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Diagnosis of Airspeed Measurement Faults for

Unmanned Aerial Vehicles
Søren Hansen and Mogens Blanke SM IEEE

Abstract—Airspeed sensor faults are common causes for inci-
dents with unmanned aerial vehicles with pitot tube clogging or
icing being the most common causes. Timely diagnosis of such
faults or other artifacts in signals from airspeed sensing systems
could potentially prevent crashes. This paper employs parameter
adaptive estimators to provide analytical redundancies and a
dedicated diagnosis scheme is designed. Robustness is investigated
on sets of flight data to estimate distributions of test statistics.
The result is robust diagnosis with adequate balance between
false alarm rate and fault detectability.

Index Terms—Aircraft fault detection, Airspeed sensor fault,
Fault diagnosis, UAV, Pitot tube defect, Adaptive observer,
Change detection

I. INTRODUCTION

A reliable measurement of airspeed is vital to many sim-

ple Unmanned Aerial Vehicles (UAV), since the envelope

of stable operation becomes narrow for simple autopilots if

speed information is in error. Simple UAV autopilots rarely

make use of redundant speed measurements both to avoid the

added complexity and due to limitations on weight. Ability to

diagnose speed sensor faults without adding additional sensors

or actuators to the aircraft would hence be very attractive.

Estimating speed by exploiting other sensors onboard could

be possible through state estimation techniques. An aircraft

can be described by a set of nonlinear equations with a rich

set of parameters, but as it is not feasible, to obtain complete

parameter sets for small UAVs, for reasons of cost, estimation

of states could be based on models where some parameters

are roughly known while others require identification. Several

parameters depended on states of the aircraft and vary as

the operational conditions change, so combined parameter

and state estimation would appear useful. When the structure

of nonlinearity is known in a nonlinear dynamical system,

and stochastic disturbances are not significant, adaptive ob-

servers for nonlinear systems may serve the dual purpose

of parameter and state estimation. When stochastic issues

become significant and local linearization around a state vector

is feasible, Extended Kalman filtering (EKF) techniques are

preferred. The literature on both approaches is significant.

Such estimation requires certain properties of the nonlinear
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system. Observability is essential, and this is treated for

nonlinear observers in [1]. When the system equations are

not simple and calculation of Lie derivatives of the system

equations are required, this can be cumbersome. A relaxed

approach is to ensure asymptotic convergence to zero of the

estimation error. For an adaptive observer, global asymptotic

stability can be analyzed employing Lyapunov stability results,

as done in [2]. Properties of the extended Kalman filter as a

combined state and parameter estimator was treated in other

classical results, [3] for linear systems and [4] for a class of

nonlinear systems. Once alternative estimates of aircraft speed

have been obtained, fault diagnosis could be achieved through

residual generation and change detection methods could be

adopted to obtain robust diagnosis.

Fault detection and isolation (FDI) has been demonstrated

for nonlinear systems with a structure similar to that of aircraft

propulsion in for instance [5], who used a sliding mode ob-

server, and in [6], where an adaptive observer was employed.

Fault detection, isolation and recovery (FDIR) for aircraft and

aerospace systems was studied in [7], that included nonlinear

control for recovery, in [8] where partial loss of control

surfaces was treated and overviews of theoretical diagnostic

techniques for general aircraft faults were treated in [9], [10]

and [11]. Goupil [12] showed how FDIR techniques are in use

in the Airbus 380.

Approaches to FDI for unmanned aircrafts were the subject

of [13], who treated actuator fault diagnosis and [14] who

developed multiple model adaptive estimation for sensor and

actuator faults. Extended Kalman filtering techniques were

combined with diagnosis to obtain fault-tolerant control in [15]

who also demonstrated detection of faults and degraded per-

formance of actuators using both simulated and real flight

data. The airspeed sensor problem was not dealt with in this

literature. A general structural analysis was conducted by [16]

for a non-linear aircraft model, and structural detectability and

isolability properties were determined. Classical diagnostic

techniques was shown, but on simulated data. Specific faults

and failure modes have also attracted considerable attention,

performance monitoring and detection of oscillatory behavior

was treated in [17]. Research on the airspeed sensor problem

using multiple sensors have been treated in [18] and [19] who

analyzed performance of linear time-invariant fault detection

methods applied on parallel airspeed sensors, but more general

results on airspeed sensor fault diagnosis have been sparse.

Larger manned aircraft use heating of airspeed sensors to pre-

vent icing but this is not always enough to avoid problems. The

final report on the Air France AF447 accident [20] states that

the pilots misinterpretation of faulty airspeed measurements
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was the leading cause of the incident. This has caused a lot

of visibility in the flight control system community towards

air speed sensor faults and alternatives to the use of classical

voting principles as sole means of fault diagnosis.

The present research started well in advance of the AF447

accident because air speed sensor signal faults and artifacts

have long been an issue on small unmanned aircraft. The

paper focus on the airspeed sensor FDI problem using non-

linear analytical redundancies. Early results [21] showed that

fault detection for clogging of a pitot tube was feasible but

used a simplified setup where wind was assumed known and

propulsion dynamics was known a priori. This paper presents

a complete solution to the airspeed sensor detection problem

where wind speed and propulsion dynamics are unknown. An

extended Kalman filter technique is adopted to the problem

at hand to estimate the wind velocity vector while flying and

propulsion system parameters and airspeed are estimated by

a dedicated nonlinear observer. The test statistics obtained

by generalized likelihood change detection is scrutinized us-

ing multiple flight experiments to obtain parameters for the

distribution of the test statistics, both in normal and faulty

conditions. It is shown how the parameters of estimated test

statistics can be used to determine thresholds for detection

that guarantee very low probability of false alarms while

ensuring adequate detection capability. A special methodology

is developed to avoid false diagnosis for return to normal,

which is a problem for an aircraft that experience uncontrolled

nonlinear behavior at the boundary of stability or in rapid

maneuvers. It is discussed how the diagnostic scheme could be

implemented as part of on-board avionics but also, as an added

benefit, be implemented as part of a mission supervisor on a

ground station based on aircraft telemetry. If a fault is detected

an alarm could be raised to let the operator take appropriate

action to bring it down safely.

The paper is structured as follows. Following a brief prob-

lem statement and presentation of selected parts of equations

of motion and propulsion dynamics, a set of residuals relations

are derived. To cope with parameter uncertainty and variability,

a non-linear high-gain observer is used to estimate the force

balance on the aircraft to get the expected speed from thrust

relations of the propeller. Wind speed is estimated by an EKF

and added to ground speed from an onboard GPS unit to get a

airspeed estimate. Robust residual generators are implemented

and validated using recorded flight data.

II. BANSHEE UAV SYSTEM

Research on fault diagnosis is often based primarily on

simulation studies, but the randomness caused by practical

conditions for unmanned aircrafts, including change of pay-

load, pre-flight trimming and control surface adjustments,

cause flight conditions to vary more than commonly captured

in simulations. The results in this paper are based on data

records from a large number of UAV flights under, most under

what are considered normal conditions, some are cases of real

faults that led to incidents with loss of aircraft.

This section gives a short introduction to the UAV from

which data originate. The aircraft is a Banshee drone from

Meggitt Defence Systems (UK), widely used for target practise

in several countries [22].

The Banshee UAV is a delta wing aircraft propelled by a

rear mounted engine. The thrust is delivered by a 2 bladed

propeller. It is launched from a catapult system (see Fig. 1)

and lands by parachute. It is not equipped with a landing gear.

Fig. 1. A Banshee UAV ready for launch. Photo: Danish Forces Joint UAV

Team

The aircraft has an avionics with an autopilot system that

is operated via telemetry from ground. A path to follow is

defined by a number of waypoints and speed to be followed

between waypoints. It is technically possible to fly the drone

manually and throttle command to control speed is feasible,

but when out of sight, remote command for attitude control

is difficult if not impossible.

A. Banshee Sensors and Actuators

In the configuration used for the tests in this paper, the

Banshee UAV was equipped with actuators and sensors, listed

in Table I, together with the associated signals.

The autopilot on this drone has a non-redundant architecture

and depends solely on individual sensor input to function

correctly. Only one sensor is present for each physical variable

and possible sensor artifacts or faults ripple directly to the

avionics. Faults on actuators limit the envelope within which

stable flight is possible. Calculating the flight envelope through

a linear matrix inequality problem formulation was pursued

in [23] and [15]. With closed loop speed control along a track

and attitude controller parameters being scaled by airspeed,

erroneous airspeed input will limit the flight envelope, in

particular when conducting sharp turns or other maneuvers.

Remedial actions on this UAV in its standard configuration

are possible only via telemetry from ground. If an airspeed

sensor issue is detected, the autopilot can be switched to a

mode without closed loop speed control; a less agile attitude

control can be selected to obtain better robust stability; the

ultimate fail-safe reaction is to stop the engine and release the

parachute. Activation of remedial action via ground station

command requires that the diagnostic result is available and

presented to the operator timely enough to intervene. Time to

detect, fault isolation probability and false alarm probability

are essential quality parameters that will be design drivers in

the sequel.
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TABLE I
LIST OF COMMANDS AND MEASURED OUTPUT

Symbol Unit Explanation

hp m Altitude measured by pressure
vpitot m/s Airspeed measured by pitot tube

λlat, λlon deg Latitude and longitude measured by GPS
vgps, ψgps m/s, deg Speed and course over ground from GPS
pi,qi,ri deg/s Roll rate, pitch rate, and yaw rate measured by IMU

ax,ay ,az m/s2 Body axis accelerations measured by IMU

n s−1 Engine revolutions

δT % Throttle
δa deg Aileron deflection
δe deg Elevator deflection

III. THRUST DELIVERED BY THE PROPELLER

The Banshee is propelled by a rear mounted combustion

engine with a 2 bladed wood propeller. The thrust developed

by this engine FT is given by kT , a non-dimensional thrust

coefficient, made dimensional by

FT = kT ̺n
2d4p, (1)

where propeller diameter is dp, shaft speed n, and ̺ the air

density. Wind tunnel tests (see [24]) of propellers of the type

used reveals that the thrust coefficient is approximately linear

with the advancement ratio J = v
ndp

, where v is inflow

velocity to the propeller. The thrust coefficient and NACA

data are plotted in Fig. 2. In nominal flight J is in the range
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Fig. 2. NACA wind tunnel test of two bladed propeller. Non-dimensional
thrust kT versus advancement ratio J .

0.9 to 1.1.

Propellers are usually characterized by their diameter dp and

pitch Pp. These values can be combined to a non-dimensional

pitch defined by P ′ =
Pp

dp
. The following scaling for the thrust

coefficient was proposed by [25]

kT (J) ≃ kT,ref(J − (P ′ − P ′
ref)), (2)

where kT,ref and P ′
ref

are the thrust coefficient and non-

dimensional pitch of the reference signal, respectively. The

reference signals originates from different propellers tested

in [24]. The 26 × 32 propeller used on the Banshee has

P ′ equal to that of one of the tested propellers and the

characteristics of this propeller are used.

Calculating dimensional lift and drag on a propeller, it was

shown in [26] that thrust is related to advance speed v and

propeller angular speed n by the bi-linear expression

FT = Tnnn
2 + Tnvnv, (3)

which was shown equivalent to a linear approximation to non-

dimensional thrust

kT = kT0 + kT1J, (4)

where dimensional and non-dimensional parameters are re-

lated as Tnn = kT0̺d
4
p and Tnv = kT1̺d

3
p.

IV. POSSIBILITIES FOR DIAGNOSIS

When three measurements of a compatible quantity Vk
are available, the classical Voting Scheme technique for fault

isolation calculates the three differences Vi − Vj , (i, j) ∈
[1, 2, 3], i 6= j. The measurements available on the aircraft

provide, at a first glance, three obvious redundancies, the

airspeed measurement vpitot, velocity measured by GPS and

compensated for wind vgps2air, and the expected velocity

vthrust obtained at a known shaft speed of the engine. This

gives rise to the parity relations shown in Table II, which

were also used in [21]. A ”1” in Table II means the residual

TABLE II
MEASUREMENTS AND VOTING SCHEME RESIDUALS.

Residual vpitot vgps2air vthrust
R1 1 1 0
R2 1 0 1
R3 0 1 1

is affected by the measurement, and since all three columns

have different column signatures, faults on each of the three

measurements could appear as easily isolable. The catch in

this argument is that vgps2air and vthrust are not independent

of vpitot: vgps2air need an estimate of wind velocity, which

requires the airspeed through vpitot; vthrust is dependent

on propulsion parameters, trim and loading conditions, and

parameter adaptation also needs vpitot. These apparent diffi-

culties are analyzed and overcome in the sequel of the paper,

and it is shown how a combination of estimation, adaptation,

statistical change detection and dedicated hypothesis testing

together can solve the robust fault isolation problem.
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V. RESIDUAL R1 FROM GROUND SPEED AND ESTIMATED

WIND

An estimate of the wind velocity vector is needed to create

residual R1 comparing airspeed readings: One from the pitot

tube system, the other being the sum of GPS measured ground

speed plus estimated wind vector. In [27] such an estimate

was developed with the purpose of calibrating the airspeed

sensor of a small UAV. Since this estimation algorithm is

simple and is shown to work well for an aircraft with the

same instrumentation as the Banshee, it is adopted here albeit

with a different end purpose, namely fault detection.

The aircrafts velocity relative to air vrel is related to the

ground speed vector vg according to the following vector sum:

vg = vrel + vw. The wind velocity vector is defined such

that it points in the direction the wind blow. The size of the

airspeed can then be formulated using the standard cosine rule

for triangles

v2rel = v2w + v2g − 2vgvw cos (ψw − ψg), (5)

where the wind direction is ψw and the heading of the aircraft

is denoted ψg . The relationship is illustrated in Figure 3.

Fig. 3. Relationship between ground speed, airspeed and wind speed.

The pitot tube basically measures the dynamic pressure

of the wind flow based on pressure readings from a tube

pointing in the aircrafts forward direction and static vent on

the fuselage. Therefore, the pitot tube reading is a measure of

the forward speed u in the body frame (Appendix A). To take

differences between the measurement from the pitot tube and

the aircraft’s real speed due to attack angle, α, and sideslip,

β, into account, a factor between the two values also needs to

be estimated,

vpitot = cos (α) cos (β)vrel ≃ avrel. (6)

An EKF was used in [27] to estimate the wind vector and

a scaling factor. The dynamic pressure was available as a

measurement on the aircraft and was therefore used in the

measurement equation. For the Banshee the airspeed is given

as a velocity and (5) is used directly as measurement equation.

The state vector of the EKF is given by x = [vw, ψw, a]
T

and states are modelled as random-walk processes. This gives

the state transition

xk = Ixk−1 + νk, (7)

with νk ∼ N (0,Qk). The pitot tube measurement can

be estimated from the states by the following observation

equation based on (5)

ĥ(x) = a
√
v2w + v2g − 2vgvw cos (ψw − ψg). (8)

Since the ground speed and heading is estimated by the

onboard GPS receiver this observation equation can be re-

formulated as

ĥ(x) = a
√
v2w + v2gps − 2vgpsvw cos (ψw − ψgps). (9)

This leads to the following Jacobian

H =




a (2vw − 2vgps cos (ψw − ψgps))

2
√
v2w + v2gps − 2vgpsvw cos (ψw − ψgps)

a (2vwvgps sin (ψw − ψgps))

2
√
v2w + v2gps − 2vgpsvw cos (ψw − ψgps)√
v2w + v2gps − 2vgpsvw cos (ψw − ψgps)




T

.

(10)

The standard EKF algorithm (see eg. [28]) is utilized using the

above equations. This gives the following time update step

x̂k|k−1 = x̂k−1|k−1 (11)

P k|k−1 = P k−1|k−1 +Qk, (12)

and the measurement update is

ỹk = zk − ĥ(xk|k−1) (13)

Kk = P k|k−1Hk
T
(
HkP k|k−1Hk

T +Rk−1

)−1
(14)

x̂k|k = x̂k|k−1 +Kkỹk (15)

P k|k = (I −KkHk)P k|k−1. (16)

The covariances Qk and Rk are found from analysis of

segments of data during level flight. Alternatively they could

be estimated in the filter following methods suggested for

linear systems in Ljung’s innovations filter [3] and extended

to nonlinear systems in [4].

A typical development of the states for a flight is shown

in Fig. 4. The wind was measured on ground to be 6.8 m/s
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Fig. 4. Estimates of wind parameters during a flight at altitude up to 1500 m.

at 80◦, however, since the aircraft was flying at heights up to



5

0 1000 2000 3000 4000 5000 6000 7000
−5

−4

−3

−2

−1

0

1

2

3

4

5
Residual from wind estimate

Time [s]

[m
/s

]

Fig. 5. Time development of the innovation of the EKF for same flight as
in Fig. 4.

1500 m the ground measured velocity was not representative.

The innovation of the filter is the difference between the

measured air speed component in the x direction and the x-

component estimated from ground speed plus the contribution

from wind. This innovation, Eq. (13), is used as residual R1

from Table II. With actual variables inserted

R1 = vpitot − â
√
v̂2w + v2gps − 2vgpsv̂w cos (ψ̂w − ψgps).

(17)

The time-history of R1 is plotted in Fig. 5 for the same flight

as was illustrated in Fig 4.

VI. RESIDUAL R2 FROM ADAPTIVE OBSERVER BASED ON

PROPELLER SPEED

The second residual R2 in Table II is based on thrust

delivered by the engine and an associated estimate of airspeed.

This estimate is available through exploiting the dynamics, in

component form

mu̇ = m(rv − qw) + FAx −mg sin (θ) + FT , (18)

mv̇ = m(pw − ru) + FAy +mg cos (θ) sin (φ), (19)

mẇ = m(qu− pv) + FAz +mg cos (θ) cos (φ). (20)

The aircraft’s motion is described by its linear and angular

velocities, vb = [u, v, w]
T

and ω = [p, q, r]
T
, in the body

frame, the euler angles φ, θ, ψ. The aerodynamic forces are

FAx, FAy, FAz and FT is the thrust forces derived in sec-

tion III.

The velocities are related to the relative airspeed, vrel, as

u = vrel cos (α) cos (β), (21)

v = vrel sin (β), (22)

w = vrel sin (α) cos (β), (23)

vrel =
√
u2 + v2 + w2. (24)

As the aircrafts fly with wings levelled most of time the

magnitudes of v and w generally are small so when calibrated,

the pitot tube provides a reading of the forward airspeed, hence

u = vpitot, (25)

and the velocity can be approximately described using only

the u term in (18). Since the aerodynamic force FAx is

unknown, this term has to be estimated by the observer. This

is done by adding an adaptation scheme to the observer. It

is customary to describe forces in terms of non-dimensional

parameters, for reasons of scaling, and it provides some

numerical advantage to use this representation in the adaptive

observer. The aerodynamic force in the x direction is,

FAx = q̄SCx = 1

2
̺v2relSCx, (26)

with q̄ being the dynamic pressure and S the surface area

of the aircraft. Cx is composed by lift CL and drag CD as

(from [29])

Cx = CL sin (α)− CD cos (α). (27)

Based on this the following model for FAx is suggested. It

contains two unknown parameters Θ = [Θuu,Θuuα]
T

to be

estimated.

FAx = 1

2
̺Su2 (Θuu +Θuuαα) (28)

This model depends on α which is not desirable because most

low cost UAV’s does not have a direct measurement of this

value. Instead a model only containing the velocity dependent

part is suggested. and if α is not available, the following one-

parameter approximation is used

FAx = 1

2
̺Su2Θuu. (29)

Both force models (28) and (29) was tested on real data

to see which one gives the best estimates for the purpose of

fault diagnosis. The Banshee does not have a vane measuring

α but an estimate is available from the autopilot. Using this

estimate in getting FAx from (28) does not give any additional

performance compared to (29). This could be because the

α estimate is inaccurate or the tested flight patterns does

not exceed the α dependence enough. Therefore the fault

diagnosis is done using (29) for FAx. Results from using the

two estimates are given in section VI-A.

The derivation is continued for the two parameter

model (28), but the results are valid also for the one-parameter

model by setting Θuuα = 0 in the following.

The model for FAx can be written as

FAx = m (F1(u, t)Θuu + F2(u, t)Θuuα) , (30)

where the F1(u, t) and F2(u, t) are defined as

F1(u, t) =
̺Su2

2m
, F2(u, t) =

̺Su2α

2m
, (31)

and m is pre-multiplied on the right hand side of (30) for later

convenience.

From the system equations (18), the following nonlinear,

adaptive observer is a natural choice for estimation of u. Let

û denote the estimate of u and let L be the gain the observer

uses to update the estimate of linear acceleration from the

output innovation u − û. The measurement of u is obtained



6

from the pitot tube measured air speed vpitot according to (25).

Hence

˙̂u = −g sin (θ) +
Tnnn

2 + Tnunû

m
(32)

+ F1(û, t)Θ̂uu + F2(û, t)Θ̂uuα + L(vpitot − û).

The pitch angle θ is estimate by the onboard inertial measure-

ment unit.

The unknown parameters are estimated using a standard

adaptive observer updating approach, (see e.g [2])
[

˙̂
Θuu

˙̂
Θuuα

]
=

[
F1(û, t)
F2(û, t)

]
(vpitot − û) . (33)

The estimation is initialized with values found during previous

fault-free flights. This ensures a fast transient period.

The extended state and parameter vector x of the observer

is then

˙̂x =




˙̂u
˙̂
Θuu

˙̂
Θuuα


 =




˙̂u
F1(û, t)(vpitot − û)
F2(û, t)(vpitot − û)


 , (34)

and with parameters Θuu and Θuuα assumed unknown con-

stants, the error dynamics is

f(x̃) = ˙̃x = ẋ− ˙̂x =




˙̃u
˙̃Θuu

˙̃Θuuα


 =




˙̃u
−F1(û, t)ũ
−F2(û, t)ũ


 . (35)

For the diagnosis the error ũ of the observer expresses

exactly what residual R2 from Table II contains, a comparison

between airspeed measured by the pitot tube u and an estimate

û based on the thrust force delivered by the engine.

The observer gain L must be chosen high enough to ensure

that the observer is uniformly asymptotically stable. A stability

proof is provided in Appendix B. In order for the observer

to have good performance with respect to the fault diagnosis

it is important to choose a gain value that allows sufficient

deviation of the error value. Too high a gain could give an

observer that could track measurements, thereby creating fairly

weak detectability of a sensor fault, but also making estimated

parameters change so much that the parameter change itself

should trigger an alarm. When deciding whether to detect a

change from the observer’s innovation, or from the estimated

parameters, it is worth noting that the innovation is driving

the parameter updating, and a change (fault) in the generating

process or sensor is therefore first visible in the innovation.

It is hence a natural choice to use the innovation for change

detection when rapid detection is of prime concern.

Using model parameter adaptation together with residual

generation based on the filter innovation raises questions

about how and when the estimator itself need be updated

to changed conditions. Some techniques to combine change

detection with change in adaptation gains was treated in [30],

who demonstrated the combined technique on detection of

multiple changes, but the problem is an area of continued

research [31]. Aiming at fast online diagnosis, this paper will

halt adaptation when the output (test statistics) from a change

detector exceeds specified values, which are lower than the

chosen alarm threshold, and a special hypothesis test will be

developed to prevent false resetting of alarms.

A. Observer performance

The performance of the adaptive observer was tested using

recorded data from 18 flights with the Banshee UAV. Fig. 6
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Fig. 6. Observer performance and choice of model.

shows the estimated speed of the vehicle compared with

measured airspeed in the upper part of the plot and the

observer’s innovation in the lower plot. It is apparent that the

observer is stable and the standard deviation of the error, for

the given flight, is 0.23 m/s, which is satisfactory compared

to the 0.5 m/s present on the airspeed measurement when we

do not wish too high filtering (low bandwidth) in the adaptive

observer as this would delay fault detection.

The unknown parameters Θ behave, over time, as seen on

Fig. 7. Fig. 7 also shows that Θ̂uuα drifts in value. This has no
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Fig. 7. Parameter development during estimation. The blue plots are the two
parameter observer which has σũ = 0.22 m/s and the red curve represents
the one parameter setup which has σũ = 0.23 m/s.

effect on the residual since its value is very small compared
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to Θ̂uu and the reasons could include some change in trim as

fuel is consumed during the flight. Another reason for the drift

could be that the angle of attack, α, does not vary much and

sufficient excitation is not present to identify Θ̂uuα without

drift. The one-parameter formulation (29) avoids this issue, it

is simpler and it’s innovation has very similar properties. The

two parameter observers standard deviation error is 0.22 m/s
compared to 0.23 m/s for the one parameter setup. The

parameter estimate using the one-parameter adaptation scheme

is shown in the middle plot of Fig. 7. The observer in the one-

parameter version

˙̂x =

[
˙̂u

˙̂
Θuu

]
(36)

=




−g sin (θ) +
Tnnn

2 + Tnunû

m
+F1(û, t)Θ̂uu + L(vpitot − û)
F1(û, t)(vpitot − û)


 ,

and residual R2, which equals the observer innovation, ũ =
u− û, reads

R2 = vpitot + (37)(∫
g sin (θ)−

Tnnn
2 + Tnunû

m
− F1(û, t)Θ̂uudt

)

−L(vpitot − û).

VII. RESIDUAL R3 FROM COMPARISON OF VELOCITY

ESTIMATES

Following the voting scheme described in Table II the

third residual is the difference between the two estimates of

airspeed. Since both vgps2air and vthrust relies on the airspeed

measurement in their estimation procedures, it is impossible

achieve independence of vpitot. However, since the purpose

of R3 is to ensure isolability of the airspeed measurement

fault, its value is only required when R1 and/or R2 indicate

an alarm. With

R3 = vgps2air − vthrust (38)

= â
√
v̂2w + v2gps − 2vgpsv̂w cos (ψ̂w − ψgps) + g sin (θ)

−
Tnnn

2 + Tnunû

m
− F1(û, t)Θ̂uu − L(vpitot − û).

and setting adaptation on hold when a fault is detected, R3

can be used for isolation. If an airspeed fault is detected,

vpitot can not re-enter in calculations that estimate vgps2air and

vthrust. These estimates will therefore after a while become

increasingly uncertain, which in turns affects R3. However, as

long as R3’s value is reliable up to and shortly after detection,

it serves the purpose.

VIII. CHANGE DETECTION

As in [21] fault detection is achieved by detecting changes

to the residual signals (17) and (37). Generalized Likelihood

Ratio Tests (GLRT) are used to distinguish between to possible

hypothesis about the residual signals.

H0 : x[n] = w[n]

H1 : x[n] = A+ w[n]. (39)

The H0 hypothesis is that only the expected noise is present

on the signal and the alternative H1 hypothesis states that

the signal has been offset from 0 by a value of A. If this

is the case there must be a significant difference between

the measurement and the model and hence a fault is present.

In Fig. 8 the histogram and autocorrelation of the residual
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Fig. 8. Residual from wind estimating EKF characteristics.

from the wind estimator is shown. The residual has been pre-

whitened and is uncorrelated with past samples as seen in the

figure. The histogram shows that as in [21] the noise on the

residual follows a Cauchy distribution with a general form of

p(x;xo, β) =
1

π

β

(x− xo)
2
+ β2

. (40)

The GLRT is based on the likelihood ratio between the

probability of the two hypotheses given a window of data

LG(x) =
p
(
x; Θ̂1

)

p
(
x; Θ̂0

) > γ. (41)

Here Θ̂1 is the Maximum Likelihood Estimate (MLE) of the

parameters given H1 and Θ̂0 for the null-hypothesis. If the

ratio is larger than a certain threshold γ the hypothesis H1 is

decided. The two parameters of (40) are the half-width half-

maximum scaling, β, and the offset xo, respectively. Using

this equation the GLRT test statistics become

LG(x) =

∏N

i=1
p
(
xi; x̂o, β̂

)

∏N

i=1
p
(
xi; 0, β̂

) > γ. (42)

The MLEs of β̂ and x̂o are found by fitting the data to

equation 40. The window size N is chosen empirically. In [21]

the threshold for the detector was found by assuming the

performance could be calculated using a χ2 distribution for the

detectors, according to the classical theory [32], [33]. Dong et.

al [34] introduced a robust scheme for online fault detection

of additive faults on an aircraft when identification errors

exist in the model on which FDI is based. Other data driven
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approaches utilize observations on real data to characterize

the distributions of test statistics that are found to differ

significantly from the theoretical χ2 in real applications, see

[35] and [36]. This paper follows the latter approach and

instead of assuming a χ2 determined threshold, the distribution

of the test statistics, ie the LG signal, is determined for a large

sample of data known to have no observed faults. This makes it

possible to provide a reliable estimate of the PFA (probability

of false alarms) under H0. The idea to design tests based on

PFA under H0 was investigated in [37] for a CUSUM test

and in [38] for CUSUM and GLRT with χ2 test statistics.
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Fig. 9. Probability plots of the GLRT output for the fault free part of a
flight.

Fig. 9 shows the GLRT test statistics for a part of a flight

without presence of faults. The data are found to be best fitted

using a Weibull distribution

P (x; bw, kw) = 1− exp

(
−

(
x

bw

)kw

)
. (43)

Estimating the scale parameter bw and shape parameter kw is

straight forward using an MLE or moment estimator method.

The threshold γ that will give a desired low false alarm

probability is obtained from the estimate of the distribution.

The MLE estimates of the parameters for 18 flights are shown

in Fig. 10.

Some flights have a more noisy residual and therefore also

a more noisy GLRT response. This is probably because this

flight is done at higher altitude and on a day with more wind

gusts, which doesn’t fit well with the constant wind model

used in the EKF. The fitted Weibull distribution is used to set

the detector threshold. This is done by looking at the right

tail distribution Q(x; bw, kw) = 1 − P (x; bw, kw) to find the

probability of exceeding a chosen threshold.

Due to differences the athmospheric conditions as well

as differences between aircraft and flight-pattern there is a

variation on the distribution parameters. In Fig. 10 MLEs for

the Weibull parameters for 18 different test flights show that

the shape parameter kw is fairly constant among these flights.

The scale parameter bw however, varies with the conditions
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Fig. 10. Maximum likelihood estimates of Weibull parameters for different
flights together with 99% confidence boundaries (red arrows).

met during the individual flights. By scaling test statistic

data with the estimates of bw, it is hence possible to get

a quite homogeneous set of test statistics data from which

a suitable threshold can be found. The right tail probability

Q(x; bw, kw) = 1− P (x; bw, kw) gives the probability of ex-

ceeding a chosen threshold. The 0.9999 level in the probability

plots give PFA = 0.0001.

PFA = Q(γ; bw, kw) ⇒ γ = bw (− ln (PFA))
1

kw . (44)

With sampling time TS ≃ 0.1s, choosing γ1 = 3000 will give

a false alarm probability of 0.003% per hour of flight for the

data from Fig 10 (bw = 19 and kw = 0.6). This might even be

a conservative choice since data does not follow the Weibull

distribution in the high end of the probability plot in Fig. 9.

The threshold to be selected for a chosen false alarm rate

is clearly higher in conditions with high levels of wind turbu-

lence. An alternative to a fixed threshold could be development

of an adaptive threshold. This has been done for CUSUM-like

tests and for χ2 type test statistics in [39]. Similar results are

not available for a GLRT and Weibull distributed test statistics.

The residual from (35) is treated in a similar way to find

parameters for a suitable GLRT detector and a threshold of

γ2 = 100 is found to give an acceptably low false alarm rate,

below 0.003/h for the worst case level of disturbances. If a

less conservative calculation was made based on the mean of

the Weibull parameters a threshold of γi/2 would give a false

alarm rate of around 0.0004/h. The conservative choice of

threshold is used because of the large variation between the

noise of the different flights makes it too risky to provide with

the lower bound.

Since both residual R1 and R2 are based on estimators

that uses vpitot in their error values, it is important to stop

estimation when a fault on vpitot is detected. Each of the

estimators are stopped when its corresponding GLRT output

reaches a certain fraction of the alarm threshold, a value

of γi/2 was used here. Choosing a lower boundary for this

than the alarm threshold has two important advantages. First

R3, which is based on the difference of the two estimates,
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is independent of vpitot some samples before an alarm is

triggered such that isolation is possible. Second, the chance of

adapting to a faulty state is lower because adaption is stopped

sooner after the fault.

A. Detection Probability

Detection probability PD is much more difficult to assess

than the false alarm probability PFA due to the sparsity of

data where faults are present, the H1 cases. A single recorded

case of a pitot sensor fault is available but the duration of the

fault is fairly short, since the event caused the UAV to get

into uncontrolled conditions that led to a crash. There is no

ground truth available of when to declare the start of a H1

condition, so the statistical assessment of PD that follows is

fairly uncertain.

B. Test statistics for the H1 case

A portion of data for the faulty case is analyzed in this

section. The data belongs to the part where the GLRT detectors

chooses hypothesis H1. Even though the amount of data is

small they could give an indication of detection probability

given the thresholds chosen from the H0 data. The data is

taken from the point where the fault is first deemed present

on the data to three seconds before the first zero crossing of

the residual. This slice of data covers the flight where the

operator still would able to safe the aircraft and is therefore

the most interesting for detection. Fig. 11 shows a probability
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Fig. 11. Plot of the GLRT output in the H1 case for R1. The red line
indicates the threshold γ1.

plot of the data in this H1 case for R1. A Gumbel distribution

is fitted to the data and shown in the plot. With the chosen

threshold, and the chosen data segment, PD is 85%. This is

very satisfactory considering the noise level on the different

measurements.

Another essential aspect is which effect the fault might on

the flight envelope and derived from this on the operability

and the survivability of the aircraft. Coverage, the probability

of being able to detect and recover from a fault, was treated

in [40], and fault masking in [41]. Methods to verify and test

for robust performance under different conditions of faults was

the subject of [42].

The impact of the airspeed sensor fault is related to the level

(magnitude) of faults that could be hidden below a threshold

for the GLR tests. If the avionics and aircraft together have

robust performance within this level, diagnostic performance

could be considered satisfactory.

C. Detector performance

The detection algorithm is verified by adding a number of

artificial faults to real data from flights with similar properties

as shown in Fig. 10. In this way, the actual noise of the system

is preserved. The simulated fault is added to the airspeed

measurement v∗pitot = vpitot + f and the faulty value v∗pitot
is passed on to the detection system. The following fault

scenarios were tested. A stepwise fault

f =

{
f = 0 t < Tf
f = As t ≥ Tf

, (45)

and ramp fault

f =





f = 0 t < Tf

f = srt t ∈
[
Tf ;Tf + Ar

sr

]

f = Ar t > Tf + Ar

sr

(46)

Faults below a certain magnitude will not be detected as

these are considered within the limits of the normal noise

and disturbances on the system. The lower limits of what is

achievable to detect is reported in Table III. Residual R1 has

TABLE III
LOWER LIMITS FOR DETECTION FOR R1 AND R2 .

Residual As Ar sr
R1 6.5 m/s 7.5 m/s 0.50
R2 4.8 m/s 5.0 m/s 0.35

worse performance than R2 because a relatively high threshold

is needed on this residual to take wind gust into account. To

raise the certainty of a fault before an alarm is triggered, both

residuals should indicate a H1 condition before this is reported

to the operator. The values determined for R1 are hence those

that determine the actual performance of the diagnosis system

with fixed threshold. It is seen that a deviation in speed

measurement of about 13% need be tolerable by the control

system. This is reasonable for practical design.

The minimal time available to detect a fault is also impor-

tant, however in the setup where the diagnosis system serves

as an aid to the UAV operator the reaction time of this operator

plays a major role. Practical experiences with airspeed faults

for the Banshee drone indicate that the measurement error

on the pitot tube builds up gradually over time as the fault

progresses. This means that it takes some time before the fault

reaches a level that is critical to the flight of the aircraft, but

also that the detection time is longer. A sudden change in

value will become critical sooner, but is also easier to detect.

Practical experiences have shown that the time elapsed from

the fault begins until control of the aircraft is lost is around

200 s. This observation is based on the loss of several drones,

presumably caused by airspeed sensor faults, but only one

incident was scrutinized in the detail reported here.
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D. Real-time implementation

In order to run the diagnosis online, while flying, the system

must be running fast enough to keep up with the telemetry

datastream coming from the aircraft at 10 Hz-12 Hz. Since the

system is intended to be running on ground and not onboard

the aircraft standard PC hardware can be used. The EKF used

for wind estimation is a straight forward implementation since

the direct expressions for the derivatives are available. The

non-linear observer representation must be discretized in order

to run on the computer. This is done using a 4th order Runge

Kutta method to approximate the differential equations. The

heaviest process is generating test statistics used for the GLRT.

Finding the MLE for the Cauchy distribution for a window of

data is done by optimization. By using the MLE’s from the

previous data window as initialization parameters for the next

data window, this is fast. Running the steps of the algorithm

at the specified rate is therefore not an issue.

If the system should run onboard the aircraft it might be

necessary to decrease systems load since limited processing

power is available here. Also the data is available at a higher

rate and thereby increasing the load of the algorithm. However

since this is not the intended use of this diagnosis system this

is not pursued any further.

E. Detection of real fault

Data from a real incident where the pitot tube gets clogged

is used to test the behavior of the detection system. Velocities
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Fig. 12. Airspeed and GPS velocity for a flight where pitot tube clogging
occurs.

measured by the pitot tube (airspeed) and the GPS (ground

speed) are shown in Fig. 12. The figure shows that the two

measurements follow each other relatively well until around

2140 s into the flight. There is some variation due to the wind

and since the aircraft is flying in a square trajectory the effect

of this is changing. The aircraft is controlled using airspeed

which is why the pitot tube measurement is stable while the

GPS velocity fluctuates. Around t = 2140 s into the flight a

high increase in GPS velocity compared to airspeed is seen.

This is where the pitot tube measurement fails. Because the

autopilot controls the aircraft as it was flying at its nominal

speed a maneuver done around t = 2333 s exceeds the flight

envelope and control of the aircraft is lost. The operator could

have intervened and the aircraft saved had he been made aware

that the pitot tube measurement was faulty.

The air data from the aforementioned flight was fed to the

diagnosis system. The time development of three residuals
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Fig. 13. All three residuals development for the faulty flight data. The vertical
dashed line indicate the beginning of the fault.

described in Table. II is shown in Fig. 13 with an indication

of the faults starting point. As expected a large response is

seen on R1 and R2 which both triggers an alarm. A small

variation is also observed in R3. This is a consequence of

the two airspeed estimators starting running open loop as the

airspeed measurement is assessed being faulty. This means that

after a while the estimates will diverge.

In Fig. 14 and 15 the resulting GLRT output is shown.

Fig. 14 is residual R1 originating by the wind estimating

EKF. Note that the actual flight starts at t = 1100 s and the

diagnosis is initialized a while after this to allow for estimated

parameters to settle. With the chosen threshold detection is

done at t = 2204 s, which is about 64 s from the first signs of

the fault is seen. More importantly this is around 130 s before

control over the aircraft is lost and therefore well within the

operators reaction time.

In Fig. 15 the GLRT output and decision signal for R2, the

residual from the observer is shown. As seen the detection

happens at t = 2202 s and is therefore in the same range as

R1 and well within reasonable time for the operator to react.

IX. HYPOTHESIS TESTING FOR RESET TO NORMAL

Resetting to normal could be essential for airspeed sensor

faults if caused by icing. Testing for return to normal, the H0

condition is confirmed in a classical setting when performing

a CUSUM sequential test where a hypothesis H0 : Ri =
µ0 + w(k); µ0 ≤ µtest where µtest is a limit for declaring

condition as normal. For GLRT, a test can be made that the test

statistics remains below a specified threshold. These standard
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Fig. 14. GLRT output and decision signal from R1. The alarm is raised
at t = 2204 s. The solid horizontal line is the threshold for alarms and the
dashed line is the threshold for stopping estimation.
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Fig. 15. GLRT output and decision signal from R2. The alarm is raised
at t = 2202 s. The solid horizontal line is the threshold for alarms and the
dashed line is the threshold for stopping estimation.

approaches for confirmation of reset to normal fall short when

the aircraft makes maneuvers, when reaching the limits of

flight envelope, where faulty readings of speed shortly coincide

with the estimates. This is seen in the time-history plots as

instants after the fault occurred where residuals cross zero at

a certain rate to change sign and the GLRT detector(s) cross

the detection threshold.

A. Residual zero-crossing

This phenomenon is caused by the residual value crossing

zero and changing sign. For a short period of time H0 will

be considered true if only the residual is considered. To cope

with this issue, the derivative of the residual is also taken into

account. The zero crossing is characterized by a high value

of the residuals derivative which is different from what would

happen if the residual went back to a zero value. The derivative

of the residual can be estimated by the slope a straight line
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Fig. 16. GLRT output and decision signal from R3.

approximation over a small window. Doing this moderates the

noise influence.

Using least squares regression the derivative estimate over

a window of size N is given by

̂̇R1 =

N
∑

n∈N

t(n)R1(n)−
∑

n∈N

t(n)
∑

n∈N

R1(n)

N
∑

n∈N

t(n)2 −
∑

n∈N

t(n)
∑

n∈N

t(n)
. (47)

The same expression is used to create
̂̇R2. Combining the

derivative with its matching residual in vector form R1 =[
R1

̂̇R1

]T
gives the desired properties.
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Fig. 17. Residual R1 versus
̂̇R1. The red ellipsis indicates the boundary of

fault free behavior.

The trajectories of R1 and
̂̇R1 are shown in Fig. 17 for a

time-slice before and after the fault occurs. An ellipsis in the

center shows the part of the phase plane to which the signal

should be within to be considered fault free.
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The vector based detection is only used when the alarm is

already raised to make to signal strongly detectable and not

sensitive towards residual zero crossings. The vector based

setup could be used in detecting faults but the derivative part

is very sensitive to noise so the risk of false alarms would

be greater. Since the scalar based setup is more robust this is

used instead.

In most of the practical cases where a fault is discovered

in the airspeed measurement system, the aircraft would be

brought down in a controlled manner as quickly as possible.

In these cases there is no value of being able to detect whether

the system returns to a fault free state or not and therefore a

suitable hysteresis curve around the residual would be enough

to reject the zero crossings. However, in some cases the fault

is due to icing of the pitot tube and reducing the altitude to

a warmer level might recover from the fault. In this case it is

essential to be certain that normal behavior is restored.

The formal test quantity R4 is

H0 : R4 =

(
R1

Rt
1

)2

+



̂̇R1

Ṙt
1




2

≤ 1, (48)

where Rt
1 and Ṙt

1 are the axes of the ellipse constraining the

normal operation range in Fig. 17. A formal change detection

test is easily derived for R4 to confirm return to normal. The

condition from this test should be present simultaneously with

the H0 from the GLRTs on R1 to R3 to confirm return to

normal from an airspeed sensor fault.

X. CONCLUSION

Fault diagnosis of the airspeed measurement system for

small fixed wing UAV’s was considered in this paper. A

diagnosis setup based on standard UAV sensor readings and a

basic thrust model were suggested using ground speed from

an onboard GPS unit. Two supplemental estimates of air

speed were obtained to calculate residuals. Wind speed and

direction were estimated to provide one such estimate when

adding the ground speed vector. The second airspeed estimate

was obtained from thrust-speed curves employing a non-linear

adaptive observer to estimate the engine thrust.

A hypothesis test based on GLRT was designed using

past flight-data recordings to find detection thresholds to give

desired low probability of false alarms. Tuning, in this way, to

the physical noise and disturbances on the aircraft, this ensured

a very low false alarm rate. Detection probability was analyzed

from flight data where a genuine fault occurred and detector

design was suggested to be based on balancing estimated

false alarm and detection probabilities. For a recorded case

of a genuine fault, that later caused a crash of the UAV,

detection was obtained with 85% of the data exceeded the

chosen threshold after the anticipated onset.

The method was verified both using simulated faults and the

real data from an UAV lost due to an airspeed sensor fault.

The simulation shows that, with the false alarm rate chosen,

that speed sensor faults exceeding 6.5 m/s are guaranteed

detectable, which was judged to be an acceptable level that can

be handled within robustness limits for conventional autopilot

controls. With false alarm rate below 0.003/h with normal

wind disturbances, detection of the real life fault was achieved

130 s before radio contact was lost with the aircraft. This time

window would leave ample time for the operator to react and

bring the aircraft down safely.
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APPENDIX

A. Reference frames

1) Earth fixed earth centred frame (ECEF): A right-hand

frame with origin at the Earth center. The x-axis is ex-

tended through the intersection between the prime-median and

Equator and the z-axis points towards the north pole. GPS

measurements are given in this system.

2) Vehicle carried earth frame: Standard North, East,

Down system following the air vehicle around on the surface

on the earth reference ellipsoid.

3) Body frame: The axes are coinciding with the aircraft

body regardless of attitude and has origin in the aircraft center

of mass. The x-axis is forward through the aircraft’s nose, the

y-axis to the right, and the z-axis pointing out of the belly.

4) Wind frame: Is centered at the aircraft’s center of mass,

and has its x-axis along the relative direction of wind. The

angle of attack α and the side slip angle β describe a rotation

from wind frame to body frame.

B. Observer Stability Proof

The lower bound for the observer gain is derived in this

section. To start with the gain functions used for the adaptive

parameters Θuu and Θuuα are assumed Lipschitz according

to the following relations

‖F1(u, t)− F1(ū, t)‖ ≤ γ1‖u− ū‖, (49)

‖F2(u, t)− F2(ū, t)‖ ≤ γ2‖u− ū‖. (50)

The assumptions in (49) and (50) is valid because the physical

values of the aircraft are bounded in the following way

u ∈ [0;umax] ,

α ∈ [αmin;αmax] ,

n ∈ [0;nmax] .

Applying the expressions for F1(u, t) and F2(u, t) in (31) the

following Lipschitz constants are found

γ1 = ̺Sumax

m
, γ2 =

̺Sαmaxumax

m
. (51)

For the observer to be asymptotic stable the error x̃ = x−
x̂ = 0. For this to be true a Lyapunov function V(x̃) must

satisfy theorem 4.8 in [43]. This states that the following must

be satisfied.

1) Uniform asymptotic stability: Let x = 0 be an equi-

librium point for ẋ = f(x, t) and D ⊂ R
n be a domain

containing x = 0. Let V : [0;∞[×D → R be a continuously

differentiable function such that

W1(x) ≤ V(x, t) ≤W2(x) (52)

and
∂V

∂t
+
∂V

∂x
f(x, t) ≤ 0, (53)

∀t ≥ 0 and ∀x ∈ D where W1(x) and W2(x) are continuous

positive definite functions on D. Then, x = 0 is uniformly

asymptotically stable.

The following function is chosen as a Lyapunov function

candidate

V(x̃, t) = x̃TP x̃, (54)

where P is a diagonal matrix with trace [a, b, c] where a, b
and c are elements of size 1 with units to allow addition of

the terms in the quadratic form Eq. 54. These unit conversion

factors are disregarded in the derivation below.

V(x̃, t) = x̃Tx̃ = ũ2 + Θ̃2

uu + Θ̃2

uuα. (55)
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Choosing the positive definite functions

W1(x̃) =
1

2
V(x̃, t) and W2(x̃) = 2V(x̃, t),

satisfy (52). The time derivative of V(x̃) is zero because no

explicit time dependence is present

∂V

∂t
= 0. (56)

The state derivative of V(x̃) is

∂V

∂x̃
f(x̃, t) =

[
2ũ 2Θ̃uu 2Θ̃uuα

]
f(x̃, t) (57)

= 2ũ ˙̃u+ 2Θ̃uu
˙̃Θuu + 2Θ̃uuα

˙̃Θuuα.

From this (53) becomes

2ũ ˙̃u+ 2Θ̃uu
˙̃Θuu + 2Θ̃uuα

˙̃Θuuα ≤ 0. (58)

The expression for ˙̃u given in (35) was

˙̃u =

(
Tnun

m
− L

)
ũ+ F1(u, t)Θuu (59)

−F1(û, t)Θ̂uu + F2(u, t)Θuuα − F2(û, t)Θ̂uuα

Inserting in (58)

2ũ

((
Tnun

m
− L

)
ũ+ F1(u, t)Θuu (60)

−F1(û, t)Θ̂uu + F2(u, t)Θuuα − F2(û, t)Θ̂uuα

)

+2Θ̃uu
˙̃Θuu + 2Θ̃uuα

˙̃Θuuα.

This gives

2ũ

((
Tnun

m
− L

)
ũ+ F1(u, t)Θuu − F1(û, t)Θuu (61)

+F2(u, t)Θuuα − F2(û, t)Θuuα)

+ 2Θ̃uu
˙̃Θuu + 2Θ̃uuα

˙̃Θuuα

+2ũF1(û, t)Θ̃uu + 2ũF2(û, t)Θ̃uuα

≤ 2ũ

((
Tnun

m
− L

)
ũ+ γ1‖ũ‖max (‖Θuu‖)

+γ2‖ũ‖max (‖Θuuα‖)) .

As seen above having the adaptive gains as functions F1 and

F2 as suggested in [2] simplifies the derivation significantly.

The above equation should according to (53) be compared to

2ũ

((
Tnun

m
− L

)
ũ+ γ1‖ũ‖max (‖Θuu‖) (62)

+γ2‖ũ‖max (‖Θuuα‖)
)

≤

2ũ2
(
Tnun

m
− L+ γ1 max (‖Θuu‖)

+γ2 max (‖Θuuα‖)
)

≤

Tnun

m
− L+ γ1 max (‖Θuu‖)

+γ2 max (‖Θuuα‖) ≤ 0.

From this it is seen that the gain L should satisfy the

following inequality in order for the observer to be uniform

asymptotically stable

L ≥
Tnunmax

m
+ γ1 max (‖Θuu‖)+ γ2 max (‖Θuuα‖). (63)

Inserting the maximum value for the worst case the gain ends

up being

L ≥
Tnunmax + ̺Sumax (max (‖Θuu‖) + αmax (‖Θuuα‖))

m
.

(64)

The derivation above also holds for the case where Θuuα = 0.

Søren Hansen received the MScEE degree in 2009
and the PhD entitled ”Fault Diagnosis and Fault
Handling for Autonomous Aircraft” was obtained
in Jan. 2013 both from the Technical University of
Denmark, DTU. He is now assistant prof. at DTU.
His research interests are robots and autonomous
vehicles with emphasis on fault diagnosis and fault
tolerance.

Mogens Blanke (M 1974, SM 1985) received the
MScEE degree in 1974 and the PhD degree in 1982
from the Technical University of Denmark, DTU.
He was Systems Analyst with the European Space
Agency 1975–76, with DTU 1977-84, was Head of
Division at Lyngsø Marine 1985-89, Professor at
Aalborg University 1990–99. He is now (2000 –)
Professor in Automation and Control at DTU and
since 2005 also Adjunct Professor at the Norwegian
University of Science and Technology. His research
interests are automation and control in general and

diagnosis and fault tolerant control as his area of special focus. Application
areas include autonomous vehicles in space, air, on land and in the marine
environment.
Prof. Blanke has held various positions in the International Federation of Au-
tomatic Control, including founding member and first Chair of the Technical
Committee on Marine Systems, Coordinating Committee Chair and Member
of Council. He is also a member of the IFAC SAFEPROCESS Technical
Committee. He is Associate Editor for Control Engineering Practice and
Technical Editor for IEEE Transactions of Aerospace and Electronic Systems.


