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Abstract—Pattern recognition of myoelectric signals for the 

control of prosthetic devices has been widely reported and 

debated.  A large portion of the literature focuses on offline 

classification accuracy of pre-recorded signals.  Historically, 

however, there has been a semantic gap between research 

findings and a clinically viable implementation.   Recently, 

renewed focus on prosthetics research has pushed the field to 

provide more clinically relevant outcomes.  One way to work 

towards this goal is to examine the differences between research 

and clinical results.  The constrained nature in which offline 

training and test data is often collected compared to the 

dynamic nature of prosthetic use is just one example.  In this 

work, we demonstrate that variations in limb position after 

training can have a substantial impact on the robustness of 

myoelectric pattern recognition.   

I. INTRODUCTION 

HERE is a significant body of research describing the 

use of  pattern recognition of myoelectric signals to 

control prosthetic devices [1-7].  A large majority of this 

work focuses mainly on improving the offline classification 

accuracy of pre-recorded signals.  While these results are all 

important they fail to address, what may be described as, a 

semantic gap between research findings and a clinically 

viable implementation.  Recently, renewed international 

interest towards advancing prosthetics research has pushed 

the field to provide more clinically relevant outcome 

measures. Lock et al. [8] showed only a very weak 

correlation between classification accuracy and usability.  

Hargrove et al. [9] found that by including transient 
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contractions in their training data, they could simultaneously 

improve the results of a virtual clothespin placement task and 

decrease standard classification accuracy.  Kuiken et al. [10] 

introduced alternative quantitative usability metrics focused 

on class selection and motion completion times. 

 While developing new, more meaningful, outcome 

measures is an essential part of advancing myoelectric 

control, it is also informative to examine the source of the 

disparity between current research and clinical results.  One 

difference relates to the way that myoelectric data are 

acquired for conventional offline classification.  In research, 

for example, forearm electromyogram (EMG) data are 

commonly acquired with the subject in a seated position, 

with their elbow resting on the arm of a chair.  This is done 

because it makes it easier for the subject to perform 

repeatable contractions across trials, resulting in higher 

classification accuracies.  In a clinical implementation, 

training data may be collected in the same way but testing 

usually consists of more task oriented usage scenarios.  This 

requires the user to not only elicit coordinated contractions, 

but also to elicit those contractions in a wide variety of limb 

positions.  Consider, momentarily, the task of reaching for a 

glass in a cupboard, filling that glass with water, and then 

taking a drink.  It quickly becomes apparent that the typical 

prosthetic user requires that the remnant and prosthetic limb 

operate in a multitude of positions.   

Pattern recognition of myoelectric signals, such as that 

described by Englehart and Hudgins [1], relies on the 

generation of differentiable and repeatable contractions.  

Changes in these patterns can erode the performance of the 

classifier and may result in unusable controllers.  Hargrove 

et al. [11] showed that electrode displacement, if 

unaccounted for during training, could degrade pattern 

recognition performance.  Similarly, changes in the shape 

and length of muscles caused by limb positioning can result 

in a form of shift between the signal source and electrode.  

In this work, we investigate the effect of changing limb 

position on classification accuracy.     

II. METHODOLOGY 

A. Experimental Protocol 

EMG data corresponding to eight classes of motion were 

collected from eight healthy normally limbed subjects (7 

male, 1 female). All experiments were approved by the 
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University of New Brunswick‟s Research Ethics Board. The 

subjects were fitted with a cuff made of thermo formable gel 

(taken from a 6mm Alpha liner by Ohio Willow Wood) that 

was embedded with eight equally spaced pairs of stainless 

steel dome electrodes.  The cuff was placed around the right 

dominant forearm (7 right, 1 left), proximal to the elbow, at 

the position with largest muscle bulk. A reference electrode 

was placed over the bone of the elbow.  Two analog 3-axis 

accelerometers (Freescale MMA7260QT MEMS) were used 

in order to record limb position.  The first was affixed 

adjacent to the cuff on the forearm.  The second was placed 

over the biceps brachii, aligned with the forearm 

accelerometer when the arm was straight and not rotated.  

Both accelerometers were configured to have a sensitivity of 

800mV/g at a range of ±1.5g. 

The eight channels of EMG were differentially amplified 

using remote AC electrode-amplifiers (BE328, by Liberating 

Technologies, Inc), and low pass filtered with a cutoff 

frequency of 500Hz.  Finally, all data, including the 6 

accelerometer channels (ACCEL), were acquired using a 16 

channel 16-bit analog-to-digital converter (USB1616FS from 

Measurement Computing
TM

) sampling at 1kHz. 

Subjects were prompted to elicit contractions 

corresponding to the following eight classes of motion: wrist 

flexion/extension, wrist pronation/supination, hand open, 

power grip, pinch grip, and a no motion/rest class.  Each 

repetition was sustained for 3 seconds and a 3 second rest 

was given between subsequent repetitions.  This was 

repeated twice in each of the following limb positions: 

 

P1: Arm hanging at side, elbow bent at 90° 

P2: Straight arm reaching up (45° from vertical) 

P3: Straight arm hanging at side 

P4: Straight arm reaching forward (horizontal) 

P5: Torso horizontal, straight arm hanging 

P6: Humerus hanging at side, elbow fully bent 

P7: Humerus reaching forward, elbow bent at 90°           

      (causing forearm to be vertical) 

P8: Humerus reaching forward, elbow bent at 90°    

      (humerus rotated inward so forearm is horizontal) 

 

Subjects were encouraged to perform contractions at a 

repeatable „medium‟ force level and given rest periods 

between trials to minimize fatigue.  Some patients noted 

minor shoulder (deltoid) fatigue.  Figure 1 shows examples 

of the eight the different limb positions used. 

B. Data Processing 

As this work represented an introductory look at the effect 

of position on pattern recognition, it was suitable to test the 

effects using a known control scheme, such as the one 

described by Englehart and Hudgins [1].  They showed that a 

simple time-domain (TD) feature extraction combined with a 

linear discriminant analysis (LDA) classifier could be used 

as an effective real-time control scheme for myoelectric 

control.  Because of its relative ease of implementation and 

high performance, this system has been widely accepted.    

EMG data were notch filtered at 60Hz using a 3
rd

 order 

Butterworth filter in order to remove any power line 

interference.  Data were segmented for feature extraction 

using 250ms windows, with processing increments of 50ms.   

TD features were extracted from the EMG data, and the 

average value of the ACCEL data was calculated for each 

frame/window.  All classifiers were trained using data from 

the first trial and tested using data from the second trial. 

 

 

Figure 1: Limb positions collected 

III. RESULTS 

A. EMG Results 

Eight different position-specific classifiers were trained; 

each one using data from only one of the limb positions, but 

tested using data from all positions.  The resulting matrix of 

inter-position errors is shown in Table 1. Each entry in the 



  

table represents the average error of all motion classes across 

all subjects.  The vertical axis labels denote the training 

position and the horizontal axis labels denote the testing 

position.  Note that the classification errors shown in the 

diagonal (which represent the intra-position classification 

accuracies) are all quite low.  Conversely, there is a 

significant increase in inter-position classification errors, 

represented by the off-diagonal entries.  The mean intra-

position classification error was 6.9%, whereas the mean 

inter-position error was 35.0%.   

 

Table 1: Matrix of inter-position 

EMG based classification error (%) 

 P1 P2 P3 P4 P5 P6 P7 P8 

P1 4.7 44.4 28.5 35.6 32.7 35.7 33.6 46.6 

P2 35.4 6.7 27.5 23.1 27.5 46.0 34.3 45.2 

P3 31.3 33.1 3.3 19.9 13.6 45.6 40.9 46.9 

P4 33.3 36.8 17.7 5.1 26.2 44.6 40.0 48.4 

P5 27.9 32.7 19.1 18.5 5.7 58.0 35.4 44.5 

P6 27.8 47.2 37.0 37.0 44.4 8.9 26.4 41.7 

P7 23.2 35.0 34.1 30.2 27.8 30.3 11.3 34.4 

P8 37.7 41.2 41.3 41.3 39.2 41.1 32.1 9.4 

 

Table 1 indicates that the variation introduced by changes 

in limb position is large enough to obscure some of the inter-

class differences.  As a result, another classifier was trained 

using data pooled from all positions to determine if the 

classifier could learn these inter-position differences.  Figure 

2 shows the resulting classification errors, broken up by test 

position.  The mean error for all classes was 7.4%.   

 

 
Figure 2: EMG classification error by position when 

including data from all positions in training 

 

B. Accelerometer Results 

In order to take advantage of the lower intra-position errors 

(shown in green in Table 1), a position specific control 

scheme would require knowledge of the limb position.  In 

order to test this, three different position classifiers were 

trained using data from the two accelerometers (ACCEL).   

 
Figure 3: Classification error of limb position  

when using ACCEL data 

The first classifier was trained using data from only the 

ACCEL on the forearm, the second used only data from the 

ACCEL on the humerus, and the third was trained using data 

from both.  It should be noted that the forearm ACCEL could 

more easily be implemented into an existing trans-radial 

socket design, and should therefore be preferred.  Figure 3 

shows the position classification errors for all three cases.  

Figure 4 shows the results of using the position classification 

outputs to select position-specific classifiers for EMG-based 

motion classification.  

 

 
Figure 4: Motion classification error when using a dual-

stage approach (classification of position using ACCEL, 

followed by position-specific EMG classification) 

 

C. Combined EMG and Accelerometer Results 

An alternative to the dual-stage approach above (selection 

of a position specific EMG classifier based on a discrete 

position classification) is to use the ACCEL data as an 

additional input to a multi-sensor EMG-ACCEL classifier.  

In this approach, the ACCEL data was combined with the 

EMG data, thereby increasing the dimensionality of the LDA 

space, and removing the need for determination of a discrete 

position.  Figure 5 shows the result of combining one or both 

ACCEL with the EMG into a single classifier and training 

using data from all positions.  Note that in all positions, the 

classifiers that included ACCEL data outperformed the EMG 

only classifier.  

 



  

 
Figure 5: Motion classification error by position when 

using EMG only and when including ACCEL data 

IV. DISCUSSION 

These results indicate that EMG classification error is 

strongly dependent on limb position.  This dependence may 

be attributable to variations in muscle recruitment (for limb 

stabilization) or muscle geometry (resulting in a form of shift 

with respect to the electrodes).  As a result, Iit may be 

insufficient to train a prosthetic control scheme in a single 

position and expect it to translate well to multi-position use. 

The degradation shown when changing between positions 

may contribute to the differences seen between published 

classification accuracy results and observed clinical 

performance.   

When training in a single position, it was shown that 

classification rates were much higher within a given position 

than they were between positions.  By using ACCEL data to 

classify limb position, it was shown that position specific 

classifiers could be used to reduce the motion classification 

error substantially.  Note that while the overall position error 

(shown in Figure 3) is higher when using only the forearm 

ACCEL, the effect on motion classification (shown in Figure 

4) is not as significant.  A possible explanation for this is that 

humeral position/orientation (which was often misclassified 

when using the forearm ACCEL) may have less influence on 

the EMG than does forearm position/orientation. 

 While these results show that it is possible to alleviate 

position effects on EMG based pattern recognition, further 

analysis is required.  The mitigation techniques discussed 

herein  all require collection of training data in multiple 

positions.  This may prove to be cumbersome for the end 

prosthetic user, and therefore, an ideal controller would 

provide position invariant control after being trained in a 

single position. 

This work represents a pilot study that is part of a larger 

investigation aimed at improving the clinical robustness of 

myoelectric control.  The results shown here indicate that 

facilitating position invariant myoelectric control through 

methods such as feature selection, data projection, multi-

sensor systems, or by other means could be an important part 

of this work. 
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