Vis enkel innførsel

dc.contributor.authorDull, Sam
dc.contributor.authorXu, Shicheng
dc.contributor.authorGoh, Timothy
dc.contributor.authorLee, Dong Un
dc.contributor.authorHiggins, Drew
dc.contributor.authorOrazov, Marat
dc.contributor.authorKoshy, David
dc.contributor.authorVullum, Per Erik
dc.contributor.authorKirsch, Sebastian
dc.contributor.authorHuebner, Gerold
dc.contributor.authorTorgersen, Jan
dc.contributor.authorJaramillo, Thomas F
dc.contributor.authorPrinz, Friedrich
dc.date.accessioned2021-10-04T08:22:32Z
dc.date.available2021-10-04T08:22:32Z
dc.date.created2021-10-01T14:59:54Z
dc.date.issued2021
dc.identifier.citationCell Reports Physical Sciences. 2021, 2 (1), .en_US
dc.identifier.issn2666-3864
dc.identifier.urihttps://hdl.handle.net/11250/2787363
dc.description.abstractAs the platinum (Pt) loading in proton exchange membrane fuel cell cathodes is driven down to reduce costs, catalyst utilization becomes increasingly important. Here, we report an atomic layer deposition-facilitated electrode fabrication technique designed to improve the catalyst-ionomer interface. The ionomer solvent environment and carbon support nanoporosity are studied independently, and it is found that the combination of an agglomerated ionomer dispersion and a mesoporous support gives access to a high catalytic activity (mass activity [MA] = 0.31 A/mgPt with pure Pt) that can be maintained at high current densities. We hypothesize that the formulation results in Pt sufficiently withdrawn from the ionomer such that poisoning and transport losses are reduced. When paired with a low-resistance dispersion-cast membrane, a 0.1-mgPt/cm2 cathode can deliver a 0.65-V power density of 1.0 W/cm2 at 150 kPa and 80°C. The assembly also demonstrates impressive durability, losing only 33 mV after 30,000 cycles.en_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.relation.urihttps://ars.els-cdn.com/content/image/1-s2.0-S2666386420303234-mmc1.pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleBottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCsen_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber13en_US
dc.source.volume2en_US
dc.source.journalCell Reports Physical Sciencesen_US
dc.source.issue1en_US
dc.identifier.doi10.1016/j.xcrp.2020.100297
dc.identifier.cristin1942329
dc.relation.projectNorges forskningsråd: 274459en_US
dc.relation.projectNorges forskningsråd: 197405en_US
cristin.ispublishedtrue
cristin.fulltextoriginal


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal