Vis enkel innførsel

dc.contributor.advisorMatusiak, Barbara Szybinska
dc.contributor.advisorGreen, Philp
dc.contributor.authorXiang, Changying
dc.date.accessioned2022-06-29T08:07:22Z
dc.date.available2022-06-29T08:07:22Z
dc.date.issued2022
dc.identifier.isbn978-82-326-5307-2
dc.identifier.issn2703-8084
dc.identifier.urihttps://hdl.handle.net/11250/3001469
dc.description.abstractThe world’s leading economies including EU, US and China have set ambitious goals to achieve carbon-neutral societies by 2050 to 2060, which require large-scale implementation of clean energy systems. Building Integrated Photovoltaics (BIPV) is one of the most promising strategies to facilitate the clean energy demands. Besides the limited roof areas, the façade areas also demonstrated potential for solar energy capture and should be utilized for PV integration as well. Façade integrated photovoltaic (FIPV) designs in urban contexts usually have high visibility for the public, and thus require holistic architectural integration. However, the number of current studies in this field is limited and most of them are focusing on the energy aspects. Aesthetic consideration like PV façade colors, texture and pattern is severely lacking. Therefore, this study seeks to explore advanced methods for FIPV from an architectural point of view. The environmental aesthetic is the main theoretical basis of this study, and mixed methods are employed as the research strategy throughout this study. Conducted as a PhD by publication, this study consists of 7 publications focusing on different topics related to architectural methods of FIPV, together with the overarching essay. In the first stage, the focus was at the FIPV design criteria. Research gaps were sketched out, a series of aesthetic evaluation criteria for FIPV were proposed at both, building and urban levels. Then experimental studies investigating the colour angular sensitivity of opaque coloured PVs were carried out in NTNU’s artificial sky lab and outdoors, providing an in-depth understanding of colour properties of different PVs and corresponding architectural strategies. In the second stage, a series of FIPV design methods were developed and tested. With a special focus on the colour aspect, a theoretical pixelization method for FIPV design was developed with Trondheim city in Norway as a case study. Local colour palette and colour harmony strategies were employed to generate pixelated FIPV designs-FIPV panels with different colours are integrated into the façades in order, and the generated overall façade images are perceived like mosaic or Neo-Impressionism style works. The design proposals were tested through an online aesthetic survey and a theoretical energy calculation model, demonstrating that a balanced FIPV performance including pleasing façade aesthetic, satisfying urban integration, and high energy production efficiency can be achieved. With a focusing aspect of balcony integration, another theoretical approach was generated to support the design of FIPV in open balcony areas of high-rise buildings, balancing the aspects of interior daylight, façade aesthetic, electricity generation and reduction of Greenhouse Gas emission. Façade integrated photovoltaics is a promising strategy to support the realization of carbon neutralization in society. FIPV is still in the infancy of its development, and this PhD study sheds new light on advanced methods of generating FIPV from an architectural perspective. It could serve as a departure point for the development of new theories and strategies to promote this growing architectural trend demanding and enhancing the collaboration of architects, engineers, developers and users towards a holistic sustainable urban development.en_US
dc.language.isoengen_US
dc.publisherNTNUen_US
dc.relation.ispartofseriesDoctoral theses at NTNU;2022:203
dc.relation.haspartPaper 1: Xiang, Changying; Matusiak, Barbara Szybinska. Facade Integrated Photovoltaic, state of the art of Experimental Methodology. IOP Conference Series: Earth and Environmental Science (EES) 2019 ;Volum 352.(1)en_US
dc.relation.haspartPaper 2: Xiang, Changying; Matusiak, Barbara Szybinska. A State of the Art of Design Criteria for Façade Integrated Photovoltaics. European PV Solar Energy Conference and Exhibition 2021; 2021-09-06 - 2021-09-10 This paper is not included due to copyright restrictionsen_US
dc.relation.haspartPaper 3: Xiang, Changying; Moscoso Paredes, Claudia Trinidad; Matusiak, Barbara Szybinska. Aesthetic Evaluation Criteria for Façade Integrated Photovoltaics in Urban Context. European PV Solar Energy Conference and Exhibition 2021; 2021-09-06 - 2021-09-10 This paper is not included due to copyright restrictions.en_US
dc.relation.haspartPaper 4: Xiang, Changying; Green, Philip John; Matusiak, Barbara Szybinska. The impact of surface properties on photovoltaics' colour angular sensitivity: A comparison study for façade integration. Color Research and Application 2021 ;Volum 46.(3) s. 524-537en_US
dc.relation.haspartPaper 5: Xiang, Changying; Matusiak, Barbara Szybinska; Røyset, Arne Karstein; Kolås, Tore. Pixelization approach for façade integrated coloured photovoltaics-with architectural proposals in city context of Trondheim, Norway. Solar Energy 2021 ;Volum 224. s. 1222-1246en_US
dc.relation.haspartPaper 6: Xiang, Changying; Matusiak, Barbara Szybinska. Aesthetic Evaluation of Facade Integrated Coloured Photovoltaics Designs-an International Online Survey. Journal of the International Colour Association 2022 ;Volum 28. s. 24-30en_US
dc.relation.haspartPaper 7: Xiang, Changying; Matusiak, Barbara Szybinska. Façade Integrated Photovoltaics design for high-rise buildings with balconies in the Nordic Climate, Balancing Daylight, Aesthetic and Energy Productivity Performance.en_US
dc.titleFaçade Integrated Photovoltaic – Architectural Methods in Urban Contextsen_US
dc.typeDoctoral thesisen_US
dc.subject.nsiVDP::Teknologi: 500en_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel