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Abstract

We propose a simple model of two-phase gas-liquid flow by imposing a quasi-equilibrium on the mixture momentum
balance of the classical transient drift-flux model. This reduces the model to a single hyperbolic PDE, describing the
void wave, coupled with two static relations giving the void wave velocity from the now static momentum balance.
Exploiting this, the new model uses a single distributed state, the void fraction, and with a suggested approximation
of the two remaining static relations, all closure relations are given explicitly in, or as quadrature of functions of, the
void fraction and exogenous variables. This makes model implementation, simulation and analysis very fast, simple
and robust. Consequently, the proposed model is well-suited for model-based control and estimation applications
concerning two-phase gas-liquid flow.

Keywords: Two-phase flow, Drilling, Well control, Kick Handling, Managed Pressure Drilling, Underbalanced
Drilling, Automatic Control, Estimation, PDE-ODE model, Severe Slugging, Flow Assurance, Riser Gas

1. Introduction

Multi-phase flow simulation models have evolved significantly over the last couple of decades. With the increase
in computational power and sophistication of numerical schemes, simulating two-phase pipe flow no longer suffers
the same limitations on computational size, and state of the art high-fidelity models such as OLGA [10] and LedaFlow
[18] typically run many times faster than real-time on a standard desktop computer.

Before this development, however, significant efforts were devoted to obtaining simplifications of multi-phase flow
models which could ease implementation and increase their simulation speed. The Drift Flux Model (DFM) [33] was
first proposed by Zuber and Findlay [51] as a correlation for predicting steady-state void-fraction profiles and later
used in transient representations of two-phase flow [42]. In this form it is a simplification of the transient two-fluid
model obtained by relaxing (i.e. imposing immediate steady-state on [29]) the dynamic momentum equation of each
phase, replacing them with a mixture momentum equation and a static relation typically called a slip law.

Further simplification can be achieved by using a similar approach to other parts of the dynamics deemed insignif-
icant for the application at hand. Specifically, by imposing steady state on the momentum balance, the pressure wave
dynamics are neglected, yielding so-called “No Pressure Wave” (NPW) models or “Reduced DFMs”. This simpli-
fication is motivated by applications for which slow gas propagation dynamics are more critical than fast pressure
wave propagation. Furthermore, it has been shown that the validity of the Drift-Flux models representation of the fast
pressure dynamics is imprecise in many scenarios due to the relaxations involved in obtaining the DFM from the full
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formulation of Baer and Nunziato [8], which lowers the sonic velocity [29, 36]. Thus, if the “medium” complexity
DFM representation of the pressure waves is imprecise, the argument can be made that they could be discarded.

This approach was used by Taitel et al. [49] where the resulting model was described by a single transient PDE
of the liquid continuity, obtained by assuming incompressible liquid, and a set of steady-state relations. The resulting
model was further investigated by Minami and Shoham [40] where it was found to be amenable for certain scenarios.
The approach was expanded upon by Taitel and Barnea [48], where the assumption of incompressible liquid was
dropped, yielding two transient equations. A similar model was investigated by Masella et al. [39], here called
the “No Pressure Wave” (NPW) model. More recent additions to the literature on models using quasi-equilibrium
momentum balance include Choi et al. [16], Aarsnes et al. [2], Ambrus et al. [5].

Interestingly, many of these recent studies have not been motivated by the desire to reduce computational com-
plexity. Rather, the advent of computerized automation and optimization in the oil and gas industry has created new
applications for various forms of simplified models, causing renewed interest in these models.

1.1. Application

Modern advances in the theory of dynamic systems have the potential of improving robustness and performance
in the monitoring, optimization and control of dynamic processes which can be described by an amenable mathe-
matical model. By intelligently combining predictions from the mathematical model with information from multiple
sensors one can estimate unmeasured quantities, optimize automatic control procedures, predict future behavior, and
plan countermeasures for unwanted incidents. Such design techniques, often referred to as model-based estimation
and control [7, 6], require a mathematical model with the proper balance between complexity and fidelity, i.e. the
complexity must be limited to facilitate the use of established mathematical analysis and design techniques, while the
qualitative response of the process is retained.

Models that achieve such balance between complexity and fidelity are sometimes referred to as fit-for-purpose
models. Obtaining such models often proves difficult for gas-liquid two-phase dynamics due to the significant com-
plexity and distributed nature of multi-phase pipe flow [3, 4].

If the appropriate model can be developed, however, it could see a wide range of uses in model-based control and
estimation applications where two-phase pipe flow is encountered, such as underbalanced drilling of oil and gas wells
[44], well control (both in conventional and Managed Pressure Drilling) [15], riser gas handling [32], hydrocarbon
production monitoring [13, 50] and mitigating severe slugging during hydrocarbon production [22, 23, 20].

2. The Drift Flux Model

A popular model for representing one-dimensional two-phase flow dynamics in drilling and production at an
acceptable fidelity is the classical three-state transient Drift Flux Model (DFM), see e.g. Lage and Time [35], Fjelde
et al. [28], Aarsnes et al. [3].

For certain boundary conditions, the existence of solutions has been proven [26, 27], and it is well known that
the DFM is, in most practical situations, hyperbolic, with three (two fast and one slow) characteristic velocities [19].
The two fast characteristics represent the fast pressure dynamics in the pipe, while the slow characteristic velocity is
associated with the transport of matter, also sometimes referred to as the void wave [37, 39].

In this section we restate the classical equations of the transient drift-flux model and then cast the system in
canonical form using the eigenvectors of the transport matrix, which poses the model as a single Riemann invariant
governing the propagation of the void wave, coupled to the pressure dynamics, given by two PDEs, through the gas
velocity. We then show how the approximation employed by e.g. Masella et al. [39], Choi et al. [16], using a static
relation in place of a dynamic momentum balance, is related to relaxing both of the two PDEs describing the pressure
dynamics. Both approaches lead to a mixed hyperbolic/parabolic system with a single hyperbolic PDE with a finite
eigenvalue.

2



2.1. The Drift Flux Model equations

We start the development of the proposed two-phase model from the classical Drift Flux Model (DFM) formula-
tion, described by the following equations [30, 27]:

∂(αLρL)
∂t

+
∂(αLρLvL)

∂x
= ΓL, (1)

∂(αGρG)
∂t

+
∂(αGρGvG)

∂x
= ΓG, (2)

∂(αLρLvL + αGρGvG)
∂t

+
∂(P + αGρGv2

G + αLρLv2
L)

∂x
= S , (3)

where the independent variables t, x represent time and position along the pipe, respectively, and the momentum
source term, S is typically given as

S = −ρmg sin θ(x) −
2 fρmvm|vm|

D
(4)

with the mixture relations

ρm = αGρG + αLρL, vm = αGvG + αLvL, (5)

and where αi, vi, ρi,Γi denote the volume fraction, velocity, density and mass source term, respectively, of phase
i = G, L (gas or liquid). Finally, f is the friction coefficient, D the hydraulic diameter, g is the acceleration of gravity
and θ is the pipe inclination angle (relative to the horizontal). For the remainder of this section we will assume
ΓL = ΓG = 0.

Eqs. (1)-(2) represent the mass balance for the liquid and gas phases, while (3) is the conservation of momentum
for the gas-liquid mixture.

The following closure relations are needed to complete the system:

αL + αG = 1, P = c2
G(T )ρG, (6)

where P is the pressure, and cG(T ) is the speed of sound in the gas as a function of the temperature T , while the liquid
density is assumed constant. Finally the slip law

vG =
vm

1 − α∗L
+ v∞ = C0vm + v∞ (7)

where the profile parameter αL
∗ ∈ [0, 1), usually given as the distribution parameter C0 = 1/(1−α∗L), and drift param-

eter v∞ ≥ 0 determine the relative velocity between the phases. These parameters typically depend on factors such
as superficial velocities and inclination [46]. Multiple correlations for obtaining α∗L, v∞ exist in the literature, see e.g.
[51, 12, 17].

2.2. Canonical form

The goal of the following derivation is to show that when the distributed pressure dynamics are relaxed, the
remaining dynamic equation is a single PDE describing the propagation of a void wave with a velocity given by a
static relation. This is an interesting result because it helps focus the search for a simplified model by noting that, by
discarding the distributed pressure dynamics, the model essentially only requires two parts:

1. A first-order PDE describing the void wave advection.
2. A set of closure relations giving pressure and velocity as a function of the state used in 1.

This result will motivate the approach taken in Section 3.
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2.2.1. Variable change
To better highlight interesting features of the model, we rewrite (1)–(3) using a transformation in accordance with

[30] to obtain a new set of variables

(χL, ρ, vG) =

(
(αL − α

∗
L)ρL

ρm − α
∗
LρL

, ρm − α
∗
LρL, vG

)
. (8)

The resulting equations allow the quasilinear formulation2

∂u
∂t

+ A(u)
∂u
∂x

= Q(u), u =

χL

ρ
vG

 , (9)

with A(u) given as

A(u) =

 vG 0 0
0 vG ρ

A31(u) A32(u) A33(u)

 , (10)

A31(u) ≡ c2
G
ρG(u) − ρL

αG(u)ρL
−

(
vG − vL(u)

)2
, (11)

A32(u) ≡ c2
G

(1 − α∗L)ρG(u)
αG(u)ρ2 −

(
vG − vL(u)

)2 χL

ρ
, (12)

A33(u) ≡ vG − 2χL(vG − vL(u)), (13)

and

Q(u) =

 0
0

Q(u)

 , (14)

Q(u) = −

(
1 +

α∗LρL

ρ

)(
g sin θ

+
2 f

(
(1 − α∗L)vG − v∞

)
|(1 − α∗L)vG − v∞|

D

)
, (15)

where all dependent variables are in boldface.
The first state χL is a Riemann invariant: it satisfies a pure transport equation with the velocity vG. The eigenvalues

of the transport matrix, A(u), are [19]: λ1
λ2
λ3

 =

 vG

vG + χL
(
vL(u) − vG) + cM(u)

vG + χL
(
vL(u) − vG) − cM(u)

 , (16)

with the mixture sound velocity

cM(u) =

√
χL(χL − 1)

(
vG − vL(u)

)2
+

(1 − α∗L)c2
GρG(u)

αG(u)ρ
, (17)

and the left eigenvectors l1l2l3
 =


1 0 0

A31(u)
A32(u) 1 ρ

χL(vG−vL(u))+cM (u)
A31(u)
A32(u) 1 ρ

χL(vG−vL(u))−cM (u)

 . (18)

2This relation, and other derivations in this section, are best found using symbolic computation software.
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We note from this derivation that vG shows up as an eigenvalue in the transport matrix and that the void wave
dynamics are relatively simple due to our state transformation. The relations for the fast pressure dynamics are much
more complicated and challenging to work with. In particular, finding a diagonalizing transformation of the system is
not feasible, if at all possible.

2.3. Relaxation of the distributed pressure dynamics
Multiplying (9) with the left eigenvectors yields:

l1(u)
[∂u
∂t

+ λ1(u)
∂u
∂x
−Q(u)

]
= 0 (19)

l2(u)
[∂u
∂t

+ λ2(u)
∂u
∂x
−Q(u)

]
= 0 (20)

l3(u)
[∂u
∂t

+ λ3(u)
∂u
∂x
−Q(u)

]
= 0. (21)

Following [19], we proceed to a model reduction analogous to singular perturbation techniques. Indeed, eigenval-
ues λ2 and λ3 correspond to sound wave propagation (see, e.g. [39, 37]) and are at least one order of magnitude
greater than λ1, which corresponds to the transport of the pseudo-holdup χL. This suggests that the fast transport
dynamics corresponding to (20) and (21) can be relaxed when concerned with the slower time-scale of the void–wave
Eq. (19). Imposing instantaneous steady state for (20) and (21) yields:

l1(u)
[∂u
∂t

+ λ1(u)
∂u
∂x
−Q(u)

]
= 0 (22)

l2(u)
[
λ2(u)

∂u
∂x
−Q(u)

]
= 0 (23)

l3(u)
[
λ3(u)

∂u
∂x
−Q(u)

]
= 0, (24)

where by inserting for the eigenvectors and eigenvalues we can write the resulting system as

∂χL

∂t
+ vG

∂χL

∂x
= 0 (25)

∂ρ

∂x
= −

A31(u)
A32(u)

∂χL

∂x
+

ρQ(u)
A32(u)ρ − A33(u)vG

. (26)

∂vG

∂x
=

vGQ(u)
A33(u)vG − A32(u)ρ

(27)

χL is still a Riemann invariant in the reduced system propagating with velocity vG given implicitly by the relations
(26)–(27). We note that the remaining dynamics of the model are contained in Eq. (25), while (26)–(27) are static
relations which can possibly be approximated with simpler closure relations.

2.3.1. Relation to the No-Pressure-Wave Model
In [39] and [16] a reduced DFM referred to as the No Pressure Wave (NPW) model is obtained by removing the

time derivative term in (3) and computing the pressure from the resulting static relation. Consider again the original
set of equations (1)–(2) but in place of the mixture momentum equation (3) use the static force balance

∂P
∂x

= S . (28)

In [39] it is noted that the resulting model has a single finite eigenvalue, and that the remaining two states corresponds
to eigenvalues that are infinite, which is similar to the system of (25)–(27). This means that using (28) in place of
(3) effectively relaxes both the two characteristics associated with the fast pressure waves. Hence, using a simpler
approximation in place of the expressions for ρ, vG it is possible to obtain a simple first-order PDE of the two-phase
flow dynamics. In the following we exploit these facts to develop such a simple representation of the void wave
propagation that remains when the pressure dynamics have been relaxed.
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2.3.2. New Approach
An approach to exploit the structure revealed by (25)–(27) was suggested in [2] where a simplified model repre-

sentation of these relaxed dynamics was developed. The problem with this approach is that pressure is given implicitly
in the states (due to the source term) such that the resulting simulation requires the solution of an ODE for every time-
step. This problem is avoided in the present paper by using αG as the distributed state in place of χL, which allows for
finding an approximate relation for the pressure gradient which yields pressure explicit in the states and exogenous
variables.

More specifically the pseudo-holdup,

χL =
(αL − α

∗
L)ρL

ρm − α
∗
LρL

, (29)

changes according to:

dχL =
ρG(α∗L − 1)dαG + αG(αG + α∗L − 1)dρG(

αGρG − ρL(αG + α∗L − 1)
)2 . (30)

Plugging (30) into (25) we get the equation:

∂αG

∂t
+ vG

∂αG

∂x
= −

αG(αG + α∗L − 1)
ρG(α∗L − 1)

(
∂ρG

∂t
+ vG

∂ρG

∂x

)
(31)

where ρG is given by the pressure. This motivates the approach taken in the following section.

3. Derivation of the new formulation

The full three-state drift-flux model is too complicated for most model-based estimation and control approaches
[1], hence simplification is desirable. Based on the analysis of the previous section we argue that when relaxing the
fast pressure dynamics, it should be possible to reduce the model description to a first-order PDE, while still retaining
the qualitative dynamics of the system.

For this derivation we will again start with the classical Drift Flux formulation (1)–(7). First note the relation from
the slip law (7):

αLvL = (αL − α
∗
L)vG − (1 − α∗L)v∞. (32)

Following Gavrilyuk and Fabre [30], divide (1) by ρL, which we recall was assumed constant, and insert (32) to get

∂αL

∂t
+
∂(αL − α

∗
L)vG

∂x
=

ΓL

ρL
(33)

=⇒
∂αG

∂t
+ vG

∂αG

∂x
= (αL − α

∗
L)
∂vG

∂x
−

ΓL

ρL
(34)

where the first term on the RHS of (34) is due to gas expansion which necessarily translates to acceleration of the gas.
Employing the chain rule on (2) we have

∂vG

∂x
=

ΓG

αGρG
−

1
αGρG

(
∂αGρG

∂t
+ vG

∂αGρG

∂x

)
(35)

=
ΓG

αGρG
−

1
ρG

(
∂ρG

∂t
+ vG

∂ρG

∂x

)
−

1
αG

(
∂αG

∂t
+ vG

∂αG

∂x

)
. (36)
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Inserting (36) into (34)

∂αG

∂t

(
1 +

αL − α
∗
L

αG

)
+ vG

∂αG

∂x

(
1 +

αL − α
∗
L

αG

)
= (αL − α

∗
L)

ΓG

αGρG
−

(αL − α
∗
L)

ρG

(
∂ρG

∂t
+ vG

∂ρG

∂x

)
. (37)

Thus, defining the convenience variable EG:

EG ≡ −
αG(αL − α

∗
L)

(1 − α∗L)ρG

(
∂ρG

∂t
+ vG

∂ρG

∂x

)
, (38)

we have from (37)

∂αG

∂t
+ vG

∂αG

∂x
= EG +

1
1 − α∗L

(
(αL − α

∗
L)

ΓG

ρG
− αG

ΓL

ρL

)
. (39)

Then, defining the source terms Γ∗G,Γ
∗
L:

Γ∗G ≡
αL − α

∗
L

(1 − α∗L)ρG
ΓG, Γ∗L ≡

αG

(1 − α∗L)ρL
ΓL, (40)

we have

∂αG

∂t
+ vG

∂αG

∂x
= EG + Γ∗G − Γ∗L. (41)

In (41) the source terms Γ∗G,Γ
∗
L can represent liquid or gas injection sources, and also mass transfer terms. How-

ever, to properly account for gas dissolution into the liquid phase, an additional mass balance for the dissolved gas
would have to be added. Without this, the model is limited to cases where gas solubility is low or negligible.

3.1. Pressure profile
The distributed, quasi-steady pressure is obtained from (28) and the pressure boundary condition P(x=L) = PL:

P(x) = PL +

∫ x

L
S (ξ)dξ. (42)

This expression is implicit in that it is dependent on vm which is in turn dependent on EG(P), and ρG(P). To avoid
this complication a simplification should be used, e.g. by assuming vm uniform in space when calculating the pressure
profile. Essentially, what is modeled is

P(x) = PL + F(x) + G(x), (43)

where F(x),G(x) is the frictional pressure drop and hydrostatic pressure.
Let qL, qG denote the exogenous variables liquid, respectively gas, volumetric flow rates entering at the left bound-

ary. Then, one possible approximation of (4) is

S (x) ≈ −ρ̄m(x)
(
g sin θ(x) +

2 f (qG + qL)|qG + qL|

A2D

)
, (44)

ρ̄m = (ρLαL(x) + ρ̄GαG(x)), (45)

i.e. a mean approximate gas density is used. This makes the source term S explicit in the state αG and the exogenous
variables. The approximation gives good results for cases where the gas mass is small relative to the liquid mass,
αGρG � αLρL. If this assumption is not satisfied, any other approximation, explicit in the state and exogenous
variables, can be used.
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The approximation vm ≈
qG+qL

A will clearly cause an under-prediction of frictional pressure drop when there is
significant amount of gas expansion causing acceleration of the gas phase. This can to some degree be amended by
tuning the friction coefficient f in (44).

It should be noted that by discarding the transient pressure characteristics, it can be difficult to enforce certain
kinds of top side (right) boundary conditions. This is due to the fact that we no longer have characteristics traveling
from the right to the left and consequently, strictly speaking, no right boundary condition. In particular a vertical pipe
without flow at the boundaries, tending to phase separation, would be difficult to replicate (e.g. a shut-in oil and gas
well).

3.2. Boundary condition and velocity profile

Defining at the inlet (at the left boundary) vG0 ≡ vG(x=0, t), we have from (7):

vG0 =
C0

A
(qG + qL) + v∞. (46)

The left boundary condition of (41) is given as

αG(x=0, t) =
qG

AvG0
, (47)

The velocity gradient is obtained by combining (36) and (41):

∂vG

∂x
=

EG + Γ∗G − Γ∗L + ΓL/ρL

αL − α
∗
L

, (48)

=
EG + Γ∗G

αL − α
∗
L

+
1

1 − α∗L

ΓL

ρL
. (49)

Now note the relation for the gas density in (6). In the following we will limit the model to a more specific relation
of the form

ρ
γ
G

P
= C, (50)

which is obtained by assuming adiabatic gas expansion with γ the adiabatic gas constant, and C a constant. In
differential form, we can write (50) as

γρ
γ−1
G dρG = CdP, (51)

and substituting the value of C from (50), we further have:

dρG

ρG
=

dP
γP

. (52)

Note that the term γP is equivalent to the isentropic bulk modulus of an ideal gas. Eq. (52) allows us to recast (38) in
terms of the pressure profile, P(x):

EG = −
αG(1 −C0αG)

γP

(
∂P
∂t

+ vG
∂P
∂x

)
, (53)

For deriving the velocity, we neglect the ∂P
∂t term from (53). This assumption may cause transient errors in the

computed gas velocity, especially when large pressure changes occur at the boundary, e.g. due to the opening or
closing of a choke valve. Then, inserting (40) and (53), without the transient pressure term, into (49)

∂vG

∂x
=C0

(
−
αGvG

Pγ
S +

c2
G

Pγ
ΓG +

1
ρL

ΓL

)
, (54)

8



and consequently, by defining the integral

Iv(x) =

∫ x

0

C0αG(ξ)
P(ξ)γ

S (ξ)dξ, (55)

the distributed velocity is obtained as

vG(x) =e−Iv(x)
(
vG0+

C0

x∫
0

( c2
G(ζ)

P(ζ)γ
ΓG(ζ) +

1
ρL

ΓL(ζ)
)
eIvG (ζ)dζ

)
. (56)

3.3. Lumped pressure dynamics
For the case when the pressure at the topside boundary is exogenous, the equations in the previous sections give a

complete description of the simplified two-phase flow model. In many cases, however, the topside boundary pressure
(i.e. at x = L) is indirectly determined by additional dynamics, e.g. when controlling pressure with a choke valve in a
broad range of oil and gas related applications, e.g. Managed Pressure Drilling [31, 34], underbalanced drilling [44],
and hydrocarbon production [21], to name a few examples.

To model this scenario we use a lumped expression for the pressure dynamics. Considering the pipe as a single
control volume, and applying the mass conservation law:

∂PL

∂t
=
βL

V
(
qL + qG + TEG − qc

)
, (57)

with qc the volumetric flow rate through the choke, and TEG the effect of in-domain gas expansion on the lumped
pressure dynamics. The term TEG can be found by integrating the gradient of the gas velocity along the well. Including
the ∂ρG

∂t term in (38), TEG can be written as:

TEG =A
∫ L

0

EG + Γ∗G

αL − α
∗
L

+
1

1 − α∗L

ΓL

ρL
dx. (58)

We will now show that the total gas expansion, TEG , can be split into a term affecting the effective bulk modulus
of the gas-liquid mixture, β̄, and a remaining term, TXE , accounting for source terms and the gas expansion when
propagating through the negative pressure gradient.

Express the gas expansion dynamics in the principal variables:

EG = −
αG(αL − α

∗
L)

(1 − α∗L)γP

(
∂P
∂t

+ vG
∂P
∂x

)
, (59)

∂P(x, t)
∂x

= S (x), (60)

∂P(x, t)
∂t

≈
∂PL

∂t
=
βL

V
(
qL + qG + TEG − qc

)
, (61)

and consequently the TEG term can be split into a term which includes ∂PL
∂t and a remainder

TEG =TXE − A
∫ L

0

C0αG

γP
dx
∂PL

∂t
, (62)

TXE =A
(
vG(L) − vG0

)
, (63)

where we have used the fact that the remainder equals the integrated velocity gradient with the ∂ρG
∂t term excluded.

Inserting the total gas expansion (62) into the pressure dynamics (57):

∂PL

∂t
=
βL

V

(
qL + qG − qc − TXE − A

∫ L

0

C0αG

γP
dx
∂PL

∂t

)
, (64)
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Table 1: The complete Simplified Two-Phase Model

Pressure dynamics:

∂

∂t
PL(t) =

β̄(t)
V

(
qL(t) + qG(t) − qc(t) + TXE(t)

)
,

(68)

TXE(t) = A
(
vG(L, t) − vG0(t)

)
, (69)

β̄(t) ≡
βL

1 +
βL
L

∫ L

0
C0αG (x,t)
γP(x,t) dx

, (70)

Distributed dynamics:

∂

∂t
αG(x, t) + vG(x, t)

∂

∂x
αG(x, t) =

EG(x, t) + Γ∗G(x, t) − Γ∗L(x, t), (71)

αG(x=0, t) =
qG(t)

C0(qG(t) + qL(t)) + Av∞
. (72)

Γ∗G(x, t) ≡
1 −C0αG(x, t)

ρG(x, t)
ΓG(x, t), (73)

Γ∗L(x, t) ≡
C0αG(x, t)

ρL
ΓL(x, t), (74)

Closure relations:

S̄ (x, t) = −ρ̄m(x, t)
(
g sin θ(x) +

2 f (qG(t) + qL(t)|qG(t) + qL(t)|
A2D

)
,

(75)

ρ̄m = ρLαL(x, t) + ρ̄GαG(x, t), (76)

P(x, t) = PL(t) +

∫ x

L
S̄ (ξ, t)dξ, (77)

vG(x, t) =e−Iv(x,t)
(
vG0(t) + C0

x∫
0

( c2
G

P(ζ, t)γ
ΓG(ζ, t) +

1
ρL

ΓL(ζ, t)
)
eIvG (ζ,t)dζ

)
,

(78)

Iv(x, t) =

∫ x

0

C0αG(ξ, t)
P(ξ, t)γ

S̄ (ξ, t)dξ, (79)

vG0(t) ≡
C0

A
(qG(t) + qL(t)) + v∞. (80)

EG(x, t) ≡ −
αG(x, t)(1 −C0αG(x, t))

γP(x, t)

(
∂

∂t
PL(t) + vG(x, t)S̄ (x, t)

)
,

(81)

we get

∂PL

∂t

(
1 +

βL

L

L∫
0

C0αG

γP
dx

)
=
βL

V
(
qL + qG − qc + TXE

)
, (65)

hence

∂PL

∂t
=
β̄

V
(
qL + qG − qc + TXE

)
, (66)

β̄ ≡
βL

1 +
βL
L

∫ L
0

C0αG
γP dx

, (67)

where we have defined the effective bulk modulus β̄.
The complete model is restated in Table 1 for convenience.

4. Some Numerical Examples

In this section two numerical examples are considered. The first one highlights the effect of removing the pressure
dynamics, while the second numerical example illustrates the feasibility of employing the model to a typical scenario
from underbalanced drilling (described in the following).

For both scenarios we consider a 1000-meter long domain with cG = 300 m/s, ρL = 1000 kg/m3, v∞ = α∗L = 0.
The full Drift-Flux model equations (1)–(3) are implemented with the AUSM scheme of [24] and time step ∆t =

∆x/1500, while the PDE of the simplified model is implemented with a first-order upwind scheme with time step
∆t = ∆x/100 and the integrals evaluated with trapezoidal quadrature. Different time steps are used due to the different
requirements of the CFL condition with and without the inclusion of the distributed pressure dynamics. In both cases
a grid size of ∆x=1 meters are used.
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Figure 1: Shock tube test with all source terms set to zero. The pressure dynamics, discarded in the relaxed model, causes the full model to oscillate
around the trajectory of the relaxed model. With no source terms to drive the pressure dynamics to the equilibrium, these oscillations would in
theory continue indefinitely, although here the effect of numerical diffusion can be seen.

4.1. Example 1: shock tube
We initially investigate the model in a so-called shock tube scenario, see [24]. The source terms are set to zero,

corresponding to a frictionless horizontal tube, and the simulation is initialized with the domain split in half with
αG = 0.2 and αG = 0.8 for the right and left domain respectively, and with a right boundary condition of P(x=L) = 1
bar.

The simulation results are shown in Fig. 1, where the void wave can be seen propagating towards the right while
the faster pressure waves in the full DFM travel back and forth in the domain, being reflected at the boundaries. These
pressure oscillations cause perturbations in the void fraction around the nominal trajectory followed by the simplified
model.

4.2. Example 2: underbalanced drilling connection
Next we consider a scenario relevant for the potential application of the model to underbalanced drilling. In

underbalanced drilling the pressure in the lowermost section of the well (which is exposed to the reservoir) is deliber-
ately kept below the reservoir pressure thus allowing influx of fluid while drilling. While underbalanced drilling has
several benefits [11], it also entails challenges in the form of more complicated dynamic behavior due to the two-phase
flow and well-reservoir interaction [4].

When performing a pipe connection in a vertical well, the liquid injection through the drillstring (at the left
boundary) is stopped and the topside back-pressure choke valve opening is reduced so as to try to maintain a con-
stant bottom-hole pressure [44, 41]. Monitoring and controlling this operation effectively is of importance both for
maintaining reservoir and well integrity, as well as for enabling characterization of the reservoir productivity and pore
pressure while drilling [47, 45].

For this scenario, we include the lumped pressure dynamics of Section 3.3 where the flow out rate, qc, is found
from the multi-phase choke relation from [3]. On the left boundary, a constant gas injection rate is applied while the
liquid rate and choke opening are varied according to Fig. 2.

The pressure trends in Fig. 2 and void profiles in Fig. 3 show the model’s ability to qualitatively represent the
essential dynamics for control and estimation applications in this scenario. We do, however, note the following errors
and their causes:

• The steady state error in the downhole pressure P(x=0) is due to the approximated momentum source term (44),
in particular the failure of the approximation to account for the increased frictional pressure loss due to increase
in gas velocity towards the rightmost part of the domain. This error can easily be amended by tuning the friction
coefficient f .
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Figure 2: Trends of the changing exogenous variables (left) and the topside and bottom-hole pressures (right) during the connection scenario.

Figure 3: Void fraction profiles before, during and after the connection.

• A significant transient error can be seen during the time periods 5–15 minutes, and 20–30 minutes. This error
seems to be connected to the change in pressure at the right boundary which is not taken into account when the
velocity profile is computed, see (54). This means that the simplified model over- and under-predicts the gas
velocity, respectively in each of the two time periods, and this could cause the observed transient error.

These two errors are both due to the approximations done to enable the model to be cast in explicit form. For the
time scales of importance in this scenario, the discarded pressure waves do not have significant impact on the accuracy
of the results.

4.3. Discussion on simulation speed

For the underbalanced drilling connection scenario the simulation time for the full Drift-Flux model was 3630.7
seconds and for the simplified model 661 seconds, when implemented in MATLAB and run on a i7-5500U CPU @
2.40GHz.
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The slow run time of the full DFM is in large part due to the small time step that must be used to accommodate
the CFL-condition with the large eigenvalues associated with the propagation of the pressure waves. The full DFM
can also be implemented with larger time steps by employing large time step schemes such as proposed by [25], or by
treating the pressure wave propagation implicitly through using semi-implicit schemes, see e.g. [9, 14].

The usability of the simplified model becomes more apparent when implemented with a larger grid size. E.g.
by setting ∆x=20 meters the underbalanced drilling connection scenario runs in 1.56 seconds which corresponds to
2000×real-time, and with some code optimization yet faster run times would be expected. This is a very desirable
property when the model has to be run repeatedly as part of a larger numerical algorithm, such as when employed in
Model Predictive Control.

5. Summary and conclusions

In this paper we have presented a simplified two-phase flow model obtained by relaxing the distributed pressure
dynamics, equivalent to using a quasi-steady momentum balance. The resulting model is a transport equation, with
void fraction as the distributed state. The gas travels with an exponentially increasing (for negative pressure gradient),
quasi-steady velocity driven by the gas expansion, which is modeled as a source term in the transport equation. The
closure relations can be approximated as explicit functions and quadratures of the states and exogenous variables.
This enables the implementation of simple, fast and robust two-phase simulators, which is amenable for control and
estimation applications where simulation speed and robustness are of importance such as Model Predictive Control
[43] and particle filters [38].

To deal with cases where the right boundary condition is specified as a flow rate in place of a pressure, a relation is
required to describe the pressure at the boundary. This is done by assuming a lumped pressure for the whole conduit,
with dynamics modeled by an ODE coupled with the PDE. The resulting first-order ODE model describing the lumped
pressure dynamic can for some applications enable the use of established model-based algorithms in pressure control
and estimation problems, where the full DFM is too complicated [1].

Further work on this topic should deal with the following points not yet addressed:

• More elaborate phase behavior models

• Integrate the model with more accurate closure relations for the pressure drop (i.e. the momentum source term)
and the slip law.

• Improve the approximations used to make the implementation explicit.

• Handle the phenomena of phase separation in a shut-in scenario.
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