Vis enkel innførsel

dc.contributor.authorBatool, Dania
dc.contributor.authorShahbaz, Muhammad
dc.contributor.authorShahzad Asif, Hafiz
dc.contributor.authorShaukat, Kamran
dc.contributor.authorAlam, Talha Mahboob
dc.contributor.authorHameed, Ibrahim A.
dc.contributor.authorRamzan, Zeeshan
dc.contributor.authorWaheed, Abdul
dc.contributor.authorAljuaid, Hanan
dc.contributor.authorLuo, Suhuai
dc.date.accessioned2023-02-02T09:13:11Z
dc.date.available2023-02-02T09:13:11Z
dc.date.created2022-09-21T17:52:55Z
dc.date.issued2022
dc.identifier.citationPlants. 2022, 11 (15), .en_US
dc.identifier.issn2223-7747
dc.identifier.urihttps://hdl.handle.net/11250/3047907
dc.description.abstractTea (Camellia sinensis L.) is one of the most highly consumed beverages globally after water. Several countries import large quantities of tea from other countries to meet domestic needs. Therefore, accurate and timely prediction of tea yield is critical. The previous studies used statistical, deep learning, and machine learning techniques for tea yield prediction, but crop simulation models have not yet been used. However, the calibration of a simulation model for tea yield prediction and the comparison of these approaches is needed regarding the different data types. This research study aims to provide a comparative study of the methods for tea yield prediction using the Food and Agriculture Organization (FAO) of the United Nations AquaCrop simulation model and machine learning techniques. We employed weather, soil, crop, and agro-management data from 2016 to 2019 acquired from tea fields of the National Tea and High-Value Crop Research Institute (NTHRI), Pakistan, to calibrate the AquaCrop simulation model and to train regression algorithms. We achieved a mean absolute error (MAE) of 0.45 t/ha, a mean squared error (MSE) of 0.23 t/ha, and a root mean square error (RMSE) of 0.48 t/ha in the calibration of the AquaCrop model and, out of the ten regression models, we achieved the lowest MAE of 0.093 t/ha, MSE of 0.015 t/ha, and RMSE of 0.120 t/ha using 10-fold cross-validation and MAE of 0.123 t/ha, MSE of 0.024 t/ha, and RMSE of 0.154 t/ha using the XGBoost regressor with train test split. We concluded that the machine learning regression algorithm performed better in yield prediction using fewer data than the simulation model. This study provides a technique to improve tea yield prediction by combining different data sources using a crop simulation model and machine learning algorithms.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learningen_US
dc.title.alternativeA Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learningen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume11en_US
dc.source.journalPlantsen_US
dc.source.issue15en_US
dc.identifier.doi10.3390/plants11151925
dc.identifier.cristin2054093
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal