Vis enkel innførsel

dc.contributor.authorOut, Frenk
dc.contributor.authorCortés-Ortuño, David
dc.contributor.authorFabian, Karl
dc.contributor.authorvan Leeuwen, Tristan
dc.contributor.authorde Groot, Lennart V.
dc.date.accessioned2023-09-13T09:22:43Z
dc.date.available2023-09-13T09:22:43Z
dc.date.created2022-06-09T16:06:05Z
dc.date.issued2022
dc.identifier.citationGeochemistry Geophysics Geosystems. 2022, 23 (4), 1-18.en_US
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/11250/3089096
dc.description.abstractThe recently developed Micromagnetic Tomography (MMT) technique combines advances in high resolution scanning magnetometry and micro X-ray computed tomography. This allows precise recovery of magnetic moments of individual magnetic grains in a sample using a least squares inversion approach. Here we investigate five factors, which are governing the mathematical validity of MMT solutions: grain concentration, thickness of the sample, size of the sample's surface, noise level in the magnetic scan, and sampling interval of the magnetic scan. To compute the influence of these parameters, we set up series of numerical models in which we assign dipole magnetizations to randomly placed grains. Then we assess how well their magnetizations are resolved as function of these parameters. We expanded the MMT inversion to also produce the covariance and standard deviations of the solutions, and use these to define a statistical uncertainty ratio and signal strength ratio (SSR) for each solution. We show that the magnetic moments of a majority of grains under the inspected conditions are solved with very small uncertainties. However, increasing the grain density and sample thickness carry major challenges for the MMT inversions, demonstrated by uncertainties larger than 100% for some grains. Fortunately, we can use the SSR to extract grains with the most accurate solutions, even from these challenging models. Hereby we have developed a quick and objective routine to individually select the most reliable grains from MMT results. This will ultimately enable determining paleodirections and paleointensities from large subsets of grains in a sample using MMT.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleA First-Order Statistical Exploration of the Mathematical Limits of Micromagnetic Tomographyen_US
dc.title.alternativeA First-Order Statistical Exploration of the Mathematical Limits of Micromagnetic Tomographyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-18en_US
dc.source.volume23en_US
dc.source.journalGeochemistry Geophysics Geosystemsen_US
dc.source.issue4en_US
dc.identifier.doi10.1029/2021GC010184
dc.identifier.cristin2030561
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal