Vis enkel innførsel

dc.contributor.authorIndimath, Shivanandan
dc.contributor.authorFiorentini, Stefano
dc.contributor.authorBøklepp, Bjarne Rosvoll
dc.contributor.authorAvdal, Jørgen
dc.contributor.authorJohansen, Tonni Franke
dc.contributor.authorMåsøy, Svein-Erik
dc.date.accessioned2023-11-06T08:46:47Z
dc.date.available2023-11-06T08:46:47Z
dc.date.created2023-08-29T09:19:31Z
dc.date.issued2023
dc.identifier.citationScientific Reports. 2023, 13 (1), .en_US
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/11250/3100688
dc.description.abstractEarly detection of gas influx in boreholes while drilling is of significant interest to drilling operators. Several studies suggest a good correlation between ultrasound backscatter/attenuation and gas volume fraction (GVF) in drilling muds, and thereby propose methods for quantification of GVF in boreholes. However, the aforementioned studies neglect the influence of bubble size, which can vary significantly over time. This paper proposes a model to combine existing theories for ultrasound backscatter from bubbles depending on their size, viz. Rayleigh scattering for smaller bubbles, and specular reflection for larger bubbles. The proposed model is demonstrated using simulations and experiments, where the ultrasound backscatter is evaluated from bubble clouds of varying bubbles sizes. It is shown that the size and number of bubbles strongly influence ultrasound backscatter intensity, and it is correlated to GVF only when the bubble size distribution is known. The information on bubble size is difficult to obtain in field conditions causing this correlation to break down. Consequently, it is difficult to reliably apply methods based on ultrasound backscatter, and by extension its attenuation, for the quantification of GVF during influx events in a borehole. These methods can however be applied as highly sensitive detectors of gas bubbles for GVF ≥1% vol.en_US
dc.language.isoengen_US
dc.publisherNatureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEffect of bubble size on ultrasound backscatter from bubble clouds in the context of gas kick detection in boreholesen_US
dc.title.alternativeEffect of bubble size on ultrasound backscatter from bubble clouds in the context of gas kick detection in boreholesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume13en_US
dc.source.journalScientific Reportsen_US
dc.source.issue1en_US
dc.identifier.doi10.1038/s41598-023-38937-6
dc.identifier.cristin2170434
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal