Vis enkel innførsel

dc.contributor.authorZha, Min
dc.contributor.authorZhang, Hongmin
dc.contributor.authorJia, Hailong
dc.contributor.authorGao, Yipeng
dc.contributor.authorJin, Shenbao
dc.contributor.authorSha, Gang
dc.contributor.authorBjørge, Ruben
dc.contributor.authorMathiesen, Ragnvald
dc.contributor.authorRoven, Hans Jørgen
dc.contributor.authorWang, Hui-Yuan
dc.contributor.authorLi, Yanjun
dc.date.accessioned2022-03-10T12:57:21Z
dc.date.available2022-03-10T12:57:21Z
dc.date.created2021-09-28T20:46:10Z
dc.date.issued2021
dc.identifier.citationInternational journal of plasticity. 2021, 146 .en_US
dc.identifier.issn0749-6419
dc.identifier.urihttps://hdl.handle.net/11250/2984292
dc.description.abstractAchieving high superplasticity in single-phase Al alloys remains a challenge, since the fine-grained structure required for superplastic deformation coarsens rapidly in the absence of dispersed second-phase particles during tensile deformation at elevated temperatures. This paper concentrates on the superplastic response of a high solid solution Al–7Mg alloy processed by equal-channel angular pressing (ECAP) under uniaxial tension. The ECAP-processed Al–7Mg alloy features multi-scale microstructural heterogeneities including a bimodal grain structure and Mg solute segregation along grain boundaries (GBs) of nano/ultrafine grains. To identify effects of multi-scale microstructural heterogeneities on superplastic deformation behavior of the high solid solution Al–7Mg alloy, microstructural evolutions are studied systematically by combing electron backscatter diffraction (EBSD), ASTAR-transmission electron microscopy (TEM) orientation imaging and atom probe tomography (APT). During deformation at the optimal tensile condition of 573 K and 1 × 10−3 s−1, the heterogeneous microstructure evolves to a stable uniform fine grain structure via continuous dynamic recrystallization (CDRX), and impressive superplasticity of ∼523% elongation is achieved. The high superplasticity is discussed in terms of the cooperated mechanism by dislocation slip accommodated by CDRX at the early tensile deformation stage and grain boundary sliding (GBS) at the late deformation stage. Our findings show that the evolution of microstructural heterogeneities in high solid solution Al–Mg alloys can be regulated, favoring for superplastic deformation, which offers an alternative strategy for developing low-cost Al alloys for enhanced mechanical properties.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleProminent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors' accepted manuscript to an article published by Elsevier. Locked until 5.9.2023 due to copyright restrictions.en_US
dc.source.pagenumber18en_US
dc.source.volume146en_US
dc.source.journalInternational journal of plasticityen_US
dc.identifier.doi10.1016/j.ijplas.2021.103108
dc.identifier.cristin1940141
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal