Vis enkel innførsel

dc.contributor.authorYang, Bingbing
dc.contributor.authorBai, Lu
dc.contributor.authorLi, Tingting
dc.contributor.authorDeng, Liyuan
dc.contributor.authorLiu, Lei
dc.contributor.authorZeng, Shaojuan
dc.contributor.authorHan, Jiuli
dc.contributor.authorZhang, Xiangping
dc.date.accessioned2024-02-22T10:04:58Z
dc.date.available2024-02-22T10:04:58Z
dc.date.created2021-11-02T11:48:33Z
dc.date.issued2021
dc.identifier.citationJournal of Membrane Science. 2021, 628 119264-?.en_US
dc.identifier.issn0376-7388
dc.identifier.urihttps://hdl.handle.net/11250/3119242
dc.description.abstractEfficient separation and recovery of ammonia (NH3) is essential for environmental protection and resource utilization. In this work, hybrid membranes for NH3 separation through multiple-site interaction were developed by combining the unique features of ionic liquids (ILs) and a midblock-sulfonated block copolymer. The functionalized ILs ([2-Mim][NTf2] and [Im][NTf2]) with ammonia interaction sites were incorporated into the Nexar™ matrix, which greatly improves the affinity for NH3 over nitrogen (N2) and hydrogen (H2). Benefited from the self-assembly of the block copolymer, the hybrid membranes primarily exhibit lamellar morphology. More continuous ionic domains with well-distributed ILs were formed in the hybrid membranes, contributing to forming interconnected channels for enhanced gas transport. In this case, addition of the ILs into the Nexar matrix significantly enhances NH3 separation performance. Nexar/[Im][NTf2]-25 membrane achieves the highest NH3 permeability of 3565 Barrer and a maximum NH3/N2 and NH3/H2 ideal selectivity of 1865 and 364, respectively. The significantly enhanced NH3 permeation compared with the neat Nexar membrane indicates the positive role of ILs in the hybrid membranes.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.titleSuper selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranesen_US
dc.title.alternativeSuper selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber119264-?en_US
dc.source.volume628en_US
dc.source.journalJournal of Membrane Scienceen_US
dc.identifier.doi10.1016/j.memsci.2021.119264
dc.identifier.cristin1950561
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel