Vis enkel innførsel

dc.contributor.authormanuel, curzi
dc.contributor.authorCaracausi, Antonio
dc.contributor.authorRossetti, Federico
dc.contributor.authorRabiee, Ahmad
dc.contributor.authorBilli, Andrea
dc.contributor.authorCarminati, Eugenio
dc.contributor.authorAldega, Luca
dc.contributor.authorBernasconi, Stefano M.
dc.contributor.authorBoschi, C.
dc.contributor.authorDrivenes, Kristian
dc.contributor.authorRizzo, Andrea Luca
dc.contributor.authorSørensen, Bjørn Eske
dc.date.accessioned2023-01-27T06:55:58Z
dc.date.available2023-01-27T06:55:58Z
dc.date.created2022-10-17T15:46:05Z
dc.date.issued2022
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/11250/3046710
dc.description.abstractPost-orogenic back-arc magmatism is accompanied by hydrothermal ore deposits and mineralizations derived from mantle and crustal sources. We investigate Zannone Island (ZI), back-arc Tyrrhenian basin, Italy, to define the source(s) of mineralizing hydrothermal fluids and their relationships with the regional petrological-tectonic setting. On ZI, early Miocene thrusting was overprinted by late Miocene post-orogenic extension and related hydrothermal alteration. Since active submarine hydrothermal outflow is reported close to the island, Zannone provides an ideal site to determine the P-T-X evolution of the long-lived hydrothermal system. We combined field work with microstructural analyses on syn-tectonic quartz veins and carbonate mineralizations, X-ray diffraction analysis, microthermometry and element mapping of fluid inclusions (FIs), C, O, and clumped isotopes, and analyses of noble gases (He-Ne-Ar) and CO2 content in FIs. Our results document the evolution of a fluid system of magmatic origin with increasing mixing of meteoric fluids. Magmatic fluids were responsible for quartz veins precipitation at ∼125 to 150 MPa and ∼300°C–350°C. With the onset of extensional faulting, magmatic fluids progressively interacted with carbonate rocks and mixed with meteoric fluids, leading to (a) host rock alteration with associated carbonate and minor ore mineral precipitation, (b) progressive fluid neutralization, (c) cooling of the hydrothermal system (from ∼320°C to ∼86°C), and (d) embrittlement and fracturing of the host rocks. Both quartz and carbonate mineralizations show noble gases values lower than those from the adjacent active volcanic areas and submarine hydrothermal systems, indicating that the fossil-to-active hydrothermal history is associated with the emplacement of multiple magmatic intrusions.en_US
dc.language.isoengen_US
dc.publisherThe Geochemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFrom fossil to active hydrothermal outflow in the back-arc of the central Apennines (Zannone Island, Italy)en_US
dc.title.alternativerom fossil to active hydrothermal outflow in the back-arc of the central Apennines (Zannone Island, Italy)en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.journalGeochemistry Geophysics Geosystemsen_US
dc.identifier.doihttps://doi.org/10.1029/2022GC010474
dc.identifier.cristin2062140
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal