Vis enkel innførsel

dc.contributor.authorChávez-Ángel, Emigdio
dc.contributor.authorNg, Ryan C
dc.contributor.authorSandell, Susanne
dc.contributor.authorHe, Jianying
dc.contributor.authorCastro-Alvarez, Alejandro
dc.contributor.authorSotomayor Torres, Clivia M.
dc.contributor.authorKreuzer, Martin
dc.date.accessioned2023-01-25T11:09:42Z
dc.date.available2023-01-25T11:09:42Z
dc.date.created2023-01-19T23:01:30Z
dc.date.issued2023
dc.identifier.issn2073-4360
dc.identifier.urihttps://hdl.handle.net/11250/3046225
dc.description.abstractThe thermal imaging of surfaces with microscale spatial resolution over micro-sized areas remains a challenging and time-consuming task. Surface thermal imaging is a very important characterization tool in mechanical engineering, microelectronics, chemical process engineering, optics, microfluidics, and biochemistry processing, among others. Within the realm of electronic circuits, this technique has significant potential for investigating hot spots, power densities, and monitoring heat distributions in complementary metal–oxide–semiconductor (CMOS) platforms. We present a new technique for remote non-invasive, contactless thermal field mapping using synchrotron radiation-based Fourier-transform infrared microspectroscopy. We demonstrate a spatial resolution better than 10 um over areas on the order of 12 000 um2 measured in a polymeric thin film on top of CaF2 substrates. Thermal images were obtained from infrared spectra of poly(methyl methacrylate) thin films heated with a wire. The temperature dependence of the collected infrared spectra was analyzed via linear regression and machine learning algorithms, namely random forest and k-nearest neighbor algorithms. This approach speeds up signal analysis and allows for the generation of hyperspectral temperature maps. The results here highlight the potential of infrared absorbance to serve as a remote method for the quantitative determination of heat distribution, thermal properties, and the existence of hot spots, with implications in CMOS technologies and other electronic devices.en_US
dc.description.abstractApplication of Synchrotron Radiation-Based Fourier-Transform Infrared Microspectroscopy for Thermal Imaging of Polymer Thin Filmsen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleApplication of Synchrotron Radiation-Based Fourier-Transform Infrared Microspectroscopy for Thermal Imaging of Polymer Thin Filmsen_US
dc.title.alternativeApplication of Synchrotron Radiation-Based Fourier-Transform Infrared Microspectroscopy for Thermal Imaging of Polymer Thin Filmsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume15en_US
dc.source.journalPolymersen_US
dc.identifier.doi10.3390/polym15030536
dc.identifier.cristin2110984
dc.relation.projectNorges forskningsråd: 295864en_US
dc.relation.projectNorges forskningsråd: 251068en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal