Vis enkel innførsel

dc.contributor.authorTafjord, Joakim
dc.contributor.authorHolmen, Anders
dc.contributor.authorRytter, Erling
dc.contributor.authorMyrstad, Rune
dc.contributor.authorSvenum, Ingeborg-Helene
dc.contributor.authorChristensen, Bjørn E.
dc.contributor.authorYang, Jia
dc.date.accessioned2021-09-23T06:29:03Z
dc.date.available2021-09-23T06:29:03Z
dc.date.created2021-04-08T13:03:04Z
dc.date.issued2021
dc.identifier.citationACS Applied Nano Materials. 2021, 4 (4), 3900-3910.en_US
dc.identifier.issn2574-0970
dc.identifier.urihttps://hdl.handle.net/11250/2780606
dc.description.abstractThis study reports a green, inexpensive, and highly versatile procedure to synthesize well-dispersed transition-metal nanoparticles anchored on carbon supports. The resulting metal loadings are 26 wt % or above. Achieving both these properties simultaneously has been difficult with established synthesis methods of carbon-supported metal catalysts, such as impregnation and deposition-precipitation. Herein, low-molar-mass sodium alginate with high guluronate content was ion-exchanged with transition-metal ions, followed by a pyrolysis step at 500 °C. The investigated transition-metal ions were Fe3+, Co2+, Ni2+, and Cu2+. The alginate’s properties and interaction with the transition-metal ions greatly influenced the pyrolyzed material’s characteristics, whereas the observed metal particle size was found to negatively correlate with the metal’s melting point. The pyrolyzed Fe-alginate was tested as a catalyst for the Fischer−Tropsch synthesis and exhibited an iron time yield of 885 μmolCO h−1 g−1 , which is among the highest activities reported in the literature. The activity is mainly attributed to the iron nanoparticle size achieved by the reported synthesis procedure, and the improved olefin selectivity is ascribed to the sodium and sulfur that originates from the alginate and iron precursor, respectively.en_US
dc.language.isoengen_US
dc.publisherACSen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectNanopartikleren_US
dc.subjectNanoparticlesen_US
dc.subjectFischer-Tropsch-prosessenen_US
dc.subjectFischer Tropsch processen_US
dc.subjectHeterogen katalyseen_US
dc.subjectHeterogeneous Catalysisen_US
dc.subjectAlginaten_US
dc.subjectAlginateen_US
dc.titleTransition-Metal Nanoparticle Catalysts Anchored on Carbon Supports via Short-Chain Alginate Linkersen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Kjemisk prosessteknologi: 562en_US
dc.subject.nsiVDP::Chemical process engineering: 562en_US
dc.subject.nsiVDP::Kjemisk prosessteknologi: 562en_US
dc.subject.nsiVDP::Chemical process engineering: 562en_US
dc.subject.nsiVDP::Kjemisk prosessteknologi: 562en_US
dc.subject.nsiVDP::Chemical process engineering: 562en_US
dc.source.pagenumber3900-3910en_US
dc.source.volume4en_US
dc.source.journalACS Applied Nano Materialsen_US
dc.source.issue4en_US
dc.identifier.doi10.1021/acsanm.1c00294
dc.identifier.cristin1902960
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal