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Abstract—This paper presents an extensive analysis of the integral
line-of-sight (ILOS) guidance method for path following tasks of under-
actuated marine vehicles, operating on and below the sea surface. It is
shown that due to the embedded integral action, the guidance law makes
the vessels follow straight lines by compensating for the drift effect of
environmental disturbances such as currents, wind and waves. The ILOS
guidance is first applied to a 2D model of surface vessels that includes the
underactauted sway dynamics of the vehicle as well as disturbances in
the form of constant irrotational ocean currents and constant dynamic,
attitude dependent, forces. The actuated dynamics are not taken into
account at this point. A Lyapunov closed loop analysis yields explicit
bounds on the guidance law gains to guarantee uniform global asymptotic
stability (UGAS) and uniform local exponential stability (ULES).

The complete kinematic and dynamic closed loop system of the 3D
ILOS guidance law is analyzed next, hence extending the analysis to
underactuated AUVs for 3D straight-line path following applications in
the presence of constant irrotational ocean currents. The actuated surge,
pitch and yaw dynamics are included in the analysis where the closed
loop system forms a cascade, and the properties of UGAS and ULES
are shown. The 3D ILOS control system is a generalization of the 2D
ILOS guidance. Finally, results from simulations and experiments are
presented to validate and illustrate the theoretical results, where the 2D
ILOS guidance is applied to the CART and the LAUV vehicles.

Index Terms—Path following, LOS guidance, Nonlinear control, Un-
deractuated vessels, Experiments, CART USSV, LAUV

I. INTRODUCTION

Environmental forces and disturbances such as ocean currents,
wind and waves are often referred to as sea loads [1], and their effect
can significantly undermine maritime activities and pose serious
threats to the people involved. The unavoidable occurrence of dealing
with heavy seas and the need to guarantee ship maneuverability as
well as safety of the crew on board has lead to improved vessel hulls,
smarter navigation techniques and better meteorological forecasts.

Unmanned marine vehicles such as autonomous underwater ve-
hicles (AUVs), remotely operated vehicles (ROVs) and unmanned
surface vehicles (USV) make it possible to operate in otherwise
hazardous and inaccessible areas for humans (deep waters or under
the ice). In particular, AUVs are becoming more popular and are
starting to replace ROVs in activities such as search and rescue,
surveying and pipeline inspection [2]. The unmanned USVs are also
experiencing a significant development phase: [3] demonstrates that
cooperating USVs can perform emergency towing operations, while
in [4] a USV is used to retrieve overboard personnel.
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Most marine surface vessels are underactuated since they are
equipped with fixed stern propellers and steering rudders, or alter-
natively with azimuth thrusters only. Even when tunnel thrusters are
installed, such actuators are effective exclusively at low maneuvering
speeds [5]. Similar arguments apply to underwater vehicles: most
existing AUVs are torpedo shaped and equipped with stern propellers,
steering rudders and diving rudders only [6]. As a result, the absence
of actuation in sway/heave poses significant challenges on the control
system design side in path following and trajectory tracking scenarios,
especially when the vessel is subject to disturbances acting in the
underactuated transverse directions.

Whether on the surface or under the surface, many offshore oil
and gas activities involve path following tasks of marine vessels. Path
following is a motion control scenario where a vessel or underwater
vehicle has to follow a predefined path without any time constraints.
For a detailed discussion on the fundamental differences between
different motion control scenarios the reader is referred to [7]–[10].
A review of different approaches to path following and other control
problems of marine vehicles and vessels is given in [11], [12] where
both linear and nonlinear control strategies are used. In particular,
nonlinear control approaches have become popular since they take
into account the dominating nonlinear behavior, and reduced-state
stabilization techniques are often used to address nonlinear control
problems involving underactuated marine vessels. For instance, [13]
proposes a nonlinear controller for 2D path following tasks of 3
degrees-of-freedom (DOFs) underactuated marine vehicles. The work
of [13] is further developed in [14] and [15], where 3D and 2D path
following is considered.

Stabilizing all the DOFs of an underactuated vehicle using a
single controller is an ambitious and powerful approach since it
gives complete control over the vehicle. The work of [16] presents
one of the first solutions to the full-state stabilization problem of
underactuated 3-DOFs surface vessels. In [16], the controllers are
designed to make the vessel follow a 2D path and to stabilize the
heading dynamics. These results are improved in [17] and extended
to trajectory tracking in [18]. Motivated by [16], [19] presents a
path following control solution for a 3-DOFs underactuated marine
vehicle required to follow a straight line. These results are extended
to underactuated underwater vehicles for path following of 3D curves
in [20]. The Lyapunov direct method and backstepping techniques are
exploited for full-state stabilization of underactuated 3-DOFs surface
vessels for tracking and path following scenarios in [21], [22].

This paper focuses on the nonlinear line-of-sight (LOS) guidance
principle. The nonlinear LOS law is widely used to solve practical
path following problems of marine vehicles due to its simplicity and
intuitiveness: it imitates a helmsman steering the vessel toward a
point lying at a constant distance ahead of the ship along the desired
path. In particular, it is used in [23]–[27] for path following control
in 2D of fully actuated as well as underactuated ships. In [25] the
LOS guidance law for 3-DOFs underactuated surface vessels is tested
on a model ship but the zero dynamics and the cross-track error
dynamics are not analyzed. The work of [25] is further developed in
[28], [29]. The complete kinematic/dynamic closed loop behavior of a
LOS guidance system is analyzed in detail with a full state approach



in [26] where explicit stability conditions upon the guidance law
parameters are given. The preliminary results of [26] are validated
with experiments in [30]. The LOS guidance is used in [31] for 3D
path following control of underactuated underwater vehicles where
a full-state stabilization approach is followed to show stability. To
render the LOS guidance robust with respect to disturbances such as
ocean currents, [32] proposes a modification based on measurements
of the AUV velocity, while [33] suggests to directly control the
relative velocity of the vehicle and to estimate the necessary crab
angle. Both the contributions refer to planar motion. Planar motion
is also considered in [34], [35] where integral action is added to the
LOS reference generator to compensate for ocean currents without
the need for velocity measurements or disturbance estimators. In [35]
the possibility of spatial and temporal integral effects is mentioned,
while [34] shows convergence with an extensive mathematical full-
state stabilization approach since absolute velocities as well as
relative velocities are present in the system dynamics, forcing the
introduction of adaptive techniques, and thus increasing complexity
and weakening stability. Course control, integral action and adaptive
techniques are added to the LOS in [36], [37] and a reduced-
state stabilization approach is followed without however analyzing
the underactuated sway dynamics of the ship. Semiglobal stability
properties of LOS guidance systems are argued in [38]. The Integral
Line-of-Sight (ILOS) guidance first proposed in [34] is analyzed with
full-state stabilization and a relative velocity approach in [39] for
surface vessels (2D) and in [40] for underwater vehicles (3D). In both
cases global κ-exponential stability is shown. The results of [39] are
integrated with intuitive arguments and a robustness analysis in [41].

This paper aims to improve, extend and validate the ILOS guidance
law presented in [39]–[42] and its contributions are as follows: first
a general theoretical framework is established where both kinematic
as well as dynamic disturbances are taken into account to show that
the ILOS guidance law can handle environmental loads of different
nature and to therefore generalize the partial results given in [39]–
[42]. In this context currents and wind forces are considered, given
their significance. These results are then applied to underactuated
AUVs and, compared to [40], the stability analysis is improved
giving more precise bounds. Finally, compared to [39]–[42], an
extensive set of simulations and field experiments on the CART
surface vehicle and the LAUV vehicle are presented to validate and
illustrate the ILOS guidance concept. The paper is hence organized
in three main parts: the first (Section II) introducing the general
theoretical framework, the second (Section III) applying the results
to underactuated AUVs and the third (Section IV) showing the
simulation and the experiments. Each part has its own introduction

Finally, notice that in this paper the crab angle is defined as the
difference between the heading of the vessel and its course. In the
3D case there is hence two crab angles: the yaw crab angle in the
horizontal plane and the pitch crab angle in the vertical plane. This is
consistent with the definition of crab angle used in aeronautics [43].

II. THE UNDERACTUATED DYNAMICS IN ILOS GUIDANCE

SCHEMES

Planar motion is considered in this part of the paper and the ILOS
guidance is shown to be robust with respect to both kinematic as
well as dynamic disturbances in the underactuated sway direction. A
simplified model that includes the underactuated sway dynamics is
used to derive explicit bounds for the choice of the ILOS guidance
gains (the look ahead distance and the integral gain). Although
the model does not take into account the actuated surge and yaw
dynamics, the Lyapunov analysis is more complete than similar
kinematic or reduced-state stabilization approaches presented in [36]–
[38], [44]. Both kinematic as well as dynamic disturbances are

taken into account to show that the ILOS guidance law can handle
environmental loads of different nature. In particular, currents and
wind forces are considered in this context, given their significance
[45]–[47]. The strong stability results of uniform global asymptotic
stability (UGAS) and uniform local exponential stability (ULES), or
equivalently global κ-exponential stability [48], are shown for path
following of straight lines.

The presentation is organized as follows: in Section II-A the
model of the vessel that includes the sway dynamics is presented,
in Section II-B the integral LOS guidance law is introduced and
in Section II-C the stability properties of the closed loop system
are given. The stability analysis is given in Section II-D. Finally,
conclusions are given in Section II-E.

A. The Model of the Vessel and the Control Objective

In this section the model of the vessel that includes the sway
dynamics is presented and the control objective is defined. The
actuated surge and yaw dynamics are not taken into account.

1) The Model of the Vessel: The following simplified model is
used to describe the motion of the vessel in this part of the paper:

ẋ = cos(ψd)urd − sin(ψd)vr + Vx, (1a)

ẏ = sin(ψd)urd + cos(ψd)vr + Vy, (1b)

v̇r = X(urd)ψ̇d + Y (urd)vr + wv, (1c)

where x and y describe the position of the vessel in the inertial
frame, and vr is its relative sway velocity. The terms urd and ψd
represent the desired surge relative velocity and heading angle set by
the speed and heading controllers, respectively. The detailed surge
and yaw dynamics are not considered and hence urd and ψd are the
control inputs of (1). The functions X(ur) and Y (ur) satisfy the
following assumptions:

Assumption II.1. The functions X(ur) and Y (ur) are continuous
and bounded for bounded arguments.

Assumption II.2. Y (ur) is such that |Y (ur)| is strictly increasing for
ur > 0 and satisfies Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, Urd],
where Y min is a positive constant.

The constant current components in the inertial frame, Vx and
Vy , represent the kinematic disturbance. Notice that Vx and Vy are
bounded, i.e. there exists a Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y .
The term wv is a bias term that embodies unmodeled dynamics and
dynamic, heading dependent, disturbances caused by currents, winds
and waves. In this part of the paper, the effects of constant wind
disturbances acting in a constant direction βe ∈ [0, 2π] are considered
in wv . Hence, the term wv is:

wv , κv(γe) sin(βe − ψ), (2)

where γe = ψ − βe − π is the angle of attack of the wind, and the
function κv(γe) satisfies the following assumptions:

Assumption II.3. The function κv is bounded, periodic of class C1

with bounded first derivative. Therefore, there exists κmax
v , κ′max

v

such that κv(·) ≤ κmax
v , dκv(·)

d· ≤ κ
′max
v .

Assumption II.4. The function κv is such that, given any constants
k ∈ R and βe ∈ [0, 2π], the following bound holds for all s ∈ R:∣∣∣∣∣κv(γke )− κv(γk+s

e )

√
k2 + 1√

(s+ k)2 + 1

∣∣∣∣∣ ≤ κmax
v

|s|√
(s+ k)2 + 1

,

(3)
where γke , − tan−1(k) − βe − π and γk+s

e , − tan−1(k + s) −
βe − π.



Remark II.1. Notice that the wind load coefficients given in [45],
[46], [49] can be shown to satisfy Assumptions II.3-II.4, or can be
easily approximated with functions satisfying Assumptions II.3-II.4.

Remark II.2. Notice that there is no control input in (1c) that
can directly compensate for the sway drift nor for the dynamic
disturbance wv .

Remark II.3. A detailed description of the derivation of (1) is here
omitted since it is covered by Section III.

2) The Control Objective: The control system should make the
vessel follow a given straight line P . This should also hold in the
presence of disturbances modeled as a combination of a constant and
irrotational ocean current and a dynamic heading dependent force
acting in the underactuated sway direction. To simplify the problem
without any loss of generality since coordinates can always be rotated
given a desired direction in the plane, the inertial reference frame i
is placed such that the x-axis is aligned with the desired path P ,
{(x, y) ∈ R2 : y = 0}. The y coordinate then corresponds to the
cross-track error and the goals the control system should pursue are
formalized as follows:

lim
t→∞

y(t) = 0, (4)

lim
t→∞

ψd(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (5)

where ψss is constant. Notice that ψ(t) is not required to converge to
zero but rather to a steady-state constant value bounded within −π

2

and π
2

. In particular, the ship is required to hold a non-zero yaw angle
at equilibrium. This is necessary because the vessel is underactuated
and no control forces are available in sway to counteract the drift
forces acting in this direction. The value of ψss will be specified
later.

The relative velocity needs to be sufficiently large to guarantee
ship maneuverability in presence of disturbances. In particular, it is
shown in this paper that the following assumption guarantees path
following in presence of kinematic and dynamic disturbances acting
in any direction:

Assumption II.5. The desired constant relative surge velocity is given
by urd , Urd and satisfies the following condition:

Urd > max

{
Vmax +

5

2

∣∣∣∣ κmax
v

Y (Urd)

∣∣∣∣ , 2Vmax + 2

∣∣∣∣κmax
v + κ′max

v

Y (Urd)

∣∣∣∣
}
,

Remark II.4. It is always possible to find values of Urd satisfying
Assumption II.5, since |Y (ur)| is strictly increasing for ur > 0.

B. The Integral Line of Sight Guidance Law

The ILOS guidance law first developed in [34] is presented in
this section. The surface vessel has to converge and follow the x-
axis despite the presence of environmental disturbances. The desired
heading angle is defined by the following ILOS guidance law:

ψILOS , − tan−1
(y + σyint

∆

)
, ∆, σ > 0, (6a)

ẏint =
∆y

(y + σyint)
2 + ∆2

. (6b)

The constant design parameters ∆ and σ are the look-ahead distance
and the integral gain, respectively. The integral effect becomes
significant when disturbances push the craft away from its path. This
gives a nonzero angle (6a) and makes the vessel crab while staying
on the desired path, so that part of its relative forward velocity can
counteract the effect of the environmental disturbances, as shown in
Fig. 1. Notice that the law (6b) reduces the risk of wind-up since it
gives less integral action when the vehicle is far from P .

ψ ILOS

x

y

P Wind

 
σ y i n t

∆

ψ ss

Current

Fig. 1. Integral line of sight guidance for an underactuated surface vessel.
At steady state the nonzero angle ψss allows the underactuated vehicle to
counteract the disturbances.

C. Stability Conditions

This section presents the main result of this part, including the
stability conditions under which the proposed ILOS guidance (6)
achieves the objectives (4-5). The notation XUrd , X(Urd) and
Y Urd , Y (Urd) is used.

Theorem II.1. Given an underactuated surface vessel described by
the dynamical system (1). If Assumptions II.1-II.5 hold and, if the
look-ahead distance ∆ and the integral gain σ satisfy the conditions:

∆ >
|XUrd |
|Y Urd |Ω(σ)

[
5

4

Urd + Vmax + σ

Urd − Vmax − σ
+ 1

]
, (7)

0 < σ < Urd − Vmax −
5

2

∣∣∣∣ κmax
v

Y Urd

∣∣∣∣ , (8)

where Ω(σ) is defined as,

Ω(σ) ,
Urd − Vmax − σ

Urd − Vmax − σ − 5
2

∣∣∣ κmax
v

Y Urd

∣∣∣ , (9)

then urd , Urd and ψrd = ψILOS given by (6) guarantee achieve-
ment of the control objectives (4-5).

Remark II.5. The lower bound (7) is expected and has a clear physical
interpretation: a too short look-ahead distance ∆ > 0 makes the
vessel overshoot the target and thus causes chattering [44]. Moreover,
notice that the yaw rate ψ̇d in (1c) acts as a perturbation of the sway
dynamics. In particular, if the sway motion is only lightly damped,
i.e. if XUrd � Y Urd , then the yaw rate has a significant influence
on the sway relative velocity vr . Hence, the yaw rate must be limited
to make sure that the sway dynamics behave properly. This is done
by increasing the look-ahead distance ∆ as suggested by the lower
bound (7). A larger ∆ makes the vessel turn slower, thus smoothing
and limiting its yaw rate. The overall effect is a virtual increase
in damping in sway. In the opposite case, when XUrd � Y Urd ,
damping is higher and hence the vessel can tolerate a higher yaw
rate. In this case a shorter ∆ can be used and the vessel is capable of
more aggressive maneuvers. This confirms the analysis from [44],
[50] where it is argued that longer look-ahead distances tend to
decouple the underactuated dynamics from the actuated dynamics,
thus avoiding sway motion (sway and heave motion in 3D).

Remark II.6. The bounds (7-8) show that the disturbances Vx, Vy
and κv shrink the upper bound for σ > 0 and increase the lower
bound for ∆ > 0. These changes can be compensated by increasing
the relative velocity of the vessel Urd.



D. Proof of Theorem II.1

In this subsection the proof of Theorem II.1 is given. The proof
is inspired by [34]. The dynamics of the cross track error y and the
relative sway velocity vr have to be analyzed. The y − vr system is
obtained combining (1b), (1c) and (6b):

ẏint =
∆y

(y + σyint)
2 + ∆2

, (10a)

ẏ =Urd sin(ψd) + vr cos(ψd) + Vy, (10b)

v̇r =X(Urd)ψ̇d + Y (Urd)vr + κv(γe) sin(βe − ψd). (10c)

Since sin(ψd) = −(y+ σyint)/
√

(y + σyint) + ∆2 and cos(ψd) =
∆/
√

(y + σyint) + ∆2, (10) becomes:

ẏint =
∆y

(y + σyint)
2 + ∆2

, (11a)

ẏ = −Urd
y + σyint√

(y + σyint)2 + ∆2
+

∆√
(y + σyint)2 + ∆2

vr + Vy,

(11b)

v̇r = X(Urd)ψ̇d + Y (Urd)vr + κv(γe) sin(βe − ψd). (11c)

The calculation of the equilibrium point of the system (10) yields the
following equation:

s
√
s2 + 1 =

Vy
Urd

s2 +
cos(βe)s+ sin(βe)

Urd|Y Urd |
κeq
v (s) +

Vy
Urd

, (12)

where s , σyeq
int/∆ and yeq

int is the value of yint at equilibrium. The
term κeq

v (s) is defined as the value of κv(γe) at equilibrium, i.e. when
γe = γeq

e , − tan−1(s) − βe − π. The equilibrium point equation
(12) is a generalized case of similar equations found in [40]–[42],
[51]. It has to be shown that (12) has a unique real solution to have
a single equilibrium point. The following Lemma gives the sufficient
conditions for (12) to have a unique real solution:

Lemma II.1. If Assumptions II.3 and II.5 hold, then (12) has exactly
one real solution s = σyeq

int/∆.

Proof. The proof of Lemma II.1 is given in Appendix A.
At equilibrium yeq = 0 while yeq

int and veq
r are constant values

where yeq
int is the unique solution of (12) and veq

r relates to yeq
int as:

veq
r = Urd

σyeq
int

∆
− Vy

√(
σyeq

int

∆

)2

+ 1 (13)

The heading angle held by the vessel at steady-state is then
ψss , − tan−1 (σyeq

int/∆). A new set of variables is introduced to
move the equilibrium point to the origin:

e1 , yint−yeq
int, (14) e2 , y+σe1, (15) e3 , vr − veq

r . (16)

Taking the time derivatives of (14-16) and using (11), and (13) the
transformed dynamics become:

ė1 =
∆(e2 − σe1)

(e2 + σyeq
int)

2 + ∆2
, (17a)

ė2 = − σ2∆e1

(e2 + σyeq
int)

2 + ∆2
+

∆e3√
(e2 + σyeq

int)
2 + ∆2

−

[
Urd −

σ∆√
(e2 + σyeq

int)
2 + ∆2

]
e2√

(e2 + σyeq
int)

2 + ∆2

+ Vyf(e2),

(17b)

ė3 = X(Urd)ψ̇d + Y (Urd)e3 +
κv(γe) cos(βe)e2√
(e2 + σyeq

int)
2 + ∆2

+ sin(ψss − βe)g(e2),

(17c)

where f(e2) is defined as:

f(e2) , 1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

, (18)

and g(e2) is defined as:

g(e2) , κeq
v − κv(γe)

√
(σyeq

int)
2 + ∆2√

(e2 + σyeq
int)

2 + ∆2
. (19)

Notice that the following bound holds for f(e2):

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

. (20)

One can prove that (20) holds by squaring both sides of the inequality
two consecutive times. Furthermore, as a direct consequence of
Assumption II.4, the following bound holds for g(e2):

|g(e2)| ≤ κmax
v

|e2|√
(e2 + σyeq

int)
2 + ∆2

. (21)

Now, substituting for ψ̇d in (17c) by taking the time derivative of (6a)
and inserting the derivatives given by (17a-17b), yields the following
form for the system (17):[

ė1
ė2
ė3

]
= A1(e2)

[ e1
e2
e3

]
+B1(e2). (22)

A1(e2) is given in (24) while B1(e2) is:

B1(e2) ,

[ 0
Vyf(e2)

− ∆XUrdVy

(e2+σy
eq
int

)2+∆2 f(e2)+sin(ψss−βe)g(e2)

]
. (23)

Lemma II.2 states the stability properties of (22):

Lemma II.2. Under the conditions of Theorem II.1, the system (22)
is UGAS and ULES.

Proof. The proof of Lemma II.2 is given in Appendix B.
Lemma II.2 concludes UGAS and ULES stability for the origin of
(22). It is hence possible to conclude that the control objectives (4-5)
are achieved with exponential convergence properties in any ball of
initial conditions. This is further elaborated on in the analysis in [52]
which formally proves that the system is USGES.
Remark II.7. Notice that the UGAS and ULES stability properties
of (22) provides this system with a certain robustness with respect
to perturbations [53, Lemma 9.1]. This makes the ILOS guidance
law (6) potentially very reliable under Assumptions II.1-II.5. Such
robustness with respect to perturbations is exploited in the following
part where the actuated dynamics are added into the analysis yielding
cascaded configurations.
Remark II.8. The value yeq

int makes sure that, at equilibrium, the
vessel holds the heading ψss = − tan−1(σyeq

int/∆) which is the
only real solution of (12), i.e. ψss is the only possible heading that
guarantees path following and compensates for the disturbances.

E. Conclusions

In this part of the paper explicit bounds for the choice of the
look-ahead distance and the integral gain of the ILOS guidance
scheme have been derived by including the underactuated dynamics
into the Lyapunov analysis. Disturbances in the form of constant
irrotational ocean currents and constant dynamic, attitude dependent,
forces have been also taken into account, while the actuated dynamics
have not been considered. The stability analysis reveals UGAS
and ULES stability properties for the guidance closed loop system.
This guarantees that the guidance closed loop system has a certain
robustness with respect to perturbations. Such robustness with respect
to perturbations is exploited in the following section were the actuated
dynamics are added into the analysis in a cascaded configuration.



A1(e2) ,


− σ∆

(e2+σy
eq
int)2+∆2

∆
(e2+σy

eq
int)2+∆2 0

− σ2∆
(e2+σy

eq
int)2+∆2 − Urd√

(e2+σy
eq
int)2+∆2

+ σ∆
(e2+σy

eq
int)2+∆2

∆√
(e2+σy

eq
int)2+∆2

σ2∆2XUrd

((e2+σy
eq
int)2+∆2)2

Urd∆XUrd

((e2+σy
eq
int)2+∆2)3/2 − σ∆2XUrd

((e2+σy
eq
int)2+∆2)2

+ κv(γe) cos(βe)√
(e2+σy

eq
int)2+∆2

Y Urd − ∆2XUrd

((e2+σy
eq
int)2+∆2)3/2

 (24)

III. PATH FOLLOWING CONTROL OF UNDERACTUATED AUVS IN

THE PRESENCE OF OCEAN CURRENTS

In this part of the paper a 3D version of the ILOS guidance law
is presented and the sway and heave underactuated dynamics as well
as the surge, pitch and yaw actuated dynamics are included in the
analysis of the closed loop system. The results from Section II are
hence extended to underactuated AUVs for 3D straight line path
following applications in the presence of constant irrotational ocean
currents, acting in any direction of the inertial frame. The 3D ILOS
guidance law with integral action in both the vertical and horizontal
directions is shown to solve the task together with three feedback
controllers in a cascaded configuration. The dynamics of the AUV
are expressed in terms of its relative velocity, that is the velocity of
the vessel with respect to the water. This is possible since the current
is assumed constant and irrotational in the inertial frame [10], [54].
The closed loop stability analysis shows UGAS and ULES for the
origin of the closed loop system, and explicit bounds on the guidance
law parameters are given to guarantee stability.

The following sub-sections are organized as follows: Section III-A
presents the model of the vehicle and Section III-B identifies the
control objective. Section III-C presents the strategy that solves
the path following task defined in Section III-B. The main result
including the stability conditions is given in Section III-D and proven
in Section III-E. Conclusions are given in Section III-F.

A. The Control Plant Model

1) Model Assumptions:

Assumption III.1. The body-fixed coordinate frame b is located in a
point (x∗g, 0, 0) from the vehicle’s center of gravity (CG) along the
center-line of the vessel, where x∗g is to be defined later.
Assumption III.2. The roll motion is passively stabilized through fins
or by gravity and therefore can be neglected. Hence, the motion of
the vehicle is described in 5 degrees of freedom (DOF), that is surge,
sway, heave, pitch and yaw.
Assumption III.3. The vehicle is neutrally buoyant and the center of
gravity (CG) and the center of buoyancy (CB) are located along the
same vertical axis in b.
Assumption III.4. The AUV is xz plane symmetric and has a large
length-to-width ratio.
Assumption III.5. The surge mode is decoupled from the other
degrees of freedom and only dominating interconnections between
sway and yaw, and between heave and pitch are considered.
Remark III.1. Assumptions III.2, III.3, III.4 and III.5 are common
assumptions in maneuvering control of slender body AUVs [10].
They also hold for the LAUV and HUGIN vehicles [31], [55].
Assumption III.6. The hydrodynamic damping is considered linear.
Remark III.2. For low speed maneuvering, Assumption III.6 is a mild
assumption as any non-linear damping should enhance the directional
stability of the vehicle due to the passive nature of the hydrodynamic
damping forces.
Assumption III.7. The ocean current in the inertial frame i,
V c , [Vx, Vy, Vz]

T , is constant, irrotational and bounded. Hence,
there exists a Vmax > 0 such that Vmax ≥

√
V 2
x + V 2

y + V 2
z .

2) The Vehicle Control Model: Following Assumption III.2 the
state of the underwater vehicle is given by the vector η ,
[x, y, z, θ, ψ]T which describes the position and the orientation of
the AUV with respect to the inertial frame i. In particular, θ
is the vehicle pitch angle and ψ is the vehicle yaw angle. The
vector ν , [u, v, w, q, r]T contains the linear and angular veloc-
ities of the vehicle defined in the body-fixed frame b where u
is the surge velocity, v is the sway velocity, w is the heave
velocity, q is the pitch rate and r is the yaw rate. According to
Assumption III.7 the ocean current is irrotational in i and its velocity
in the body frame b, νc , [uc, vc, wc, 0, 0]T , is obtained from
[uc, vc, wc]

T = RT (θ, ψ)V c where R(θ, ψ) is the rotation matrix
from b to i, defined using the zyx convention [10]. Furthermore, the
fact that V̇ c = 0 gives ν̇c = [rvc − qwc,−ruc, quc, 0, 0]T . Also
for the AUV case it is useful to introduce the relative velocity,
defined as the velocity of the vehicle with respect to the flow:
νr , ν − νc = [ur, vr, wr, q, r]

T . The vector νr is defined in b
where ur is the relative surge velocity, vr is the relative sway velocity
and wr is the relative heave velocity. It is shown in [10] that since the
ocean current is constant and irrotational in i, the underwater vehicle
can be described by the following 5-DOF maneuvering model:

η̇ = J(η)νr + [V T
c , 0, 0]T , (25)

Mν̇r +C(νr)νr +Dνr + g(η) = Bf . (26)

The vector f , [Tu, Tq, Tr]
T is the control input vector, containing

the surge thrust (Tu), the pitch rudder angle (Tq) and the yaw
rudder angle (Tr). The dimension of the control input vector f
is two less than the DOFs of the vessel, therefore the model (26)
is underactuated in its configuration space. The term J(η) is the
velocity transformation matrix defined as;

J(η) ,
[
R(θ,ψ) 0

0 T (θ)

]
, (27)

where T (θ) , diag(1, 1/ cos(θ)), |θ| 6= π
2

.

Remark III.3. Given the singularity in θ, the open loop system (25-
26) can be considered as stabilizable forward-complete [56] since
the global stability results refer to the closed loop system, where no
singularity is present (Section III-E).

The matrix M = MT > 0 is the mass and inertia matrix, and
includes hydrodynamic added mass. The matrix C is the Coriolis
and centripetal matrix, D > 0 is the hydrodynamic damping
matrix and B ∈ R5×3 is the actuator configuration matrix. Fol-
lowing Assumption III.3, the gravity vector in CG can be written
as g(η) , [0, 0, 0, BGzW sin(θ), 0]T , where BGz is the vertical
distance between CG and CB, and W is the weight of the vehicle.
For manoeuvring control purposes, the matrices R(θ, ψ), M , D and
B are:

R ,

[
cψcθ −sψ cψsθ
sψcθ cψ sψsθ
−sθ 0 cθ

]
, D ,

 d11 0 0 0 0
0 d22 0 0 d25
0 0 d33 d34 0
0 0 d43 d44 0
0 d52 0 0 d55

 ,
B ,

 b11 0 0
0 0 b23
0 b32 0
0 b42 0
0 0 b53

 , M ,

m11 0 0 0 0
0 m22 0 0 m25
0 0 m33 m34 0
0 0 m34 m44 0
0 m25 0 0 m55

 ,
(28)



where s· , sin(·) and c· , cos(·). The Coriolis and centripetal
matrix C is obtained from M as described in [10]. The particular
structure of M and D is justified by Assumptions III.2-III.6. The
actuator configuration matrix B has full column rank and maps
the control inputs Tu, Tq and Tr into forces and moments acting
on the vessel. Finally, x∗g from Assumption III.1 is chosen so that
M−1Bf = [τu, 0, 0, τq, τr]

T . The point (x∗g, 0, 0) exists for all
AUVs of cylindrical shape employing symmetric steering and diving
control surfaces [31], [57].

Remark III.4. The model used in [57] contains the velocity vector
ν as well as the relative velocity vector νr . This complicates the
controller design and weakens the cascade configuration, resulting
in weaker stability properties. The model (25-26) overcomes the
problem.

3) The Model in Component Form: To solve nonlinear underactu-
ated control design problems it is convenient to expand (25-26) into:

ẋ = urcψcθ − vrsψ + wrcψsθ + Vx, (29a)

ẏ = ursψcθ + vrcψ + wrsψsθ + Vy, (29b)

ż = −ursθ + wrcθ + Vz, (29c)

θ̇ = q, (29d)

ψ̇ = r/cθ, (29e)

u̇r = Fur (vr, wr, r, q)− (d11/m11)ur + τu, (29f)

v̇r = Xvr (ur)r + Yvr (ur)vr, (29g)

ẇr = Xwr (ur)q + Ywr (ur)wr + Zwr sθ, (29h)

q̇ = Fq(θ, ur, wr, q) + τq, (29i)

ṙ = Fr(ur, vr, r) + τr. (29j)

The expressions Fur , Xvr , Yvr , Xwr , Ywr , Zwr , Fq and Fr are
given in Appendix C. Notice that the functions Xvr (ur), Xwr (ur),
Yvr (ur) and Ywr (ur) are bounded for bounded arguments. An
additional key assumption is introduced:

Assumption III.8. The functions Yvr (ur) and Ywr (ur) satisfy:

Ya(ur) ≤ −Y min
a < 0, ∀ur ∈ [−Vmax, Urd], a ∈ {vr, wr}.

Remark III.5. Assumption III.8 is justified by the following contra-
diction: Yvr (ur) ≥ 0 and Ywr (ur) ≥ 0 would imply an undamped or
nominally unstable vehicle in sway and heave which is not the case
in practice [31]. This assumption is thus linked to the straight-line
stability properties of the AUV. Notice that no bounds are implied
on ur while Urd > 0 will be defined later.

B. The Control Objective

The control system should make the vehicle follow a given straight
line P and maintain a desired constant surge relative velocity Urd > 0
in the presence of unknown constant and irrotational ocean currents.
The inertial reference frame i is placed such that the z-axis points
down and the x-axis is aligned with the desired path P as shown
in Fig. 2. This simplifies the control problem without any loss of
generality. The desired path P is then defined as P , {(x, y, z) ∈
R3 : y = 0, z = 0}. Hence, the y and z coordinates of the vehicle
correspond to the horizontal and vertical cross-track errors and the
objectives the control system should pursue can be formalized as:

lim
t→∞

y(t) = 0,

(30)
lim
t→∞

z(t) = 0,

(31)

lim
t→∞

ψ(t) = ψss,

(32)
lim
t→∞

θ(t) = θss,

(33)
lim
t→∞

ur(t) = Urd,

(34)
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Fig. 2. Integral line of sight guidance for an underactuated underwater vehicle,
in this case ∆y = ∆z = ∆. At steady state the angles ψss and θss allow
the underactuated AUV to counteract the current.

where θss ∈
(
−π

2
, π

2

)
as well as ψss ∈

(
−π

2
, π

2

)
are constants. The

yaw angle ψ(t) and the pitch angle θ(t) are not required to converge
to zero but rather to steady-state constant values since the AUV is
required to pitch and crab in order not to drift away. The values of
ψss and θss will be specified later.

Remark III.6. Notice that non horizontal motion can also be consid-
ered. Non horizontal motion affects the the gravity vector g(η) where
gravity is represented by the term Zwr sin(θ) in (29h). In particular,
this term is seen as an additional bounded constant disturbance in
heave that the guidance system compensates for as well (see Section
III-E).

Remark III.7. In this paper the AUV is required to hold a constant
surge relative velocity Urd as stated in (34), while in [34] and [57]
the vehicle is required to follow P with a constant speed Ud > 0.
The path following speed is therefore not directly controlled but
results instead from the relative speed and the current velocity. Even
if this is not ideal for speed profile planning/tracking scenarios,
controlling the relative velocity of the vessel gives direct control over
the energy consumption, since the hydrodynamic damping depends
on νr , and any lift forces due to transom stern effects. Furthermore,
relative velocity control removes the unknown term νc from the
velocity feedback loop. The relative velocity νr is measurable via,
for example, a Doppler velocity log (DVL) [58].

Finally, the desired relative surge velocity needs to be sufficiently
large compared to the ocean current velocity in order to guarantee
maneuverability of the AUV. It is later shown that the particular bound
given in Assumption III.9 allows the AUV to achieve path following
for currents acting in any direction of the 3D space:

Assumption III.9. The desired constant relative surge velocity Urd
satisfies the following condition:

Urd > max

{
Vmax +

5

2

∣∣∣∣ Zwr
Ywr (Urd)

∣∣∣∣ , 2Vmax + 2

∣∣∣∣ Zwr
Ywr (Urd)

∣∣∣∣
}
,

Remark III.8. It is always possible to find values of Urd satisfying
Assumption III.9, since |Ywr (ur)| is strictly increasing for ur > 0.

C. The Control System

In this section a control strategy to solve the control problem
defined in Section III-B is proposed. First, the LOS guidance law
is introduced and then the surge, pitch and yaw controllers from [40]
are added in a cascaded configuration.



1) Path Following Control Strategy: The integral LOS guidance
law from [40] is chosen to set the heading and pitch angles, and
make the AUV converge and follow the x-axis in presence of ocean
currents:

θILOS , tan−1

(
z + σzzint

∆z

)
,

(35a)

żint =
∆zz

(z + σzzint)
2 + ∆2

z

,

(35b)

ψILOS , − tan−1

(
y + σyyint

∆y

)
,

(35c)

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

,

(35d)

where the look-ahead distances in the vertical and horizontal planes
∆z > 0 and ∆y > 0, as well as the integral gains σy > 0 and
σz > 0, are constant design parameters. A graphical explanation
of the integral LOS is given in Fig. 2. The guidance law (35) is
a 3D extension of the (6) guidance law and a detailed discussion
of the properties of the ILOS guidance law is given in Section II-B.
Finally, notice that the controller has the minimum number of integral
actions to guarantee the achievement of (30-34) since there are three
regulated outputs (y(t), z(t) and ur(t)), three unknown terms (Vx,
Vy and Vz) and two integrators (35b, 35d).

2) The Surge, Pitch and Yaw Controllers: According to (34), the
relative surge velocity of the vessel ur should follow the desired value
urd(t) = Urd. Therefore, to track urd(t) the following controller is
used:

τu = −Fur (vr, wr, r, q) +
d11

m11
urd + u̇rd − kur (ur − urd). (36)

The gain kur > 0 is constant. The controller (36) is a feedback
linearizing P-controller that in a closed loop configuration with (29f)
guarantees exponential tracking of urd(t). Damping is not canceled
to provide some robustness with respect to model uncertainties. The
following controller is used to track the desired pitch angle θd ,
θILOS:

τq = −Fq(θ, ur, wr, q) + θ̈d − kθ(θ − θd)− kq(θ̇ − θ̇d), (37)

where kθ, kq > 0 are constant gains. The controller (37) is a feedback
linearizing PD controller that in a closed loop configuration with
(29d)-(29i) makes sure that θ and q exponentially track θd and θ̇d
respectively. Finally, the following feedback linearizing PD-controller
is used to track the desired yaw angle ψd , ψILOS:

τr =− Fr(ur, vr, r)− q sin(θ)ψ̇

+ cos(θ)
[
ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d)

]
.

(38)

The parameters kψ, kr > 0 are constant gains and the yaw control
law (38), in a closed loop configuration with (29e)-(29j), guarantees
exponential convergence of ψ and ψ̇ to ψd and ψ̇d respectively.

Remark III.9. The controllers (36), (37) and (38) are feedback lin-
earizing controllers, hence if the model suffers from high uncertainty
other approaches should be considered. It can be seen in the following
stability analysis that any control law that gives UGES or UGAS and
ULES of the fully actuated dynamics will give the derived stability
result.

Remark III.10. The closed loop system given by the controller (38)
in combination with (29e)-(29j) does not have singularities since the
limits of cos(θ)/ cos(θ) and cos2(θ)/ cos2(θ) for θ → π/2 + kπ
exist and equal 1 [31]. Hence, the open loop system (25-26) can be
considered as stabilizable forward complete [56].

D. Stability Conditions

This section presents the main result of this chapter, including the
conditions under which the proposed control law achieves (30-34).

The abbreviations XUrd
a , Xa(Urd) and Y Urda , Ya(Urd) are used,

where a ∈ {vr, wr}.

Theorem III.1. Given an underactuated underwater vehicle de-
scribed by the dynamical system (29). If Assumptions III.7-III.9 hold
and if the look-ahead distances ∆y , ∆z satisfy the conditions:

∆y >
|XUrd

vr |
|Y Urdvr |

[
5

4

Γmax + Vmax + σy
Γinf − Vmax − σy

+ 1

]
, (39)

∆z >
|XUrd

wr |
|Y Urdwr |

ρ(σz)

[
5

4

Urd + Vmax + σz
Urd − Vmax − σz

+ 1

]
, (40)

where the integral gains σy , σz satisfy:

0 <σy < Γinf − Vmax, (41)

0 < σz <Urd − Vmax −
5

2

∣∣∣∣ Zwr
Y
Urd
wr

∣∣∣∣ , (42)

then the controllers (36-38) and the guidance law (35) with
urd(t) = Urd guarantee achievement of the control objectives
(30-34). The control objectives (32-33) are fulfilled with ψss =
− tan−1

(
Vy/
√

Γ(s)2 − V 2
y

)
and θss = tan−1 (s).

Remark III.11. The constant s is defined in Section III-E. The con-
stants Γmax, Γinf and the functions Γ(s), ρ(σz) are given in (43-45).
It is shown in Section III-E that s is such that Γinf < Γ(s) ≤ Γmax.
Notice that Γinf > 0 as long as Assumption III.9 is satisfied.

Γ(s) ,Urd
1√

s2 + 1
− Zwr

Y
Urd
wr

s2

s2 + 1
, (43)

Γinf ,
3

5

[
Urd −

∣∣∣∣ Zwr
Y
Urd
wr

∣∣∣∣] , Γmax , Urd, (44)

ρ(σz) ,
Urd − Vmax − σz

Urd − Vmax − σz − 5
2

∣∣∣∣ ZwrY
Urd
wr

∣∣∣∣ . (45)

E. Proof of Theorem III.1

The actuated dynamics (29f), (29i) and (29j) of the AUV in closed
loop configuration with the controllers (36-38) are considered first.
Given the vector ζ , [ũr, θ̃,

˙̃
θ, ψ̃,

˙̃
ψ]T where ũr , ur − Urd, θ̃ ,

θ − θd, ˙̃
θ , θ̇ − θ̇d, ψ̃ , ψ − ψd and ˙̃

ψ , ψ̇ − ψ̇d, the dynamics
of ζ are obtained by combining the system equations (29d), (29e),
(29f), (29i) and (29j) with the control laws (36-38):

ζ̇ =

−kur−
d11
m11

0 0 0 0

0 0 1 0 0
0 −kθ −kq 0 0
0 0 0 0 1
0 0 0 −kψ −kr

 ζ , Σζ. (46)

The system (46) is linear and time-invariant. Furthermore, the gains
kur , kθ , kq , kψ , kr and the term d11

m11
are all strictly positive.

Therefore the matrix Σ is Hurwitz and the origin ζ = 0 of (46)
is UGES. Hence, u(t)→ urd(t), θ(t)→ θd(t) and ψ(t)→ ψd(t)
exponentially. As a result, the control goal (34) is achieved with
exponential converging properties in any ball of initial conditions.

The dynamics of the cross track error z and the relative heave
velocity wr are analyzed next. The z − wr subsystem is obtained
combining (29c), (29h) and (35b):

żint =
∆zz

(z + σzzint)
2 + ∆2

z

, (47)

ż = −ur sin(θ̃ + θd) + wr cos(θ̃ + θd) + Vz, (48)

ẇr = Xwr (ũr + Urd)(
˙̃
θ + θ̇d) + Ywr (ũr + Urd)wr

+ Zwr sin(θ̃ + θd).
(49)



The calculation of the equilibrium point of the system (47-49) on the
manifold ζ = 0 yields the following equation:

s
√
s2 + 1 =

Vz
Urd

s2 − Zwr

UrdY
Urd
wr

s+
Vz
Urd

, (50)

where s , σzz
eq
int/∆z and zeq

int is the value of zint at equilibrium.
It has to be shown that (50) has a unique real solution to have a
single equilibrium point. The following Lemma gives the sufficient
conditions for (50) to have a unique real solution:

Lemma III.1. If Assumption III.9 holds then (50) has exactly one
real solution s = σzz

eq
int/∆z .

Proof. Equation (50) is a simplification of (12). Therefore, applying
Lemma III.1 from Appendix A, it is possible to conclude that (50)
has a unique real solution.

At equilibrium zeq = 0 while zeq
int and weq

r are constant values
where zeq

int is the unique solution of (50) and weq
r relates to zeq

int as:

weq
r = Urd

σzz
eq
int

∆z
− Vz

√(
σzz

eq
int

∆z

)2

+ 1. (51)

The pitch angle held by the AUV at steady state is then θss =
tan−1(s) = tan−1(σzz

eq
int/∆z). Before proceeding with the analysis

of the system (47-49) another consequence of Assumption III.9 is
considered. As long as Assumption III.9 is satisfied, the following
bound holds:∣∣∣∣ VzUrd s2 − Zwr

UrdY
Urd
wr

s+
Vz
Urd

∣∣∣∣ < 1

2

(
s2 + |s|+ 1

)
. (52)

It is seen that a bound ssup > |s| can be found by setting the upper
bound (52) equal to |s

√
s2 + 1|:∣∣∣ssup

√
ssup

2 + 1
∣∣∣ =

1

2

(
ssup

2 + |ssup|+ 1
)
. (53)

Solving (53) for ssup > 0 gives the only accepted real positive
solution ssup ≈ 1.13. Therefore, it is straightforward to verify that
Γinf < Γ(ssup) ≤ Γ(s), where Γinf and Γ(s) were defined in (43-
44). At this point a new set of variables is introduced to move the
equilibrium of (47-49) to the origin:

ez1 , zint − zeq
int, ez2 , z + σzez1, ez3 , wr − weq

r . (54)

Substituting (35a) for θd, factorizing the result with respect to ζ and
applying the transformation (54) leads to the following transformed
interconnected dynamics:[

ėz1
ėz2
ėz3

]
= A2(ez2)

[ ez1
ez2
ez3

]
+B2(ez2) +H2(z, zint, θd, wr, ζ)ζ,

(55a)

ζ̇ = Σζ. (55b)

The matrix H2 contains all the terms vanishing at ζ = 0.
A2(ez2) is given in (99) of Appendix C while B2(ez2) and
H2(z, zint, θd, wr, ζ) are:

B2 ,

 0
Vzf(ez2)

∆zX
Urd
wr Vzf(ez2)

(ez2+σzz
eq
int

)2+∆2
z
−Zwr

s√
s2+1

f(ez2)

 , (56)

H2 ,

[
0 0
1 0

∆zXwr (ũr+Urd)

(ez2+σzz
eq
int

)2+∆2
z

1

][
hTz
hTwr

]
, (57)

The function g(ey2) is identical to f(ey) given in (18) and
thus the bound (20) applies. The vectors hz(θd, wr, ζ) and
hwr (z, zint, θd, wr, ζ) are given in Appendix C. The system (55) is
a cascaded system, where the linear UGES system (55b) perturbs

the dynamics (55a) through the interconnection matrix H2. The
following Lemma states the stability properties of the cascade (55):

Lemma III.2. Under the conditions of Theorem III.1, the origin of
the system (55) is UGAS and ULES.

Proof. Consider the nominal system defined on ζ = 0:[
ėz1
ėz2
ėz3

]
= A2(ez2)

[ ez1
ez2
ez3

]
+B2(ez2). (58)

The system (58) is equivalent to the system (22). Therefore, ap-
plying of Lemma II.2 from Appendix B it is possible to con-
clude UGAS and ULES for the origin og the system (58).
Moreover, since the perturbing system (55b) is UGES and the
interconnection matrix H2(z, zint, θd, wr, ζ) can be shown to
satisfy ‖H2 ‖≤ δ1(‖ ζ ‖)(|z|+ |zint|+ |wr|) + δ2(‖ ζ ‖), where
δ1(·) and δ2(·) are some continuous non-negative functions, applying
[59, Theorem 2] and [60, Lemma 8] it is possible to conclude UGAS
and ULES for the cascaded system (55).

According to Lemma III.2, under the conditions of Theorem III.1,
the origin of the system (55) given by (ez1, ez2, ez3, ζ) = (0, 0, 0,0)
is UGAS and ULES. Hence, the control objectives (31) and (33)
are achieved with exponential converging properties with θss = θ∗ss
and χ , [ez1, ez2, ez3, ζ

T ]T is a vector of exponentially converging
signals.

Finally, the y − vr subsystem is considered. The AUV dynamics
and kinematics form a cascaded system where (55) perturbs the y
cross-track error. The y−vr subsystem is obtained from (29b), (29g)
and (35d):

ẏint =
∆yy

(y + σyyint)
2 + ∆2

y

, (59)

ẏ = ur cos(θ̃ + θd) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd)

+ wr sin(ψ̃ + ψd) sin(θ̃ + θd) + Vy,
(60)

v̇r = Xvr (ũr + Urd)(
˙̃
ψ + ψ̇d) cos(θ̃ + θd)

+ Yvr (ũr + Urd)vr.
(61)

The equilibrium point of the system (59-61) on the manifold χ = 0
is:

yeq
int =

∆y

σy

Vy√
Γ(s)2 − V 2

y

, yeq = 0, veq
r = 0, (62)

where Γ(s) is defined in (43). Therefore, a new set of variables is
introduced to move the equilibrium point to the origin: ey1 , yint−
yeq

int and ey2 , y+σyey1. Substituting (35a) and (35c) for θd and ψd,
factorizing the result with respect to χ and moving the equilibrium
point to the origin yields the following interconnected dynamics:[
ėy1

ėy2

v̇r

]
=A3(ey2)

[ ey1
ey2
vr

]
+B3(ey2) +H3(y, yint, θd, ψd, vr,χ)χ,

(63a)

χ̇ =
[
A2(ez2) H2(z,zint,θd,wr,ζ)

0 Σ

]
χ+

[
B2(ez2)

0

]
. (63b)

The term H3 contains all the terms vanishing at χ = 0.
A3(ey2) is given in (100) of Appendix C while B3(ey2) and
H3(y, yint, θd, ψd, vr,χ) are defined as:

B3 ,

 0
Vyg(ey2)

− 1√
s2+1

∆yX
Urd
vr Vy

(ey2+σyy
eq
int

)2+∆2
y
g(ey2)

 , (64)

H3 ,

[
0 0
1 0

−∆yXvr (ũr+Urd) cos(θ̃+θd)

(ey2+σyy
eq
int

)2+∆2
y

1

][
hTy

hTvr

]
. (65)

The function g(ey2) is identical to f(ey) given in (18) and
thus the bound (20) applies. The vectors hy(θd, ψd, vr,χ) and
hvr (y, yint, θd, ψd, vr,χ) are given in Appendix C. The system (63)



is a cascaded system, where the UGAS and ULES system (63b)
perturbs the dynamics (63a) through H3. The next lemma states the
stability properties of (63).

Lemma III.3. Under the conditions of Theorem III.1, the origin of
the system (63) is UGAS and ULES.

Proof. Consider the nominal system:[
ėy1

ėy2

v̇r

]
= A3(ey2)

[ ey1
ey2
vr

]
+B3(ey2). (66)

The system (66) is similar to the system (22). The only dif-
ference is the presence of the unknown constants Γ(s) and s.
Nevertheless, the bounds 0 < Γinf < Γ(s) ≤ Γmax from (43-44),
1/
√
s2 + 1 < 1 and |s|/

√
s2 + 1 < 1 are available. Therefore,

applying Lemma II.2 from Appendix B it is possible to conclude
UGAS and ULES for the origin of the system (66). Finally, the
cascaded system (63) is considered. The perturbing system (63b)
is UGAS and ULES, as proved in Lemma III.2. Furthermore the
interconnection matrix H3(y, yint, θd, ψd, vr,χ) can be shown to
satisfy ‖H3 ‖≤ δ3(‖ χ ‖)(|y|+ |yint|+ |vr|) + δ4(‖ χ ‖), where
δ3(·) and δ4(·) are some continuous non-negative functions. There-
fore, applying [59, Theorem 2] and [60, Lemma 8] it is possible
conclude UGAS and ULES for the cascaded system (63).

According to Lemma III.3, under the conditions of Theorem III.1,
the origin of the system (63), given by (ey1, ey2, vr,χ) = (0, 0, 0,0),
is UGAS and ULES. Therefore, the control objectives (30) and (32)
are achieved and ψss = − tan−1

(
Vy/
√

Γ(s)2 − V 2
y

)
.

Remark III.12. Notice that the results in Theorem III.1 also hold for
underactuated surface vessels taking the full kinematic and dynamic
equations into consideration. In particular, by defining z = θ = wr =
q = 0, the 3D AUV dynamics becomes the 2D USV dynamics given
in [39]. The integral LOS guidance law is then given by (35c,35d),
and the conditions on its parameters by (39,41). Following the proof
of Theorem III.1 for the reduced system, it is seen that the closed-loop
system is UGAS and ULES and that the control objectives (30,32,34)
are fulfilled with ψss = − tan−1

(
Vy/
√
U2
rd − V 2

y

)
.

F. Conclusions

In this section a control strategy for path following of under-
actuated AUVs in presence of constant irrotational ocean currents
acting in any direction of the inertial frame has been developed. It is
based on a modified LOS guidance law with integral action in both
the vertical and horizontal directions. The three dimensional integral
LOS is combined with three feedback controllers in a cascaded
configuration and the full kinematic-dynamic closed loop system is
analyzed using Lyapunov techniques and nonlinear cascaded systems
theory. In particular, the analysis gives explicit conditions on the
control design parameters to guarantee UGAS and ULES stability.

IV. SIMULATIONS AND EXPERIMENTS

This last part of the paper presents the results of sea trials where
the 2D ILOS guidance law from Section II-B is applied to the CART
surface vehicle as well as to the LAUV underwater vehicle. The
CART unmanned semi-submersible vehicle (USSV) is a 0.9 [m] long
and 0.75 [m] wide robotic platform developed by CNR-ISSIA for
emergency towing operations [3]. The light autonomous underwater
vehicle (LAUV) has been developed and designed by the Laboratório
de Sistemas e Tecnologia Subaquática (LSTS) from the University of
Porto in cooperation with OceanScan-MST Lda and is classified as
a ’One-man portable AUV’ since it can be deployed and controlled
by a single operator [55].

The ILOS guidance is implemented in combination with standard
proven-in-use PID controllers: the CART vehicle employs a PD head-
ing autopilot and a P thrust controller, while the LAUV is equipped
with PID heading, depth and speed controllers. Furthermore, the
CART controls its relative velocity via the trust level (RPMs) where
for every thrust level a certain relative velocity is obtained [50]. The
speed control system of the LAUV automatically combines water
speed measurements and absolute speed measurements and chooses
the most reliable data [55].

The experimental results are presented in combination with simu-
lation results for a back-to-back comparison, where the simulations
are considered as a benchmark for the field tests since they assume
ideal conditions and make use of approximated models. Furthermore,
the knowledge of the local disturbances is limited. Ideal feedback
linearizing controllers such as the ones given in Section III-C are
used in the simulations and the gains of the ILOS guidance low from
Section II-B (the look ahead distance ∆ and the integral gain σ) are
chosen according to the bounds (7-8). Some preliminary results of
these tests are shown in [50] and [61]. In this paper additional data
are presented and a back-to-back comparison between simulations
and experimental results is given.

This part of the paper is organized as follows: Sections IV-A and
IV-B present the simulations and experiments where the ILOS is
applied to the CART USSV. Sections IV-C and IV-D present the
simulations and experiments where the ILOS is applied to the LAUV
vehicle, and finally Section IV-E gives the conclusions.

A. CART Vehicle, Simulations

The ILOS guidance law (6) in a cascaded configuration with the
feedback linearizing surge and yaw controllers (36) and (38) (reduced
to 3-DOF, i.e. wr = θ = q = 0) is applied to the scaled model of
a supply ship. The model is scaled to the dimensions of the CART
USSV through the bis normalization system [10] since no accurate
model of the CART vehicle is yet available. The purpose is to analyze
the behavior of a vehicle having the same dimensions of the CART
in order to tune the gains ∆ and σ for the experiments, and to
compare the simulation results with the experimental results. Only
kinematic current disturbances are considered in the simulations as no
information on dynamic disturbances is available from measurements
or other data from the field. The supply ship model from [26] is used
with the following improved linear damping matrix for maneuvering
simulation purposes:

Dbis =
[

0.076 0 0
0 0.54 0.012
0 −0.36 0.10

]
. (67)

Notice that Dbis > 0 is scaled and is obtained from linearization of
more complex nonlinear damping models. The upper bound for the
current intensity is selected as Vmax = 0.2 [m] and the vehicle is re-
quired to hold a relative surge velocity Urd = 0.7 [m/s]. The chosen
values for the guidance law integral gain and look-ahead distance are
σ = 0.1 [m/s] and ∆ = 5 [m], and satisfy (7-8) while the desired
Urd satisfies Assumption II.5. Notice that the chosen values for ∆,
σ and Urd guarantee convergence if dynamic disturbances having
maximum intensities of κmax

v = κ′max
v = 0.035 [m/s2] are also

present in addition to the kinematic current with Vmax = 0.2 [m].
The gains of the controllers (36) and (38) are set to: kur = 0.5,
kψ = 1, kr = 3. In particular, the values for kur , kψ and kr are
chosen to give a time constant of approximately 1.4 [s] for the ũr
first order closed loop system and to make the ψ̃ second order closed
loop system overdamped with ω0 = 1 [rad/s]. The ocean current is
set to Vx = 0.02 [m/s] and Vy = −0.05 [m/s], and equals the drift
of the vehicle measured before the test runs.



The simulation procedure resembles the test runs and requires the
vehicle to move along two parallel straight lines in order to exhibit the
transient response and the steady-state behavior of the ILOS guidance
system. The reference paths are two parallel straight lines l1 and l2
defined by a point and an angular orientation in the x− y plane:
• l1: point (60 [m];−50 [m]), orientation −130 [deg]
• l2: point (70 [m];−50 [m]), orientation 50 [deg]

At the beginning, the first reference line l1 is fed to the ILOS. After a
while, the vehicles is commanded to turn back and follow the second
line l2. Figures 3, 4 and 5 show how the vehicle successfully follows
the lines l1 and l2, with an average crab angle ψss ≈ 4.6 [deg] for
l1 and ψss ≈ −4.6 [deg] for l2, to compensate for the disturbances.
It can be seen that choosing the guidance law parameters according
to the criteria (7-8) gives smooth convergence.

B. CART Vehicle, Sea Trials

In an extensive set of sea trials the USSV was required to move
along the two geo-referenced parallel straight lines l1 and l2 to exhibit
both the transient response as well as the steady state behavior of
the guidance law. The guidance law parameters ∆ and σ are set to
5 [m] and 0.1 [m/s], respectively, as suggested by the simulations.
The thrust level is set to 20%, which corresponds approximately
to 0.7 [m/s] of relative velocity. A simple proportional-derivative
control scheme has been implemented to provide the basic auto-
heading feature and the gains kp = 1 and kd = 0.5 have been
set through field tests to have an overshoot free response. Additional
data and results from fine on-the-field tuning of the guidance law
parameters ∆ and σ can be found in [50].

Figures 6-8 show that the experimental results are in good agree-
ment with the simulations results in Figures 3-5. The CART USSV
successfully follows the lines l1 and l2, with an average crab angle
ψss ≈ 1 [deg] for l1 and ψss ≈ −5 [deg] for l2, to compensate for
the disturbances. The asymmetry in the two crab angles is probably
caused by heading dependent disturbances.

C. LAUV Vehicle, Simulations

The ILOS guidance law (6) in a cascaded configuration with the
feedback linearizing surge and yaw controllers (36) and (38) (reduced
to 3-DOF, i.e. wr = θ = q = 0) is applied to the mathematical
model of the LAUV given in [55] and [62]. In particular, given the
low speed motion of the AUV, only linear damping is considered and
lift is neglected. Moreover, only kinematic current disturbances are
considered in the simulations since underwater motion is analyzed (it
is reasonable not to take into account any dynamic disturbances when
operating below the wave affected zone in closed loop configuration
[10], [47]).

The values for the guidance law look-ahead distance and inte-
gral gain are chosen to satisfy (7) and (8), and are ∆ = 4 [m]
and σ = 0.5 [m/s]. The desired relative velocity is set to Urd =
1.2 [m/s] and fulfills the requirements set by Assumption II.5. The
controllers (36) and (38) are implemented with the following gains:
kur = 1, kψ = 1 and kr = 2. The value for kur is chosen to give
a time constant of 1 [s] for the ũr first order closed loop system.
The values chosen for kψ and kr make the ψ̃ second order closed
loop systems critically damped with ωn = 1 [rad/s] and ζ = 1. The
heading closed loop system is made critically damped to have the
fastest possible response without overshoots. A switching system that
turns on the horizontal ILOS integrator exclusively when the AUV is
located within a certain distance from the desired path is implemented
to make the simulations resemble the tests even more. This is done
not to have too much integral error and hence to avoid overshoots.
The corridor in which the integral action is turned on is 3 [m]

wide and is centered around the desired straight path. Moreover, the
LOS used outside this corridor has a horizontal look-ahead distance
∆ = 5.6 [m]. A longer ∆ is used compared to the in-corridor
situation to make the tested ILOS guidance scheme comparable in its
gains to other guidance laws that were tested on the same day [61]. It
is straightforward to show mathematically through Lemma II.2 that
a LOS guidance without integral action in presence of current with
Vmax = 0.2 [m/s] and Urd = 1.2 [m/s] will make the vehicle enter
the corridor.

In order to have simulation results that can be directly compared
with the experiments, results from planar way-point following sim-
ulations are shown, where a way-point switching system based on
the circle of acceptance algorithm is employed [10] and the radius of
the way-point acceptance circle is set to 5 [m] as it was done in the
experiments. The simulation procedure resembles the test runs and
requires the vehicle to move along an 8 shaped path to exhibit the
transient response and the steady-state behavior of the ILOS guidance
system. An 8 shaped path is used since it contains a complete set of
port/starboard maneuvers to test the AUV performance and is defined
by 6 way-points. The way-points are located 40 [m] from each other
with the longest legs measuring 80 [m] in length. They are placed as
shown in Figures 9 and 12. This configuration makes the vehicle hold
4 different courses: −170 [deg], 100 [deg], 10 [deg] and −80 [deg].
The desired depth is set to 3 [m] and the vehicle is initially at rest
on the surface with a heading of 180 [deg]. The ocean current is set
to Vx = −0.15 [m/s] and Vy = 0.04 [m/s], and equals the drift of
the vehicle measured before the test runs. Figures 9, 10 and 11 show
how the vehicle successfully converges to the paths defined by the
way-points and crabs to compensate for the disturbances.

D. LAUV Vehicle, Experiments

As explained in Section IV-C, the AUV is required to move along
a geo-referenced 8 shaped path identified by 6 way-points to exhibit
both the transient response as well as the steady state behavior of
the guidance law. The guidance law parameters ∆ and σ are set to
4 [m] and 0.5 [m/s], respectively, as suggested by the simulations.
The desired absolute/water speed of the vehicle is set to 1.2 [m/s]
and the desired depth is set to 3 [m].

Figures 12-14 show that the experimental results are in good
agreement with the simulations results given in Figures 9-11. The
LAUV successfully follows the lines defined by the way-points and
crabbing is achieved to compensate for underwater currents. The
crab angles are however often different compared to the simulation
results and during the longest 80 [m] long legs the angle varies
significantly. This is most probably due to the spatial variation of the
current. Nevertheless, the vehicle stays on path as shown in Figure 13.
Presumingly, the ILOS guidance law (6) adapts the crab angle to
compensate the prevailing current and hence it shows robustness
with respect to varying currents as well. A more detailed robustness
assessment of the ILOS guidance law is given in [41] where process
noise and model uncertainty are added via simulations.

E. Conclusion

The ILOS guidance law analyzed and presented in the paper has
been successfully applied to the CART and the LAUV vehicles for
sea trials to support and validate the theoretical findings.

V. CONCLUSION

This paper has focused on the ILOS guidance solution for path
following applications of underactuated marine vehicles in presence
of environmental disturbances. First, explicit bounds for the choice of
the look-ahead distance and the integral gain of the ILOS guidance
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Fig. 3. Simulation of convergence and path following of the CART USSV
in presence of constant irrotational ocean currents. The vehicle crabs to
compensate for the drift. In this case ∆ = 5[m] and σ = 0.1 [m/s].
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Cross−track error, e(t)

Fig. 4. Cross-track error of the CART USSV from simulations. Notice the
overshoot caused by integral action. Afterwards, path following is achieved
and the vehicles follows the line l1 first and the line l2 afterwords.
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Fig. 5. Yaw angle ψ(t) of the CART USSV from simulations. Notice the
steady state crab angle ψss ≈ 4.6 [deg] for the l1 line and ψss ≈ −4.6 [deg]
for the l2 line.
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Fig. 6. Experimental ILOS test run of the CART USSV off the coast of
Murter, Croatia. Convergence and path following of the USSV is achieved.
In this case ∆ = 5[m], σ = 0.1 [m/s] and the thrust is set to 20%.
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Fig. 7. Cross-track error of the CART USSV from sea trials. Notice the
overshoot caused by integral action. Afterwards, path following is achieved
for both the l1 and l2 lines. Disturbance from waves is present.
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Fig. 8. Yaw angle ψ(t) of the CART USSV from sea trials. Notice that while
on path the vehicle holds an average crab angle of ψss ≈ 1 [deg] for the l1
line and ψss ≈ −5 [deg] for the l2 line.
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Fig. 9. Simulation of convergence and path following of the LAUV in pres-
ence of constant irrotational ocean currents. The vehicle crabs to compensate
for the drift. In this case ∆y = 4[m] and σy = 0.5 [m/s].
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Fig. 10. Cross-track error of the LAUV from simulations. Notice the
overshoots caused by the integral action. After the transient, path following
is achieved for all the legs defined by the 6 way-points.
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Fig. 11. Yaw angle ψ(t) of the LAUV from simulations. Notice the
differences at steady state between the desired course and the heading angle
due to crabbing. The vehicle crabs to compensate for the current.
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Fig. 12. Experimental ILOS test run of the LAUV in Porto, Portugal.
Convergence and path following of the vehicle is achieved. In this case
∆y = 4[m], σy = 0.5 [m/s] and the speed is set to 1.2 [m/s].
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Fig. 13. Cross-track error of the LAUV from sea trials. Notice the overshoots
caused by the integral action. After the transient, path following is achieved
for all the legs defined by the way-points.
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Fig. 14. Yaw angle ψ(t) of the LAUV from sea trials. While on path the
vehicle crabs to compensate for the current. The crab angle varies in time
since the sea current probably exhibits spatial variations.



have been derived. Disturbances in the form of constant irrotational
ocean currents and constant dynamic, attitude dependent, forces have
been also taken into account. The stability analysis reveals UGAS
and ULES stability properties for the guidance-sway subsystem.

Next, an ILOS control strategy for path following of underactuated
AUVs in presence of constant irrotational ocean currents has been de-
veloped. The proposed 3D ILOS guidance law embeds integral action
in both the vertical and horizontal directions. The full kinematic-
dynamic closed loop system is analyzed and the analysis gives
explicit conditions on the control design parameters to guarantee
UGAS and ULES stability. These results also hold for 2D ILOS
guidance of AUVs and USVs by an appurtenant reduction of the
system variables.

Finally, the ILOS guidance law has been validated via simulations
and experiments. In particular, the ILOS guidance law has been
applied to the CART surface vehicle and the LAUV underwater
vehicles for sea trials to support the theoretical findings.

APPENDIX A
PROOF OF LEMMA II.1

Equation (12) is written again:

s
√
s2 + 1 =

Vy
Urd

s2 +
cos(βe)s+ sin(βe)

Urd|Y Urd |
κeq
v (s) +

Vy
Urd

. (68)

Notice that κeq
v (s) is bounded and is defined as the value of κv(γe) at

equilibrium, i.e. when γe = γeq
e , − tan−1(s)−βe−π. This Lemma

proves that there exists only one real solution to (68) if Assumptions
II.3 and II.5 hold. First, it is shown that there exist real solutions
to (68) and then uniqueness is argued. Squaring both sides of (68)
gives:

p(s) ,(M2 − U2
rd)s

4 + (2MPs +N2
s − U2

rd)s
2

+ 2MNss
3 + 2NsPss+ P 2

s = 0,
(69)

where M , Vy , Ns , κeq
v (s) cos(βe)/|Y Urd | and Ps , Vy +

κeq
v (s) sin(βe)/|Y Urd |. Hence, M2 − U2

rd < 0 as long as Urd >
Vmax which is guaranteed by Assumption II.5. This means that, if
Assumption II.5 holds and since Ns and Ps are bounded in s, the
function p(s)→ −∞ as s→ ±∞. Furthermore, since P 2

s ≥ 0, ∀s,
then p(0) ≥ 0. Therefore, p(s) has at least one real zero, or at least
two real zeros, one positive and one negative, if Ps(s = 0) > 0.
This proves the existence of real solutions to (68). The intersections
between the curves defined by the two sides of (68) are considered
next to show uniqueness:

L1(s∗) ,s∗
√
s∗2 + 1, (70)

L2(s∗) ,
Vy
Urd

s∗
2

+
cos(βe)s

∗ + sin(βe)

Urd|Y Urd |
κeq
v (s∗) +

Vy
Urd

. (71)

The curve L1(s∗) is strictly increasing while L2(s∗) resembles a
parabola since κeq

v (s∗) is bounded as shown in Figure 15. The first
derivatives in s∗ of L1(s∗) and L2(s∗) are analyzed:

dL1

ds∗
=

2s∗2 + 1√
s∗2 + 1

, (72)

dL2

ds∗
=

1

Urd

2Vy −
dκeq
v

dγ
eq
e

cos(βe)

|Y Urd |(1 + s∗2)

 s∗
+
κeq
v (s∗) cos(βe)

Urd|Y Urd |
−

dκeq
v

dγ
eq
e

sin(βe)

Urd|Y Urd |(1 + s∗2)
,

(73)

where the property dκeq
v

ds∗ =
dκeq
v

dγ
eq
e

dγeq
e

ds∗ = − dκ
eq
v

dγ
eq
e

1
1+s∗2 is used. The

following bound holds:[
2Vmax

Urd
+

κ′max
v

Urd|Y Urd |

]
|s∗|+ κmax

v + κ′max
v

Urd|Y Urd |
≥ dL2

ds∗
. (74)

L2(s
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V y

U rd

s*2+
κ v
eq(s*)cos (β e)
U rd∣Y

U rd∣
s*+( V y

U rd

+
κ v
eq(s*)sin (βe)
U rd∣Y
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Fig. 15. Graphical solution of (68): L1(s∗) and L2(s∗) should intersect
exclusively once to make sure that there exists a single equilibrium point.
Notice that L1(s∗) is strictly increasing while L2(s∗) resembles a parabola
since κeq

v (s∗) is bounded.

Notice that as long as Urd > 2Vmax + (κ′max
v /|Y Urd |) and

Urd > (2/|Y Urd |)(κmax
v + κ′max

v ), which are both guaranteed by
Assumption II.5, the following inequality holds for all s∗:

dL1

ds∗
>

[
2Vmax

Urd
+

κ′max
v

Urd|Y Urd |

]
|s∗|+ κmax

v + κ′max
v

Urd|Y Urd |
≥ dL2

ds∗
.

(75)
This inequality has two important consequences: if there exist any
intersections between L1 and L2, these intersections are transverse
intersections. Yet, if there exists an intersection between L1 and L2,
then this intersection is unique: since dL1/ds

∗ > dL2/ds
∗, if the

curves intersect in one point, they will never intersect again. The
proven existence of real solutions to (68) guarantees that L1 and
L2 intersect each other and hence it is possible to conclude that the
intersection point is unique. To conclude, as long as Assumptions II.3
and II.5 are satisfied, there exists only one real solution s for (68).

APPENDIX B
PROOF OF LEMMA II.2

The system (22) is written again:[
ė1
ė2
ė3

]
= A1(e2)

[ e1
e2
e3

]
+B1(e2). (76)

Consider the quadratic Lyapunov function candidate:

V ,
1

2
σ2e2

1 +
1

2
e2

2 +
1

2
µe2

3, µ > 0. (77)

The time-derivative of V is:

V̇ = − σ3∆

(e2 + σyeq
int)

2 + ∆2
e2

1

+

[
σ∆− Urd

√
(e2 + σyeq

int)
2 + ∆2

]
e2

2

(e2 + σyeq
int)

2 + ∆2

+ µ sin(ψss − βe)g(e2)e3 +
∆√

(e2 + σyeq
int)

2 + ∆2
e2e3

+ Vyf(e2)e2 − µ
∆XUrdVy

(e2 + σyeq
int)

2 + ∆2
f(e2)e3

− µ
[
− Y Urd +

∆2XUrd

((e2 + σyeq
int)

2 + ∆2)3/2

]
e2

3

+ µ

[
Urd∆X

Urd

(e2 + σyeq
int)

2 + ∆2
− σ∆2XUrd

((e2 + σyeq
int)

2 + ∆2)3/2

]
· e2e3√

(e2 + σyeq
int)

2 + ∆2
+

µσ2∆2XUrd

((e2 + σyeq
int)

2 + ∆2)2
e1e3

+ κv(γe) cos(βe)
e2e3√

(e2 + σyeq
int)

2 + ∆2
.
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Assumptions II.1-II.5, the inequalities (20-21) and the notation ē1 ,
e1/
√

(e2 + σyeq
int)

2 + ∆2, and ē2 , e2/
√

(e2 + σyeq
int)

2 + ∆2

yield the following bound for V̇ :

V̇ ≤ −∆ (Urd − Vmax − σ) ē2
2 − µ

(
|Y Urd | − |X

Urd |
∆

)
e2

3

− σ3∆ē2
1 + µ

[
|XUrd |

∆
(Urd + Vmax + σ) + 2κmax

v

]
|ē2||e3|

+ ∆|ē2||e3|+
µσ2|XUrd |

∆
|ē1||e3|.

(79)

It can be then rearranged as:

V̇ ≤ −W1(|ē1|, |e3|)−W2(|ē2|, |e3|), (80)

W1 , σ3∆|ē1|2 − µ
σ2|XUrd |

∆
|ē1||e3|

+ µη

(
|Y Urd | − |X

Urd |
∆

)
|e3|2,

(81)

W2 , ∆
[
|ē2| |e3|

] [ β −α
−α α(2α−1)

β

] [
|ē2|
|e3|

]
, (82)

where 0 < η < 1, β , Urd − Vmax − σ and α is given by:

α , (1− η)
(Urd − Vmax − σ)(∆|Y Urd | − |XUrd |)
|XUrd | (Urd + Vmax + σ) + 2∆κmax

v

. (83)

The parameter µ is chosen as:

µ ,
∆2(2α− 1)

|XUrd |(Urd + Vmax + σ) + 2∆κmax
v

. (84)

In (80) the term µ(|Y Urd | − |XUrd |/∆)|e3|2 has been split
in ηµ(|Y Urd | − |XUrd |/∆)|e3|2 and (1 − η)µ(|Y Urd | −
|XUrd |/∆)|e3|2. This makes it possible to avoid splitting cross terms
through Young’s inequality as done for instance in [34] and hence
shift the analysis on the two quadratic functions W1 and W2. In
particular, if both W1 and W2 are definite positive then V̇ is negative
definite. Positive definiteness of W1 is ensured if (85) and (86) are
satisfied:

∆ >
|XUrd |
|Y Urd | , (85) µ <

4η∆2
[
∆|Y Urd | − |XUrd |

]
σ|XUrd |2 . (86)

Notice that condition (85) is met as long as (7) holds. At this point,
the choice of η becomes subject to constraints. In particular, it is
necessary to show that there exist η such that 0 < η < 1 and that
(86) is satisfied. In particular, (86) and (83) lead to the following
inequality:

(1− η)(Urd − Vmax − σ)

[|XUrd |(Urd + Vmax + σ) + 2∆κmax
v ]2

<
2η

σ|XUrd |2 . (87)

It is straightforward to show that η ≥ 1/5 is a sufficient condition
for (87) to hold. Hence, if η ≥ 1/5 then µ, defined in (84), satisfies
(86). Therefore, without any loss of generality, η is set to 1/5. Both
β and α must fulfill β > 0 and α > 1 to guarantee positive
definiteness of W2. Assumption II.5 and (8) make sure that β > 0
while it is easy to check that conditions (7) and (8) imply α > 1.
Furthermore, α > 1 guarantees µ > 0 and ensures positive definite-
ness of V . Therefore under the conditions stated in Theorem II.1,
V , W1 and W2 are positive definite and hence, following standard
Lyapunov arguments, the system (76) is UGAS. Furthermore, the
inequality W ,W1 +W2 ≥ λ̄1|ē1|2 + λ̄2|ē2|2 + λ3|e3|2 holds in
a neighbourhood of the origin for some constants λ̄1, λ̄2, λ3 >
0 and thus in any ball Br , {|e2| ≤ r}, r > 0 the function W
can be estimated as W ≥ λ1|e1|2 + λ2|e2|2 + λ3|e3|2 where

λi = λ̄i/((r + σyeq
int)

2 + ∆2), i = 1, 2. This, together with the fact
that V is a quadratic function of e1, e2 and e3, concludes that (76)
is also uniformly locally exponentially stable, ULES.

APPENDIX C
FUNCTIONAL EXPRESSIONS - SECTION III

The expressions Fur , Xvr , Yvr , Xwr , Ywr , Zwr , Fq and Fr are:

Fur (vr, wr, r, q) ,
1

m11

[
(m22vr +m25r)r

− (m33wr +m34q)q
]
,

(88)

Xvr (ur) ,
m2

25 −m11m55

m22m55 −m2
25

ur +
d55m25 − d25m55

m22m55 −m2
25

, (89)

Yvr (ur) ,
(m22 −m11)m25

m22m55 −m2
25

ur −
d22m55 − d52m25

m22m55 −m2
25

, (90)

Xwr (ur) ,
−m2

34 +m11m44

m33m44 −m2
34

ur +
d44m34 − d34m44

m33m44 −m2
34

, (91)

Ywr (ur) ,
(m11 −m33)m34

m33m44 −m2
34

ur −
d33m44 − d43m34

m33m44 −m2
34

, (92)

Zwr ,
BGzWm34

m33m44 −m2
34

, , (93)

Fr(ur, vr, r) ,
m25d22 −m22(d52 + (m22 −m11)ur)

m22m55 −m2
25

vr

+
m25(d25 +m11ur)−m22(d55 +m25ur)

m22m55 −m2
25

r,

(94)

Fq(θ, ur, wr, q) , −
BGzWm33

m33m44 −m2
34

sin(θ)

+
m34(d34 −m11ur)−m33(d44 −m34ur)

m33m44 −m2
34

q

+
m34d33 −m33(d43 − (m33 −m11)ur)

m33m44 −m2
34

wr.

(95)

The vectors hz , [hz1, hz2, hz3, hz4, hz5]T and hwr ,
[hwr1, hwr2, hwr3, hwr4, hwr5]T are defined as:

hz1 = − sin(θ̃ + θd), hz3 = hz4 = hz5 = 0

hz2 = −Urd
[

sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
+ wr

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]
,

(96)

hwr1 =
Xwr (ũr + Urd)−XUrd

wr

ũr
γwr (zint, z, wr)

+ wr
Ywr (ũr + Urd)− Y Urdwr

ũr
,

hwr2 = Zwr

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
,

hwr3 = Xwr (ũr + Urd), hwr4 = hwr5 = 0.

(97)

Notice that the limits of hz2 for θ̃ → 0, hwr1 for ũr → 0
and hwr2 for θ̃ → 0 exist and are finite. The vectors hy ,
[hy1, hy2, hy3, hy4, hy5, hy6, hy7, hy8]T and hvr , [hvr1, hvr2,
hvr3, hvr4, hvr5, hvr6, hvr7, hvr8]T are defined as:

hy2 =
Urd
ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

− 1√
s2 + 1

]

− s√
s2 + 1

Zwr

Y
Urd
wr

1

ez2

[
ez2 + σzz

eq
int√

(ez2 + σzz
eq
int)

2 + ∆2
z

− s√
s2 + 1

]
,
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A2 ,


− σz∆z

(ez2+σzz
eq
int

)2+∆2
z

∆z
(ez2+σzz

eq
int

)2+∆2
z

0

− σ2
z∆z

(ez2+σzz
eq
int

)2+∆2
z

(
− Urd√

(ez2+σzz
eq
int

)2+∆2
z

+ σz∆z
(ez2+σzz

eq
int

)2+∆2
z

)
∆z√

(ez2+σzz
eq
int

)2+∆2
z

−σ2
z∆2

zX
Urd
wr

((ez2+σzz
eq
int

)2+∆2
z)2

(
−Urd∆zX

Urd
wr

((ez2+σzz
eq
int

)2+∆2
z)3/2

+
σz∆2

zX
Urd
wr

((ez2+σzz
eq
int

)2+∆2
z)2

+
Zwr√

(ez2+σzz
eq
int

)2+∆2
z

) (
Y
Urd
wr +

∆2
zX

Urd
wr

((ez2+σzz
eq
int

)2+∆2
z)3/2

)

 , (99)

A3 ,


− σy∆y

(ey2+σyy
eq
int

)2+∆2
y

∆y

(ey2+σyy
eq
int

)2+∆2
y

0

−
σ2
y∆y

(ey2+σyy
eq
int

)2+∆2
y

(
− Γ(s)√

(ey2+σyy
eq
int

)2+∆2
y

+
σy∆y

(ey2+σyy
eq
int

)2+∆2
y

)
∆y√

(ey2+σyy
eq
int

)2+∆2
y

1√
s2+1

σ2
y∆2

yX
Urd
vr

((ey2+σyy
eq
int

)2+∆2
y)2

1√
s2+1

 Γ(s)∆yX
Urd
vr

((ey2+σyy
eq
int

)2+∆2
y)3/2

−
σy∆2

yX
Urd
vr

((ey2+σyy
eq
int

)2+∆2
y)2

 Y Urdvr −
∆2
yX

Urd
vr√

s2+1((ey2+σyy
eq
int

)2+∆2
y)3/2



 , (100)

hy5 = Urd sin(ψd)

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]
− s sin(ψd)√

s2 + 1

Zwr

Y
Urd
wr

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
,

hy7 =

[
Urd cos(θ̃ + θd)−

s√
s2 + 1

Zwr

Y
Urd
wr

sin(θ̃ + θd)

]
·
[

sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]
+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
,

hy1 = hy6 = hy8 = 0, hy3 = sin(θ) sin(ψ), hy4 = cos(θ) sin(ψ),
(101)

hvr2 =
X
Urd
vr

ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

− 1√
s2 + 1

]
· γvr (yint, y, vr),

hvr4 =
Xvr (ũr + Urd)−XUrd

vr

ũr
cos(θ̃ + θd)γvr (yint, y, vr)

+ vr
Yvr (ũr + Urd)− Y Urdvr

ũr
,

hvr5 =

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]
·XUrd

vr γvr (yint, y, vr),

hvr8 = Xvr (ũr + Urd) cos(θ̃ + θd),

hvr1 = hvr3 = hvr6 = hvr7 = 0.
(102)

Notice that the limits of hy2 for ez2 → 0, hy5 for θ̃ → 0, hy7 for
ψ̃ → 0, hvr2 for ez2 → 0, hvr4 for ũr → 0 and hvr5 for θ̃ → 0 exist
and are finite. The expressions γwr (zint, z, wr) and γvr (yint, y, vr)
are defined as:

γwr , − ∆zUrd(z + σzzint)

((z + σzzint)2 + ∆2
z)3/2

+
∆2
z

((z + σzzint)2 + ∆2
z)3/2

wr

+
σz∆

2
z

((z + σzzint)2 + ∆2
z)2

z +
∆zVz

(z + σzzint)2 + ∆2
z

,

(103)

γvr ,
∆yΓ(s)(y + σyyint)

((y + σyyint)2 + ∆2
y)3/2

−
∆2
y

((y + σyyint)2 + ∆2
y)3/2

vr

−
σy∆2

y

((y + σyyint)2 + ∆2
y)2

y − ∆yVy
(y + σyyint)2 + ∆2

y

.

(104)
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