Show simple item record

dc.contributor.authorVecchi, Pierpaolo
dc.contributor.authorArmaroli, Giovanni
dc.contributor.authorDi Sabatino Lundberg, Marisa
dc.contributor.authorCavalcoli, Daniela
dc.date.accessioned2022-04-26T11:06:23Z
dc.date.available2022-04-26T11:06:23Z
dc.date.created2021-08-06T13:44:43Z
dc.date.issued2021
dc.identifier.citationMaterials Science in Semiconductor Processing. 2021, 129 .en_US
dc.identifier.issn1369-8001
dc.identifier.urihttps://hdl.handle.net/11250/2992791
dc.description.abstractMulticrystalline silicon (mc-Si) is a widely used material for photovoltaic applications. The presence of metallic contaminated grain boundaries strongly affects the crystal electronic properties enhancing electron-hole recombination, thus reducing the solar cell performance. The present study aims to investigate the electrical activity of metallic contaminated grain boundaries in mc-Si. Two sets of mc-Si wafers, contaminated with iron and aluminium, respectively, were analyzed. The wafers presented grain boundaries whose density and character were characterized by Electron Backscatter Diffraction (EBSD), while their electrical activity was analyzed using Conductive Atomic Force Microscopy (c-AFM). The grain boundary density decreases along the ingot height and the most common coherent grain boundaries have the character Σ3n. The grain boundary electrical activity is mostly due to metallic precipitates located at the grain boundaries. In particular, iron precipitates enhance the current contrast at the grain boundaries. Both fixed voltage maps and current-voltage characteristics at the grain boundaries were measured to understand and clarify the transport phenomena at grain boundaries decorated with metallic impurities. The current profiles measured by c-AFM across a grain boundary were modelled by assuming the contribution of a Coulombic potential introduced by the positively charged precipitate. Quantitative parameters regarding the segregated iron-related precipitates are estimated from the model. The results of this study, based on local electrical characterization and appropriate modelling, will contribute to improving the understanding of the recombination at iron precipitates at grain boundaries in mc-Si.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleIron related precipitates in multicrystalline silicon by conductive atomic force microscopyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors' accepted manuscript to an article published by Elsevier. Locked until 7.3.2023 due to copyright restrictions.en_US
dc.source.pagenumber7en_US
dc.source.volume129en_US
dc.source.journalMaterials Science in Semiconductor Processingen_US
dc.identifier.doi10.1016/j.mssp.2021.105789
dc.identifier.cristin1924401
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal