Vis enkel innførsel

dc.contributor.authorZhang, Hancong
dc.contributor.authorLuo, Kun
dc.contributor.authorHaugen, Nils Erland L
dc.contributor.authorMao, Chaoli
dc.contributor.authorFan, Jianren
dc.date.accessioned2020-09-08T09:39:03Z
dc.date.available2020-09-08T09:39:03Z
dc.date.created2020-05-04T12:20:21Z
dc.date.issued2020
dc.identifier.citationCombustion and Flame. 2020, 217 (July), 188-199.en_US
dc.identifier.issn0010-2180
dc.identifier.urihttps://hdl.handle.net/11250/2676825
dc.description.abstractFully-resolved simulations of a burning char particle are performed to understand the effects of chemical reastions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work. © 2020en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleDrag force for a burning particleen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber188-199en_US
dc.source.volume217en_US
dc.source.journalCombustion and Flameen_US
dc.source.issueJulyen_US
dc.identifier.doi10.1016/j.combustflame.2020.02.016
dc.identifier.cristin1809213
dc.relation.projectEC/H2020/764697en_US
dc.description.localcode© 2020. This is the authors’ accepted and refereed manuscript to the article. Locked until 27.04.2022 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal