

vo

durhq
O+
yhsno =

∑
h∈HV

vo

durh(1− lossO−
o )qO−

yhsno (αO
yvsno) (1c)

(1− lossP
sne)qP

yhsne −
∑
d∈D

qD
yhsnde

+
∑

c∈C,f∈EC−
c

transfC
yncfeq

C
yhsncf −

∑
c∈C

qC
yhsnce

+
∑

a∈A+
ne

(1− lossA
a )qA

yhsa −
∑

a∈A−ne

qA
yhsa

+
∑

o∈OE
e

(
qO+

yhsno − q
O−
yhsno

)
= 0 (φyhsne) (1d)

zP
ysne ≤ expP

ysne (ζP
ysne) (1e)∑

y∈Y,h∈H

durhq
P
yhsne ≤ horP

sne (γP
sne) (1f)

The linear combination of price and inverse demand function is multiplied by the quantity
sold to final demand qD to yield the revenue in the supplier’s objective function (Equation 1a).
As discussed in Section 2, the supplier may either act competitively (i.e., price-taking behaviour)
or as a Cournot player. In the competitive case, the parameter courS is set to 0, and the supplier
takes the final demand price pD as given in its optimization. In contrast, if the supplier acts as
a pure Cournot player (courS = 1), it is aware of the inverse demand function ΠD(·), and hence
the impact of its own sales on the market price.6 A similar approach is applied by several models

6The term courS may lie in the range [0, 1]. The standard conjectural variations literature uses a slightly
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using a CV representation if market power, as discussed in the previous section. In order to
properly account for market power, all fuels remain the property (and hence under the control)
of the supplier throughout the entire supply chain; therefore, the supplier is aware not only of
the impact of its sales of one fuel on the price for that specific fuel (“direct” market power), but
also of its impact on the price of other fuels (“cross-fuel” market power).

The supplier faces production costs costP (·), specified below. It also has to pay the market-
determined price pA for each unit transported via arcs, qA; price pC for each unit of fuel put into
a transformation unit, qC ; and the prices pO− and pO+ for each unit of fuel injected into storage
qO− and extracted from storage qO+, respectively. The prices charged by the service operators
are derived from a market-clearing constraint; they include operating costs, emission charges
incurred by the service providers, and congestion rent. Only the price for emissions pG during
production qP have to be paid by the supplier directly, where emsP gives the emission intensity.
The investment costs in additional production capacity are given by invP , and zP denotes the
capacity expansion (i.e., investment) variable of the supplier.

The supplier must satisfy a production capacity constraint (Equation 1b) at each node where
he is active, where avlP is the availability factor of capacity, capP is the existing capacity (with
depreciation included for future periods) and depP is the depreciation factor of newly-built ca-
pacity.

Equation (1c) is a mass-balance constraint regarding storage; the amount extracted from
storage must equal the amount injected, after losses (lossO−), over each loading cycle. The nodal
mass balance constraint (1d) states that production, sales to final demand, transformation into
other fuels (where transfC is the transformation rate), imports and exports, and injection into
and extraction from storage must be balanced at each node, for each fuel, and in each time period.

The parameter expP sets the maximum production capacity expansion level (Equation 1e);
the reserve horizon horP gives the maximum cumulative production over the model horizon by
the supplier (Equation 1f) of a specific fuel at a node.

Last, let us specify the production cost function and its partial derivatives (Equations 2a–
2c): it follows the functional form proposed by Golombek et al. (1995). The logarithmic part
allows to add two interesting effects to be included, compared to a simpler linear or quadratic
cost function. First, marginal costs increase sharply when producing close to capacity; this is
realistic for natural gas or crude oil production. Second, since costs depend on total capacity, an
investment reduces production costs for all future periods, ceteris paribus (cf. Huppmann, 2013a).
For conciseness, ĉapP

yhsne defines the available capacity including prior expansions as defined in
Equation 1b. The parameters linP , qudP , and golP specify the shape of the cost function.

costPyhsne(·) = (linP
ysne + golPysne)qP

yhsne + qudP
ysne(qP

yhsne)2

+ golPysne

(
ĉap

P
yhsne − qP

yhsne

)
ln
(

1−
qP

yhsne

ĉap
P
yhsne

)
(2a)

∂ costPyhsne(·)
∂ qP

yhsne

= linP
ysne + 2qudP

ysneq
P
yhsne − golPysne ln

(
1−

qP
yhsne

ĉap
P
yhsne

)
(2b)

∂ costPyhsne(·)
∂ zP

ŷsne

= golPysneavl
P
yhsnedep

P
ŷysne

(
ln
(

1−
qP

yhsne

ĉap
P
yhsne

)
+

qP
yhsne

ĉap
P
yhsne

)
if ŷ < y (2c)

where ĉapP
yhsne = avlPyhsne

capP
ysne +

∑
y′<y

depP
y′ysnez

P
y′sne



different notation, so the CV values applied there are in the range [−1, 0]. The interpretation, however, is identical:
a value at the lower end of the range indicates competitive behaviour, while a high value represents standard Nash-
Cournot behaviour.
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3.3 The arc operator
The arc operator maximizes its profits from transporting fuel fA considering operation costs trfA

and emission costs. 7 Each arc is fuel-specific; losses are accounted for in the supplier’s mass
balance constraint (Constraint 1d). The operator allocates congested capacity to suppliers, such
that the market clearing constraint (Equation 4) is satisfied. The dual variable to this constraint
is the price pA for using the arc. Capacity investment zA is undertaken if the shadow price of
future congestion (τA) is greater than investment costs invA.

max
fA,zA

∑
y∈Y,h∈H

dfydurh

(pA
yha − trfA

ya)fA
yha −

∑
g∈G

pG
yngems

A
yagf

A
yha − invA

yaz
A
ya

 (3a)

s.t. fA
yha ≤ capA

ya +
∑
y′<y

depA
y′yaz

A
y′a (τA

yha) (3b)

zA
ya ≤ expA

ya (ζA
ya) (3c)

Market clearing

∑
s∈S

qA
yhsa = fA

yha (pA
yha) (4)

3.4 The transformation technology operator
The transformation technology operator transforms fuels into other energy carriers. The input
into the unit is denoted by fC ; the share of output fuels produced transfC is fixed, but depends on
the input fuel. There is one unit per technology at each node, which represents total (aggregate)
capacity; the capacity constraint (Equation 5b) is stated in terms of output quantities. In order
to capture technical or regulatory constraints, Equation (5c) allows us to impose that a certain
minimum share shrC of total output must be produced from a certain input fuel.

max
fC ,zC

∑
y∈Y,h∈H

e∈EC−
c

dfydurh

(pC
yhnce − trfC

ync)fC
yhnce −

∑
g∈G

pG
yngems

C
ycegf

C
yhnce − invC

yncz
C
ync

 (5a)

s.t.
∑

(e,f)∈EC
c

transfC
ynceff

C
yhnce ≤ capC

ync +
∑
y′<y

depC
y′yncz

C
y′nc (τC

yhnc) (5b)

shrC
ynce

∑
(e′,f)∈EC

c

transfC
ynce′ff

C
yhnce′ ≤

∑
f∈EC+

c

transfC
ynceff

C
yhnce (βC

yhnce) (5c)

zC
ync ≤ expC

ync (ζC
ync) (5d)

Market clearing

∑
s∈S

qC
yhsnce = fC

yhnce (pC
yhnce) (6)

7All emissions are accounted for at the starting node of the arc.
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3.5 The storage operator
The storage operator allows suppliers to transfer fuels between different hours/days/seasons. We
assume one or several loading (fO−)/unloading (fO+) cycles for each technology, and all costs,
losses and emissions are accounted for during injection. The capacity constraint (i.e., maximum
quantity stored, Equation 7b) is the summation over all energy injected during one loading cycle.
In addition, there is a capacity constraint on injection (Equation 7c) and extraction (Equation
7d), and the respective investment variables may also be constrained (Equations 7e–7g).

max
fO−,fO+

zO,zO−,zO+

∑
y∈Y,h∈H

dfydurh

(
(pO−

yhno − trfO−
yno)fO−

yhno + pO+
yhnof

O+
yhno

−
∑
g∈G

pG
yngems

O−
yogf

O−
yhno − inv

O
ynoz

O
yno − invO−

ynoz
O−
yno − invO+

ynoz
O+
yno

)
(7a)

s.t.
∑

h∈HV
vo

durhf
O−
yhno ≤ cap

O
yno +

∑
y′<y

depO
y′ynoz

O
y′no (τO

yvno) (7b)

fO−
yhno ≤ cap

O−
yno +

∑
y′<y

depO−
y′ynoz

O−
y′no (κO−

yhno) (7c)

fO+
yhno ≤ cap

O+
yno +

∑
y′<y

depO+
y′ynoz

O+
y′no (κO+

yhno) (7d)

zO
yno ≤ expO

yno (ζO
yno) (7e)

zO−
yno ≤ expO−

yno (ζO−
yno) (7f)

zO+
yno ≤ expO+

yno (ζO+
yno) (7g)

Market clearing ∑
s∈S

qO−
yhsno = fO−

yhno (pO−
yhno) (8a)∑

s∈S

qO+
yhsno = fO+

yhno (pO+
yhno) (8b)

Quantities must be extracted within the same loading cycle in which they were injected, but we
do not model the storage level explicitly. This and the consideration that only amounts injected
(after losses) can be extracted is included in the supplier’s optimization problem (Equation 1c).

3.6 The emission permit auctioneer
The emission permit auctioneer allocates constrained emission quota. This mechanism represents
an implicit auction of permits. It is possible to have multiple constraints on global (quotaglob),
regional (quotareg) or nodal (quotanod) levels. In addition, a tax can be introduced for any emis-
sion type, again on a global, regional and/or nodal level (taxglob, taxreg, taxnod); the equilibrium
price at any node cannot be lower than the respective tax(es), so this can be interpreted as a floor
price. 8 If a node belongs to more than one region, the taxes and shadow prices (dual variables
to Equations 9b–9d) from both regions apply.

8Mathematically speaking, the dual to a constraint and a tax (i.e., mark-up) are equivalent, since each supplier
and service provider takes the emission price as given. However, one may want to investigate scenarios with
specific carbon prices, in which setting a parameter is a more straightforward approach; hence, we include both
options to provide more flexibility when defining scenarios.
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The optimization problem of the emission permit auctioneer reads as follows:

max
fG

∑
y∈Y,n∈N

g∈G

dfy

(
pG

yng − taxglob
yg −

∑
r∈Rn

taxreg
yrg − taxnod

yng

)
fG

yng (9a)

s.t.
∑
n∈N

fG
yng ≤ quotaglob

yg (µglob
yg ) (9b)∑

n∈Nr

fG
yng ≤ quotareg

yrg (µreg
yrg) (9c)

fG
yng ≤ quotanod

yng (µnod
yng) (9d)

Market clearing

∑
h∈H,e∈E

durh

(∑
s∈S

emsP
ysnegq

P
yhsne +

∑
s∈S,d∈D

emsD
ydegq

D
yhsnde +

∑
a∈A+

ne

emsA
yagf

A
yha

+
∑
c∈C

emsC
ycegf

C
yhnce +

∑
o∈O

emsO−
yogf

O−
yhno

)
= fG

yng (pG
yng) (10)

3.7 Final demand
The final demand sector aims to maximize its utility from using energy services, where each fuel
provides a certain level of service (effD). When taking the derivative of the utility maximization
problem with respect to the amount of a particular fuel, one obtains the inverse demand curve
for this fuel (Equation 11); this is the inverse demand function ΠD included in the supplier’s
objective function (1a):

pD
yhnde = effD

ynde

intDyhnd − slpD
yhnd

 ∑
s∈S,f∈E

effD
yndfq

D
yhsndf


− euccD

yhnde − euclDyhnde

(∑
s∈S

qD
yhsnde

)
−
∑
g∈G

pG
yngems

D
ydeg (11)

Final demand price of a fuel pD equals the following: the first part of the equation is a composite
sector price index in terms of energy services, weighted by the efficiency of the particular fuel
in supplying the service. Parameters intD and slpD give the form of the sector’s energy service
demand function.

The second part concerns the fuel-specific end use costs. We use a linear function with
parameters euccD and euclD to capture stickiness of usage of a fuel. The third part of the inverse
demand curve represents the emission costs for consuming the fuel.

In addition to emission constraints and end use costs, consumers may face restrictions in their
energy consumption due to governmental regulation, technical constraints or a limited capital
stock. The first constraint type (denoted L) concerns the fuel mix of demand for a certain sector:
a minimum share shrL of total consumption of demand sector(s) d ∈ DL satisfied from fuels
e ∈ ÊL must be supplied using fuel(s) e ∈ EL.

shrL
ynl

∑
s∈S,d∈DL

l

e∈ÊL
l

effD
yndeq

D
yhsnde ≤

∑
s∈S,d∈DL

l

e∈EL
l

effD
yndeq

D
yhsnde (βL

yhnl) (12)
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The second constraint type (denoted M) concerns the “origin” or transformation of fuels. A
minimum share shrM of consumption of fuel(s) e ∈ EM must be supplied from transformation
technology(s) c ∈ CM at that node n.

shrM
ynm

∑
s∈S,d∈D

f∈EM
m

qD
yhsndf ≤

∑
s∈S,(e,f)∈EC

c

c∈CM
m

transfC
yncefq

C
yhsnce (βM

yhnm) (13)

3.8 Solution approach
We formulate the problem as a Mixed Complementarity Problem (MCP, cf. Facchinei and Pang,
2003) by deriving the first-order (Karush-Kuhn-Tucker, or KKT) conditions of each player’s opti-
mization problem and solving them simultaneously. This can be interpreted as a Nash equilibrium
solution of the market, in which some players act as price-takers (i.e., perfectly competitive), while
others may exert Cournot market power vis-à-vis final demand. We use an exogenous conjectural
variations parameter (courS) to incorporate this behaviour and allow intermediate cases. Each
player’s optimization problem is convex and all constraints are linear, so the KKT conditions
are necessary and sufficient for optimality. Nevertheless, since not all optimization problems are
strictly convex, we cannot guarantee uniqueness of the equilibrium. This is an inherent problem
common to all large-scale energy models that are (partly) linear.

The KKT conditions are stated in Appendix B. The equilibrium price pD is replaced by
the inverse demand curve to reduce the number of variables and equations. Hence, there is no
equivalent to Equation 11 in the KKT conditions.

Since the demand sectors do not have specific decision variables, the constraints (12) and
(13) are included in the profit maximization problem of the suppliers. We therefore have a
Generalized Nash Equilibrium (GNE), because the suppliers face so-called “shared constraints”:
the constraints are identical, but in principle, each supplier may value the constraint differently.
Mathematically, this is equivalent to assigning a different Lagrange multiplier to it. Hence, the
MCP would no longer be a square system. We follow the approach by Harker (1991) and assume
that each supplier values a shared constraint identically. Several recent models of generalized
Nash games in energy markets use a similar approach (e.g., Abada et al., 2013; Oggioni et al.,
2012).

A challenging task of building a large-scale bottom-up equilibrium model is the calibration
to match observed values in the base year and projections from a reference source reasonably
well. While data on production and transformation costs as well as other technology aspects
(e.g., transformation efficiency, losses) are available, making defensible assumptions concerning
the demand side is more difficult (e.g., willingness-to-pay for energy services, possibility for fuel
substitution). Furthermore, one has to avoid the aforementioned problem of “bang-bang”-results.
To this end, we introduce the concept of fuel-specific end use costs in the final demand curve.
We also implement an iterative semi-automated calibration algorithm; the end use costs and this
algorithm are discussed in more detail in Appendix C.

For the reference data set (explained further in the next section), the resulting model contains
approximately 150,000 variables and equations. It is solved in GAMS using the PATH solver
(Ferris and Munson, 2000). Due to the logarithmic function used in the model, the solver does
not necessarily converge without initializing from a well-chosen starting point. We implemented
several subroutines to facilitate obtaining a valid starting point.
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4 Some illustrative results
In the following section, we illustrate that this model can be used to solve large-scale applications
of the global energy system. We provide a brief overview of the underlying data set and two
scenarios to demonstrate the advantages of our approach compared to both energy system models
and fuel-specific equilibrium models.

4.1 The base case
The base year of the data set is 2010; the model proceeds in 10-year steps until 2050. Data on
quantities produced, transformed and consumed in the base year are compiled from the Extended
World Energy Balances of the International Energy Agency (IEA).9 Reference demand values for
future years are derived from the IEA’s World Energy Outlook (WEO, IEA, 2013), New Policies
scenario; however, since our assumptions on demand sector and fuel disaggregation partly differ
from the WEO, one must be careful when comparing our results with the IEA’s publications.
For EU members countries, we compared the IEA projections to the Energy Roadmap 2050 (EC,
2011) and the European Commission’s Reference Scenario (EC, 2013) to obtain projections on
a more disaggregated level. We assume a real discount rate of 5%p.a. for investment decisions
applied by all players along the supply chain and for inter-temporal optimization in the Hotelling
sense of all suppliers that face a binding reserve constraint over the model horizon. All prices,
costs and taxes/levies for the base year and future periods are given in US $ (USD).

Production capacities and costs, both for the base year of 2010 as well as the development
over the next decades, are taken from our research group’s sector models (Egging, 2013; Schröder
et al., 2013; Huppmann and Holz, 2012; Leuthold et al., 2012; Haftendorn and Holz, 2010). Cost
estimates and the potential of different renewable energy sources are taken from the respective
IEA publications; for Europe, we use data based on the Re-shaping project.10 During calibration,
we compiled reference values for future production and the fuel mix in power generation from the
WEO 2013, various publications by the US Energy Information Administration (EIA), and BP
(2014); however, since we derive and use our own cost estimates for production and transforma-
tion, model results may deviate with respect to production and fuel mix in power generation.11

For production costs of fossil fuels, we assume a yearly real cost increase of 3%–5%, following a
country-by-country analysis of deposit and production characteristics. For renewables, we assume
an investment and production cost reduction according to IEA projections and other sources.

The fuels included are: crude oil, (refined) oil products, natural gas, coal, lignite, electricity,
biofuels, renewables, and (as input for power generation only) nuclear and hydro. We intend to use
this data set mainly for studies with a European focus, so Europe is represented by 15 nodes, of
which eleven are EU member states (or aggregates thereof). The rest of the world is aggregated
into thirteen nodes by continent or major regions. Noting that capacity constraints in global
liquefied natural gas (LNG) trade are due to the liquefaction and regasification infrastructure
(rather than along the shipping routes), we add 34 nodes to represent LNG terminals.

There are two seasons per year, summer and winter, with natural gas storage facilities to shift
this fuel from the low demand to high demand months. Seasonal variation in energy demand
due to different temperatures or changing level of economic activity is captured by adjusting
the reference fuel consumption values by season, fuel and node, and then calibrating the inverse
demand curve to these reference values. In effect, this yields a different willingness-to-pay function

9IEA (2013), “Extended world energy balances”, IEA World Energy Statistics and Balances (database).
doi: 10.1787/data-00513-en

10See http://www.reshaping-res-policy.eu for a list of publications.
11The numerical results presented below are based on the data set as of March 17, 2014. We intend to continue

improving the underlying data and assumptions, in particular with respect to renewable energy sources, and to
incorporate updated projections from IEA, EIA, BP, and other publications. In all scenario results presented here,
Coal refers to the sum of hard coal and lignite consumption and the quantity-weighted average, respectively, in
line with IEA and BP reports.
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Figure 2: Scenario A shale disappointment: Natural gas production and consumption in North
America and the European Union, in mtoe/y (scenario results in shaded colours)

and different cross-fuel elasticities between the seasons.12 For future periods, we assume that the
relative seasonal variation remains constant, while total yearly consumption by fuel increases or
decreases according to the WEO or EU projections, as stated above.

The Russian production of crude oil and natural gas is assumed to be controlled by one strate-
gic supplier. In the Middle East, the production of crude oil and natural gas is divided between
two suppliers: a strategic supplier representing the OPEC members in the region (93% of crude
oil and 87% of natural gas production in the Middle East region in 2010), and a competitive sup-
plier controlling the remaining capacity. The reserves in the Middle East are separated by OPEC
membership as well. We assume a CV value of 0.5 for the strategic suppliers (cf. Huppmann,
2013b), except for their respective domestic markets where they act competitively.

4.2 Shale disappointment – A reduction of the US natural gas supply
The strongly increasing production of shale gas in the US over the past years has dramatically
changed expectations regarding the future energy landscape. Only a few years ago, substantial
investment went into regasification terminals in North America to import liquefied natural gas
(LNG). Now, the IEA and the Energy Information Administration (EIA) project that North
America will be a net exporter of natural gas in the near future (EIA, 2014).

Richter (2013) discusses how current projections of US shale gas production may be substan-
tially over-optimistic. He uses a single-fuel partial-equilibrium model to analyse shifts in trade
flows as well as production and consumption patterns if the shale gas potential does not meet
current expectations. We replicate his work, but our model allows to analyse endogenous fuel
substitution due to reduced availability of shale gas compared to our base case derived from the
WEO and other sources.

Production and consumption of natural gas in North America and the European Union is
presented in Figure 2: instead of increasing natural gas production in North America, as projected

12Variation of energy demand by season, fuel and node/region were based on estimates provided by Justine
Barden, EIA, in private communication.
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Figure 3: Scenario A shale disappointment: Price development of fossil fuels, in nominal USD/toe
(scenario results as dashed lines)

by the EIA and others, output decreases steadily until 2050 in this scenario. Direct consumption
and use in power generation in North America decline accordingly.

The interesting effect from this scenario can be seen in the use of natural gas in European
power generation: it increases more than in the base case. This can be explained by a shift in
global fossil fuel trade: North America makes up for reduced availability of domestic natural gas
by increasing their imports of crude oil and coal; it even starts to import natural gas by 2030
from South America, as predicted by the EIA as recent as a decade ago (cf. Richter, 2013). The
EU in turn compensates for higher world prices of coal and oil by importing more natural gas by
pipeline from Russia and the Caspian region.

The price development in the scenario relative to the base case is illustrated in Figure 3. The
prices shown here are the nominal average nodal wholesale prices for the fossil fuels crude oil & oil
products, natural gas and coal (comprising hard coal and lignite), weighted by their consumption
in each season and at each node (for the EU average price index). Hence, these prices are lower
than the final consumer prices, because they do not reflect taxes, distribution costs and emission
permit prices (if applicable). At the same time, the prices shown here are higher than global
benchmark prices such as the West Texas Intermediate (WTI) and Brent for crude oil, or the
Henry Hub and the British National Balancing Point (NBP) prices for natural gas, because they
include transportation costs to the country (node) of consumption and refining costs (in the case
of oil products).

The price development in the base case exhibits a convergence of natural gas price between the
different world regions, as shown in Figure 3 between North America and the European Union.
In the scenario, natural gas prices are more than 5% higher in North America due to lower shale
gas availability in 2020 and 2030 compared to the base case. Interestingly, coal prices are higher
in North America towards the end of the model horizon relative to the base case (roughly 5%
higher in 2030 and 2040, and more than 7% in 2050). This is due to more investment in coal
power generation capacity in the coming decades due to lower availability of natural gas, which in
turn leads to higher demand for coal. In the scenario, prices are only marginally affected in other
world regions, and coal prices are even slightly lower in the European Union after 2040 (relative
to the base case). Again, this can be explained by a shift in the power generation capacity
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Figure 4: Scenario Ambitious EU : Energy consumption by sector in the European Union, in
mtoe/y (scenario results in shaded colours)

investment towards natural gas, which replaces coal that is redirected on the world market to
make up for higher demand in North America. This leads to less demand for coal in the final
decades of the model horizon in Europe.

4.3 Ambitious EU – Strengthening the EU ETS and biofuel standards
The European Commission recently announced its intention to reduce greenhouse gas emissions
by 40% until 2030 relative to 1990 levels, amongst other objectives (EC, 2014); a reduction by
80% until 2050 is regularly discussed (EC, 2011), even though no legally binding decisions have
been made. We simulate a scenario where all emissions from the energy sector are reduced by
40% until 2030 and 80% until 2050.13 We assume that all energy consumed is covered by this
mandate, in contrast to the current setup of the ETS. In addition, we introduce an increasing
biofuel mandate, reaching 25% of all oil products consumed in the transportation sector by 2050.

The energy mix in the demand sectors is depicted in Figure 4: the sector most affected is
transportation, where the combination of a biofuel mandate and the emissions quota induces a
strong shift to electrification. Coal is phased out almost completely by 2050, both in direct use
and in power generation, as shown in Figure 5.

The underlying cost assumptions which we use for nuclear power are substantially higher than
those assumed by the IEA and EC (2011, 2013). Hence, we do not observe substantial nuclear
power plant construction in the base case. However, in the Ambitious EU scenario, there is
investment in nuclear power in Europe after 2030, supplying approximately a third of European
power consumption. In both the base case and the scenario, we do not see any construction of
carbon capture and sequestration (CCS) power plants.

In the scenario, the CO2 emission permit price in the EU ETS increases to 54USD/tCO2 in
13Since we do not include non-energy sector emissions (e.g., industrial process emissions), we abstract from

those. The difference between the WEO reference emission values presented in Figure 6 and model results is
mostly due to this omission, as well as the aggregation to keep our data set sufficiently small to be numerically
tractable. To avoid distortion due to the model aggregation and calibration, we set the reduction relative to model
results of emissions in 2010.
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Figure 5: Scenario Ambitious EU : Aggregate relative fuel mix in power generation in the Euro-
pean Union (scenario results in shaded colours)

2030 and 155USD in 2050, compared to the base case emission costs of 40USD in 2030 (according
to the WEO) and 60USD in 2050 (own assumption).

Last, let us turn to emission reductions and carbon leakage, which is illustrated in Figure 6:
Emissions from coal and oil are reduced most drastically, while natural gas serves as a transition
fuel until nuclear capacity becomes operational in 2040. Leakage rates are in the range of 60–
70%. At first, most of the leakage occurs in the European periphery (the Balkans and Ukraine):
power generators use their comparative cost advantage of not being covered by the EU ETS
and export electricity to Eastern EU member states, in spite of relatively high losses of power
transmission. After 2030, the major part of the leakage shifts to Asia, where China and other
countries increase their consumption of fossil fuels due to reduced prices on the world market.

5 Conclusions and outlook
Understanding the global energy system and quantifying the impacts of technological and eco-
nomic changes as well as the effects of policy measures requires large-scale numerical models. A
multitude of such models exist and are widely used for policy evaluation and scenario simulations.
They either follow a top-down methodology, which allows embedding the energy sector in the
economy at large, or a bottom-up approach, which allows for a detailed analysis of the energy
system and infrastructure constraints. Market structure analysis is usually done in a sector- or
fuel-specific modelling framework.

We present a first-of-its-kind large-scale model that combines endogenous fuel substitution,
detailed infrastructure constraints, and strategic behaviour by suppliers in a unified framework.
Most importantly, in the model proposed here, suppliers can exert market power across several
fuels; strategic firms are aware how their sales of one fuel impact not only the price of that fuel
(“direct” market power), but also the revenue they earn from selling other fuels in the same
market. We believe that this is the first large-scale market equilibrium model that captures such
an effect.

The model covers multiple time periods and allows for endogenous investment in production
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Figure 6: Scenario Ambitious EU : CO2 emissions, model results by fossil fuel, and WEO projec-
tions, in Gt/y (scenario results in shaded colours)

and mid-stream infrastructure capacity. We include seasonality and storage, and are thus able to
incorporate short-term operational concerns, which are highly relevant for energy market analysis.

We illustrate the model functionality using a data set compiled from the IEA’s “Extended
World Energy Balances” and other sources. The first scenario analyses the impacts of strongly
reduced shale gas availability in North America, in contrast to current optimistic projections of
LNG exports from the US in the next years. The decreasing output of North American natural
gas is compensated in the scenario with increased imports of crude oil and coal. This induces
a shift in global trade patterns, and Europe increases its use of natural gas in power generation
due to higher world market prices of coal and oil.

In the second scenario, we assume a tightening of the EU ETS emission cap by 80% in 2050
combined with a stronger biofuel mandate. This induces a renaissance of nuclear power after 2030
and a strong electrification of the transportation sector. We observe significant carbon leakage
ratios from the unilateral mitigation effort in the order of 60–70%. In the first decades, the
leakage mostly takes place in the European periphery (the Balkans and Ukraine), which benefits
from being adjacent to the ETS jurisdiction and exports electricity to Eastern European countries.
As more renewable and nuclear generation capacity comes online after 2030, the leakage shifts
to the Asian region, where China and other countries soak up the global fossil fuel supplies not
exported to Europe.

Both scenarios illustrate fuel substitution effects which can hardly be captured using single-
fuel sector models. At the same time, the market power aspects ignored by ESM, IAM (and most
CGE models) affect supply, trade and infrastructure developments and fuel prices.

We plan to extend this modelling framework in two directions: on the one hand, we will use
the model for detailed policy analysis, going beyond the two illustrative scenarios presented here.
This will require regular updates of the underlying data set and continuous improvement regarding
implicit assumptions, in particular with respect to renewable energy sources. Furthermore, we
have not yet discussed the impact of market power, which is included in the calibration of our
base case and the scenarios. Egging et al. (2009) analyse the impact of a counterfactual cartel of
“GasPEC” member countries in the natural gas market; the model presented here allows us to
replicate their analysis for market power exertion by a joint OPEC-GasPEC cartel in both crude
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oil and natural gas.
On the other hand, we will extend the model mathematically: one avenue is to include

stochasticity, which was recently implemented in other large-scale sector models (e.g., Egging,
2013). Short-term stochasticity could be interpreted as operational or seasonal uncertainty. Long-
term stochasticity may represent the ambiguity of resource availability or the “threat” of a global
climate change mitigation agreement. Uncertain prospects over an extended time horizon are
especially relevant when one considers long-lived infrastructure investment.

Another interesting question to be tackled in the context of energy markets, strategic be-
haviour, and emissions is the issue of carbon leakage: mitigation efforts in one region may just
displace GHG emissions to other regions. This may happen either directly via the channel of fossil
fuel prices, as exemplified in the second illustrative scenario. But it may also occur indirectly via
the goods channel, including relocation of firms to regions with less stringent climate policies. To
properly capture both channels simultaneously requires combining a detailed bottom-up energy
system model with a CGE-type module to reflect the impact of energy prices on the economy
(Böhringer and Rutherford, 2008). This would allow to more accurately quantify the extent of
carbon leakage due to unilateral or regional climate policies with particular regard to strategic
behaviour by fossil fuel suppliers.
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A Nomenclature

Sets and mappings

Sets

y ∈ Y ... years (#1)
h ∈ H ... hours/days/seasons
v ∈ V ... loading (injection/extraction) cycles of storage
s ∈ S ... suppliers
n, k ∈ N ... nodes
d ∈ D ... demand sectors
l ∈ L ... sector fuel mix constraints
m ∈M ... transformation mix constraints
a ∈ A ... arcs (#2)
c ∈ C ... transformation technology (e.g., oil refineries, power plants)
o ∈ O ... storage operators/technology (#2)
e, f ∈ E ... energy carriers/fuels
r ∈ R ... regions
g ∈ G ... emission types (greenhouse gases)

Mappings

n, k ∈ Nr ... node-to-region mapping
r ∈ Rn ... region-to-node mapping (any node can be part of several regions)
a ∈ A+

ne ... subset of arcs ending at node n transporting fuel e
a ∈ A−ne ... subset of arcs starting at node n transporting fuel e
e ∈ EA

a ... fuel(s) transported via arc a (singleton)
nA+(a) ... end node of arc a (singleton)
nA−(a) ... start node of arc a (singleton)
f ∈ EC+

c ... subset of output fuel(s) f obtained from transformation technology c
e ∈ EC−

c ... subset of input fuel(s) e for transformation technology c
(e, f) ∈ EC

c ... input/output fuel mapping of transformation technology c
eO(o) ... fuel stored by technology o (singleton)
o ∈ OE

e ... subset of technologies storing fuel e
h ∈ HV

vo ... mapping between loading cycle and hour/day/season
vH(h, o) ... loading cycle of hour/day/season (singleton)
e ∈ EL

l ... fuel(s) that satisfies fuel mix constraint l
e ∈ ÊL

l ... fuel(s) that are included in fuel mix constraint l
e ∈ EM

m ... fuel(s) that satisfies transformation mix constraint m
d ∈ DL

l ... demand sector(s) to which fuel mix constraint l applies
c ∈ CM

m ... transformation technologies that satisfy transformation mix constraint m
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Parameters and functions

General Parameters

dfy ... discount factor
durh ... relative duration of hour/day/season h (with

∑
h durh = 1; #3)

Supplier

courS
ysnd ... Cournot market power parameter of supplier s at node n regarding sector d

costPyhsne(·) ... production cost function faced by supplier s at node n for fuel e
linP

ysne ... linear term of the production cost function (linP ≥ 0)
qudP

ysne ... quadratic term of the production cost function (qudP ≥ 0)
golPysne ... logarithmic (Golombek) term of the production cost function (golP ≥ 0)
capP

ysne ... gross production capacity (#4)
avlPyhsne ... availability factor of production capacity
expP

ysne ... production capacity expansion limit
invP

ysne ... production capacity expansion (per-unit) costs
depP

yy′sne ... production capacity expansion depreciation factor (#6)
horP

sne ... production horizon (reserves)
lossP

sne ... loss rate during production of fuel e at node n
emsP

ysneg ... emission of type g during production of fuel e at node n by supplier s

Arc operator

trfA
ya ... tariff for using arc a

capA
ya ... gross capacity of arc a (#4)

expA
ya ... arc capacity expansion limit

invA
ya ... arc capacity expansion (per-unit) costs

depA
yy′a ... arc capacity expansion depreciation (#6)

lossA
a ... loss rate during transportation through arc a

emsA
yag ... emission of type g during transportation through arc a

Transformation technology operator

trfC
ync ... tariff for using transformation technology c for input fuel e

capC
ync ... capacity of transformation technology c (as measured in output fuel, #4)

expC
ync ... transformation technology capacity expansion limit

invC
ync ... transformation technology expansion (per-unit) costs

depC
yy′nc ... transformation capacity expansion depreciation (#6)

transfC
yncef ... transformation rate by technology c at node n from input e to output f

shrC
ynce ... minimum share of (input) fuel e by transformation technology c

emsC
yceg ... emission of type g during transformation of (input) fuel e
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Storage technology operator

trfO−
yno ... tariff for injecting into storage technology o

capO
yno ... capacity for total fuel stored in storage technology o over one loading cycle (#4)

expO
yno ... yearly storage capacity expansion limit

invO
yno ... yearly storage capacity expansion (per-unit) costs

depO
yy′no ... yearly storage capacity expansion depreciation (#6)

capO−
yno ... capacity for fuel injection into storage

expO−
yno ... storage injection capacity expansion limit

invO−
yno ... storage injection capacity expansion (per-unit) costs

depO−
yy′no ... storage injection capacity expansion depreciation (#6)

capO+
yno ... capacity for fuel extraction rate from storage technology o (#4)

expO+
yno ... storage extraction capacity expansion limit

invO+
yno ... storage extraction capacity expansion (per-unit) costs

depO+
yy′no ... storage extraction capacity expansion depreciation (#6)

lossO−
o ... loss rate of storage technology o (accounted at injection)

emsO−
yog ... emission of type g of storage technology o (accounted at injection)

Emissions auctioneer

quotaglob
yg ... quota for global emissions

quotareg
yrg ... quota for regional emissions

quotanod
yng ... quota for nodal emissions

taxglob
yg ... tax for emission g (global)

taxreg
yrg ... tax for emission g in region r

taxnod
yng ... tax for emission g at node n

Demand

ΠD
yhnde(·) ... inverse demand curve of sector d

intDyhnd ... intercept of inverse demand curve for fuel e at node n
slpD

yhnd ... slope of inverse demand curve for fuel e at node n
effD

ynde ... efficiency of demand satisfaction of sector d by fuel e at node n
euccD

yhnde ... constant end use cost parameter
euclDyhnde ... linear end use cost parameter
emsD

ydeg ... emission of type g during consumption of fuel e at node n
shrL

ynl ... minimum share of sector fuel mix constraint l (in energy services)
shrM

ynm ... minimum share of generation mix constraint m (in gross energy)
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Variables

qP
yhsne ... quantity produced
qA

yhsa ... quantity transported through arc a
qC

yhsnce ... quantity put into transformation technology c
qO−

yhsno ... quantity injected into storage o
qO+

yhsno ... quantity extracted from storage o
qD

yhsnde ... quantity sold to final demand sector d
zP

ysne ... expansion of production capacity (#5)
αP

yhsne ... dual for production capacity constraint
αO

yvsno ... dual for injection/extraction constraint
γP

sne ... dual for production horizon constraint
ζP

ysne ... dual for production capacity expansion limit
φyhsne ... dual for mass-balance constraint
fA

yha ... quantity transported by the arc operator
zA

ya ... expansion of arc capacity (#5)
τA

yha ... dual for arc capacity constraint
ζA

ya ... dual to arc capacity expansion limit
pA

yha ... market-clearing price of arc capacity
fC

yhnce ... quantity of fuel e put into transformation technology c
zC

ync ... expansion of transformation technology capacity (#5)
τC

yhnc ... dual for capacity constraint of transformation technology c
βC

yhnce ... dual for minimum input share of fuel e to transformation technology c
ζC

ync ... dual to transformation technology capacity expansion limit
pC

yhnce ... market-clearing price of transformation technology capacity
fO−

yhno ... quantity injected into storage
fO+

yhno ... quantity extracted from storage
zO

yno ... expansion of yearly storage capacity (#5)
zO−

yno ... expansion of injection capacity (#5)
zO+

yno ... expansion of extraction capacity (#5)
ζO

yno ... dual to yearly storage capacity expansion limit
ζO−

yno ... dual to injection capacity expansion limit
ζO+

yno ... dual to extraction capacity expansion limit
pO−

yhno ... market-clearing price for injection into storage
pO+

yhno ... market-clearing price for extraction from storage
τO

yvno ... dual for capacity constraint of storage technology in loading cycle v
κO−

yhno ... dual for injection capacity constraint of storage technology
κO+

yhno ... dual for extraction capacity constraint of storage technology
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fG
yng ... quantity of emissions of type g at node n
µglob

yg ... dual for emission constraints of type g (global)
µreg

yrg ... dual for emission constraints of type g in region r
µnod

yng ... dual for emission constraints of type g at node n
pG

yng ... market-clearing price for emission of type g
pD

yhnde ... final demand price by fuel
βL

yhnl ... dual for fuel mix constraint l
βM

yhnm ... dual for generation mix constraint m

Comments
#1 The notation y′ < y indicates “all years y′ prior to year y”, and y′ > y the reverse.

#2 Arcs and storage technologies can be used for exactly one fuel. This saves indices, but may
be a problem later (e.g., capacity constraints of oil products pipelines).

#3 We want to maintain flexibility of the model, and there is no general “natural” time unit
for a multi-fuel model (such as mcm/d for natural gas or kWh for power). All variables
have to be interpreted as “full-year equivalent (i.e., the quantities produced, transported,
transformed, or consumed if that time slice lasted one year).

#4 Initial capacity in the base year net of depreciation or planned shut-down; capacities are
given in gross terms (before losses).

#5 Investment in additional capacity is available from the following period at the earliest.

#6 The first subscript (y) refers to the time period at which the expansion was undertaken;
the second subscript refers to the “current” period. The parameter specifies how much of
an expansion is still available in the current period. (Note that dep~yy′... = 0 if y ≥ y′, since
any expansion can only be available after the investment period.)
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B The Karush-Kuhn-Tucker conditions
We write f(x) ≥ 0 ⊥ x ≥ 0 to indicate the complementarity constraint f(x) · x = 0. This allows
to have the KKT conditions below to be written exactly as they are coded in GAMS.

dfydurh

[
∂ costPyhsne(·)
∂ qP

yhsne

+
∑
g∈G

pG
yngems

P
ysneg

]
+αP

yhsne − (1− lossP
sne)φyhsne + γP

sne ≥ 0 ⊥ qP
yhsne ≥ 0 (14)

dfydurhp
A
yha + φyhsnA−(a)e − (1− lossA

a )φyhsnA+(a)e ≥ 0 ⊥ qA
yhsa ≥ 0 (15)

dfydurhp
C
yhnce + φyhsne −

∑
f∈EC+

c

transfC
yncefφyhsnf

−
∑

m∈M,f∈EC+
c

if c∈CM
m

transfC
yncefβ

M
yhnm ≥ 0 ⊥ qC

yhsnec ≥ 0 (16)

dfydurhp
O−
yhno − durh(1− lossO−

o )αO
yvH (ho)sno + φyhsne ≥ 0 ⊥ qO−

yhsno ≥ 0 (17)

dfydurhp
O+
yhno + durhα

O
yvH (ho)sno − φyhsne ≥ 0 ⊥ qO+

yhsno ≥ 0 (18)

dfydurh

[(
−intDyhnd + slpD

yhnd

( ∑
s′∈S,f∈E

effD
yndfq

D
yhs′ndf

))
effD

ynde

+euccD
yhnde + euclDyhnde

∑
s′∈S

qD
yhs′nde +

∑
g∈G

pG
yngems

D
ydeg

+courS
ysnd

(
effD

yndeslp
D
yhnd

∑
f∈E

effD
yndfq

D
yhsndf + euclDyhndeq

D
yhsnde

)]

+φyhsne +
∑
l∈L

if d∈DL
l

{
(shrL

ynl − 1)effD
yndeβ

L
yhnl if e ∈ EL

l

shrL
ynleffD

yndeβ
L
yhnl if e ∈ ÊL

l , e /∈ EL
l

}

+
∑

m∈M

if e∈EM
m

shrM
ynmβ

M
yhnm ≥ 0 ⊥ qD

yhsnde ≥ 0 (19)

dfyinv
P
ysne +

∑
y′>y,h∈H

[
dfy′durh

∂ costPy′hsne(·)
∂ zP

ysne

−avlPy′hsnedep
P
yy′sneα

P
y′hsne

]
+ ζP

ysne ≥ 0 ⊥ zP
ysne ≥ 0 (20)

avlPyhsne

(
capP

ysne +
∑
y′<y

depP
y′ysnez

P
y′sne

)
− qP

yhsne ≥ 0 ⊥ αP
yhsne ≥ 0 (21)

∑
h∈HV

vo

durh

(
(1− lossO−

o )qO−
yhsno − q

O+
yhsno

)
= 0 ⊥ αO

yvsno (free) (22)
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(1− lossP
sne)qP

yhsne −
∑
d∈D

qD
yhsnde +

∑
c∈C,f∈EC−

c

transfC
yncfeq

C
yhsncf

−
∑
c∈C

qC
yhsnce +

∑
a∈A+

ne

(1− lossA
a )qA

yhsa −
∑

a∈A−ne

qA
yhsa

+
∑

o∈OE
e

(
qO+

yhsno − q
O−
yhsno

)
= 0 , φyhsne (free) (23)

expP
ysne − zP

ysne ≥ 0 ⊥ ζP
ysne ≥ 0 (24)

horP
sne −

∑
y∈Y,h∈H

durhq
P
yhsne ≥ 0 ⊥ γP

sne ≥ 0 (25)

−shrL
ynl

∑
s∈S,d∈DL

l

e∈ÊL
l

effD
yndeq

D
yhsnde +

∑
s∈S,d∈DL

l

e∈EL
l

effD
yndeq

D
yhsnde ≥ 0 ⊥ βL

yhnl ≥ 0 (26)

−shrM
ynm

∑
s∈S,d∈D

f∈EM
m

qD
yhsndf +

∑
s∈S,(e,f)∈EC

c

c∈CM
m

transfC
yncefq

C
yhsnce ≥ 0 ⊥ βM

yhnm ≥ 0 (27)

dfydurh

(
−pA

yha + trfA
ya +

∑
g∈G

pG
ynA−(a)gems

A
yag

)
+ τA

yha ≥ 0 ⊥ fA
yha ≥ 0 (28)

dfyinv
A
ya −

∑
y′>y,h∈H

depA
yy′aτ

A
y′ha + ζA

ya ≥ 0 ⊥ zA
ya ≥ 0 (29)

capA
ya +

∑
y′<y

depA
y′yaz

A
y′a − fA

yha ≥ 0 ⊥ τA
yha ≥ 0 (30)

expA
ya − zA

ya ≥ 0 ⊥ ζA
ya ≥ 0 (31)

dfydurh

(
−pC

yhnce + trfC
ync +

∑
g∈G

pG
yngems

C
yceg

)
+
∑

f∈EC+
c

transfC
yncefτ

C
yhnc

+
∑

(e′,f)∈EC
c

shrC
ynce′ transfC

yncefβ
C
yhnce′ −

∑
f∈EC+

c

transfC
yncefβ

C
yhnce ≥ 0 ⊥ fC

yhnce ≥ 0 (32)

dfyinv
C
ync −

∑
y′>y,h∈H

depC
yy′ncτ

C
y′hnc + ζC

ync ≥ 0 ⊥ zC
ync ≥ 0 (33)

capC
ync +

∑
y′<y

depC
y′yncz

C
y′nc −

∑
(e,f)∈EC

c

transfC
ynceff

C
yhnce ≥ 0 ⊥ τC

yhnc ≥ 0 (34)

−shrC
ynce

∑
(e′,f)∈EC

c

transfC
ynce′ff

C
yhnce′ +

∑
f∈EC+

c

transfC
ynceff

C
yhnce ≥ 0 ⊥ βC

yhnce ≥ 0 (35)

expC
ync − zC

ync ≥ 0 ⊥ ζC
ync ≥ 0 (36)

dfydurh

(
−pO−

yhno + trfO−
yno +

∑
g∈G

pG
yngems

O−
yog

)
+ durhτ

O
yvH (h,o)no + κO−

yhno ≥ 0 ⊥ fO−
h,n,o ≥ 0 (37)

−dfydurhp
O+
yhno + κO+

yhno ≥ 0 ⊥ fO+
yhno ≥ 0 (38)

31



dfyinv
O
yno −

∑
y′>y,v∈V

depO
yy′noτ

O
y′vno + ζO

yno ≥ 0 ⊥ zO
yno ≥ 0 (39)

dfyinv
O−
yno −

∑
y′>y,h∈H

depO−
yy′noκ

O−
y′hno + ζO−

yno ≥ 0 ⊥ zO−
yno ≥ 0 (40)

dfyinv
O+
yno −

∑
y′>y,h∈H

depO+
yy′noκ
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C End use costs and model calibration
As discussed in Section 2, linear fuel substitution may yield “bang-bang”-results. Given that
a fuel is usually used for many different purposes even within a sector, a certain measure of
“stickiness” of fuel usage is plausible. Furthermore, fuel-switching often requires a change of
equipment, which entails investment costs. One may also consider start-up costs as a rationale
for sticky fuel-switching in a seasonal model. Overall, we expect substitution to occur gradually,
purpose-by-purpose. However, this is difficult to capture while keeping the model linear, which
is an important consideration for the sake of efficient numerical computation.

We therefore introduce the concept of fuel-specific end use costs to mimic this gradual substitu-
tion; they are represented by an affine function. Parameters are chosen such that, in equilibrium,
each demand sector chooses exactly the reference demand quantity of each fuel in its consumption
mix.

An illustration of end use costs
The end use costs are depicted, in a stylized example, in Figure 7. There are two fuels (1 and
2) used in the sector; reference consumption values are given by qD1 and qD2. For simplicity, we
assume that both fuels have the same efficiency, i.e., the same level of energy service provided
per unit of fuel.

pD

pS1

pS2

final demand curve for energy services

constant end use cost (fuel 2)

qDqD1qD2 Quantity
(efficiency-weighted)

Cost
Price

slope of end use cost (fuel 1)

slope of end use cost (fuel 2)

Figure 7: Illustration of end use costs in a sector which can consume two fuels

The prices on the y-axis (pS1 and pS2) can be interpreted as supply price, i.e., how much
does it cost to deliver (supply) the reference quantity of the respective fuel to that node. The
consumer has to pay the supply costs plus the end use costs, depicted by the intercept and slope
of the end use cost function. The slope of the end use cost curve of fuel 1 is flatter, which means
that consumption of this fuel is more elastic. The slope is determined from assumptions on the
relative elasticity of substitution between the fuels in the sector.

When comparing the intersection of the demand cost curves (supply cost plus linear end use
costs) with the reference demand quantity for both fuels, one notices that the “price” to be paid
by the consumer for fuel 2 is much lower than the price for fuel 1; hence, this would not be
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a plausible equilibrium for the consumer to choose less of fuel 2 than of fuel 1. We therefore
shift the demand cost curve upwards by adding a constant end use cost term; this could be, for
example, interpreted as distribution costs to deliver the fuel.

Now, the intersection of the demand cost curve and the reference demand quantity for both
fuels are equal; hence, it is indeed optimal for the consumer to use exactly the reference quantities,
paying the final demand price pD for a unit of either.

Summing up the reference demand quantities, we obtain the total quantity (energy service)
consumed (qD). Now, we can use the standard approach in partial equilibrium energy sector
models, fitting a linear inverse demand curve through the reference point (qD, pD). The slope of
the inverse demand curve at that point is derived from the elasticity of the entire sector.

An iterative calibration algorithm
As we stated in the main article, calibrating a large-scale model is a challenge. We use the concept
of the end use costs and supply prices to implement a semi-automatic calibration algorithm.

0 Initialize: Assume a supply price for each node/fuel/sector combination

1 Derive the end use cost parameters and the inverse demand function based on the supply
prices

2 Solve the model

3 Compare model results (quantities consumed) with demand reference values; if model re-
sults are too high, decrease the supply price of this fuel; otherwise, increase the supply
price

4 Repeat from step 1; end after n iterations

At first glance, it may seem counter-intuitive to decrease the fuel supply price when this fuel is
used too much relative to the reference quantity, so let us elaborate on the rationale: if this fuel is
not the most expensive one (including end use costs), a change in this fuel’s supply price will not
influence the final demand price pD, set by the most expensive fuel. Instead, the constant end use
cost term will be increased, making the fuel relatively more expensive in the next model run. In
contrast, if a fuel is already the most expensive, reducing its supply price will also reduce the final
demand price. This will also reduce all other fuels’ constant end use cost parameter, making all
other fuels relatively cheaper. Either way, the share of this fuel in the sector’s total consumption
will decrease in the next model run, which should get model results closer to reference values.

Obviously, this algorithm only seeks to match the demand reference quantities. Therefore,
after a sufficient number of iterations, we compare production, transformation, and trade flow
results to the reference values, and adapt relative costs and other parameters accordingly (and
manually). Then, we repeat steps 1–4. In practical application, this algorithm works quite well.
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