Show simple item record

dc.contributor.authorBlachowski, Jan
dc.contributor.authorEllefmo, Steinar Løve
dc.date.accessioned2023-11-23T07:23:04Z
dc.date.available2023-11-23T07:23:04Z
dc.date.created2023-04-28T10:54:46Z
dc.date.issued2023
dc.identifier.citationMinerals. 2023, 13 (3), .en_US
dc.identifier.issn2075-163X
dc.identifier.urihttps://hdl.handle.net/11250/3104211
dc.description.abstractSublevel caving mining causes surface deformation in three distinct zones parallel to the extracted deposit. Most of the published research is focused on the extent of the caved and fracture zones. The extent of the largest, continuous deformation zone and, thus, the influence of the mine on its surroundings is not yet fully documented. This study aimed at assessing the extent of surface deformation caused by the mining of a steep iron ore deposit in Norway. For this purpose, an innovative combination of the permanent scatterer (PS) InSAR technique and line-of-sight (LOS) movement data provided by a public web service and geographic information system (GIS) spatial interpolation methods was proposed. Two ascending tracks’ (A102 and A175) datasets spanning the period of 3 June 2016–11 October 2021 were used. Three interpolation methods, inverse distance weighted (IDW), radial basis function (RBF) and ordinary kriging (OK), were analysed in terms of their performance for mapping continuous deformation. The RBF and OK methods with anisotropy returned the lowest root mean square error (RMSE) values. The obtained difference in the maximum extent of deformation amounted to 26 m for the track A102 dataset and 44.5 m for the track A175 dataset, depending on the interpolation method used. The estimated maximum extent of the continuous deformation zone on the hanging-wall side of the sublevel caving mining operation is 663 m. This corresponds to a limit angle of 38.7 degrees, which is lower than in previously published studies. The results show that the influence of sublevel caving mining on the surroundings can be greater than previously thought. The usefulness of public PSInSAR data available from a national online service and spatial interpolation methods for determining the area of mining terrain deformations has been proven. The proposed approach provides a low-cost alternative and complementation for surveys performed about the mine and it is argued that it should be implemented as part of the mine’s monitoring system.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMining Ground Deformation Estimation Based on Pre-Processed InSAR Open Data—A Norwegian Case Studyen_US
dc.title.alternativeMining Ground Deformation Estimation Based on Pre-Processed InSAR Open Data—A Norwegian Case Studyen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume13en_US
dc.source.journalMineralsen_US
dc.source.issue3en_US
dc.identifier.doi10.3390/min13030328
dc.identifier.cristin2144123
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal