Vis enkel innførsel

dc.contributor.authorGauthier, Francois Jean Rene
dc.contributor.authorGogineni, Vinay Chakravarthi
dc.contributor.authorWerner, Anders Stefan
dc.contributor.authorHuang, Yih-Fang
dc.contributor.authorKuh, Anthony
dc.date.accessioned2023-11-03T08:17:19Z
dc.date.available2023-11-03T08:17:19Z
dc.date.created2023-10-25T09:11:02Z
dc.date.issued2023
dc.identifier.issn2373-7778
dc.identifier.urihttps://hdl.handle.net/11250/3100399
dc.description.abstractThis paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models while maintaining the privacy of every individual device. The proposed approach exploits similarities among different models to provide a more relevant experience for each device, even in situations with diverse data distributions and disproportionate datasets. Furthermore, to ensure a secure and efficient approach to collaborative personalized learning, we study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges. Our mathematical analysis shows that the proposed privacy-preserving PGFL algorithm converges to the optimal cluster-specific solution for each cluster in linear time. It also reveals that exploiting similarities among clusters could lead to an alternative output whose distance to the original solution is bounded and that this bound can be adjusted by modifying the algorithm's hyperparameters. Further, our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy. Finally, the effectiveness of the proposed PGFL algorithm is showcased through numerical experiments conducted in the context of regression and classification tasks using some of the National Institute of Standards and Technology's (NIST's) datasets, namely, MNIST, and MedMNIST.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePersonalized graph federated learning with differential privacyen_US
dc.title.alternativePersonalized graph federated learning with differential privacyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© Copyright 2023 IEEE - All rights reserved.en_US
dc.source.journalIEEE Transactions on Signal and Information Processing over Networksen_US
dc.identifier.doi10.1109/TSIPN.2023.3325963
dc.identifier.cristin2188172
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal