Show simple item record

dc.contributor.authorAndré, Victor
dc.contributor.authorCostas Pino, Miguel
dc.contributor.authorLangseth, Magnus
dc.contributor.authorMorin, David Didier
dc.date.accessioned2023-08-14T11:18:12Z
dc.date.available2023-08-14T11:18:12Z
dc.date.created2023-02-03T08:51:26Z
dc.date.issued2023
dc.identifier.issn0734-743X
dc.identifier.urihttps://hdl.handle.net/11250/3083825
dc.description.abstractThis paper presents an artificial neural network (NN) modelling approach to represent a connector model in large-scale finite element explicit crash simulations. The NN model was established to describe the local force–deformation response of point connectors in automotive applications, namely self-piercing rivets and flow-drill-screws. The study is limited to two-sheet connections and to the use of feedforward NNs. Successive loading and unloading of the joints is not studied. Various architectures and complexities of the feedforward NNs were evaluated and trained based on data generated from a constraint model found in the literature. This forms a proof of concept for implementing a modelling technique not based on physics-motivated constitutive equations. The impact of the network complexity and training data diversity was investigated. The NN model was implemented as a cohesive zone model for incremental force prediction in an explicit finite element code. In order to have a wide selection of joint types, five different joint configurations including self-piercing rivets (SPR) and flow-drill screws (FDS) were investigated. Numerical results from the NN model were compared to physical tests from all joint configurations. It was shown that a rather basic machine learning technique like a feedforward NN was able to reproduce path-dependent force–deformation behaviour for the application in explicit FE solvers.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectArtificial Neural Networksen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMatematisk modellering og numeriske metoderen_US
dc.subjectMathematical Modelling and numerical methodsen_US
dc.subjectMultiskalasimuleringen_US
dc.subjectMultiscale modellingen_US
dc.subjectNevrale nettverken_US
dc.subjectNeural networksen_US
dc.subjectBilindustrien_US
dc.subjectAutomobile industryen_US
dc.subjectElementmetodenen_US
dc.subjectFinite Element Methoden_US
dc.subjectMaskinlæringen_US
dc.subjectMachine learningen_US
dc.subjectFE simuleringen_US
dc.subjectFE modellingen_US
dc.subjectStructural Engineeringen_US
dc.subjectStructural Engineeringen_US
dc.subjectIkkelineære og dynamiske konstruksjonsproblemeren_US
dc.subjectNonlinear and dynamic structural analysisen_US
dc.titleNeural network modelling of mechanical joints for the application in large-scale crash analysesen_US
dc.title.alternativeNeural network modelling of mechanical joints for the application in large-scale crash analysesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Konstruksjonsteknologi: 533en_US
dc.subject.nsiVDP::Construction technology: 533en_US
dc.subject.nsiVDP::Konstruksjonsteknologi: 533en_US
dc.subject.nsiVDP::Construction technology: 533en_US
dc.subject.nsiVDP::Konstruksjonsteknologi: 533en_US
dc.subject.nsiVDP::Construction technology: 533en_US
dc.source.volume177en_US
dc.source.journalInternational Journal of Impact Engineeringen_US
dc.identifier.doi10.1016/j.ijimpeng.2023.104490
dc.identifier.cristin2122617
dc.relation.projectNorges forskningsråd: 237885en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal