Vis enkel innførsel

dc.contributor.authorSimensen, Vetle
dc.contributor.authorSchulz, Christian
dc.contributor.authorKarlsen, Emil
dc.contributor.authorBråtelund, Signe
dc.contributor.authorBurgos, Idun Maria Tokvam
dc.contributor.authorThorfinnsdottir, Lilja Brekke
dc.contributor.authorGarcia Calvo, Laura
dc.contributor.authorBruheim, Per
dc.contributor.authorAlmaas, Eivind
dc.date.accessioned2023-03-06T12:34:01Z
dc.date.available2023-03-06T12:34:01Z
dc.date.created2022-02-15T12:08:54Z
dc.date.issued2022
dc.identifier.citationPLOS ONE. 2022, 17 (1), .en_US
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/11250/3056051
dc.description.abstractGenome-scale metabolic models (GEMs) are mathematical representations of metabolism that allow for in silico simulation of metabolic phenotypes and capabilities. A prerequisite for these predictions is an accurate representation of the biomolecular composition of the cell necessary for replication and growth, implemented in GEMs as the so-called biomass objective function (BOF). The BOF contains the metabolic precursors required for synthesis of the cellular macro- and micromolecular constituents (e.g. protein, RNA, DNA), and its composition is highly dependent on the particular organism, strain, and growth condition. Despite its critical role, the BOF is rarely constructed using specific measurements of the modeled organism, drawing the validity of this approach into question. Thus, there is a need to establish robust and reliable protocols for experimental condition-specific biomass determination. Here, we address this challenge by presenting a general pipeline for biomass quantification, evaluating its performance on Escherichia coli K-12 MG1655 sampled during balanced exponential growth under controlled conditions in a batch-fermentor set-up. We significantly improve both the coverage and molecular resolution compared to previously published workflows, quantifying 91.6% of the biomass. Our measurements display great correspondence with previously reported measurements, and we were also able to detect subtle characteristics specific to the particular E. coli strain. Using the modified E. coli GEM iML1515a, we compare the feasible flux ranges of our experimentally determined BOF with the original BOF, finding that the changes in BOF coefficients considerably affect the attainable fluxes at the genome-scale.en_US
dc.language.isoengen_US
dc.publisherPLOSen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExperimental determination of Escherichia coli biomass composition for constraint-based metabolic modelingen_US
dc.title.alternativeExperimental determination of Escherichia coli biomass composition for constraint-based metabolic modelingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber17en_US
dc.source.volume17en_US
dc.source.journalPLOS ONEen_US
dc.source.issue1en_US
dc.identifier.doi10.1371/journal.pone.0262450
dc.identifier.cristin2001735
dc.relation.projectNorges forskningsråd: 294605en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal