Vis enkel innførsel

dc.contributor.authorOsnes, Karoline
dc.contributor.authorHolmen, Jens Kristian
dc.contributor.authorHopperstad, Odd Sture
dc.contributor.authorBørvik, Tore
dc.date.accessioned2019-11-18T13:53:06Z
dc.date.available2019-11-18T13:53:06Z
dc.date.created2019-08-22T16:02:31Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Impact Engineering. 2019, 132 1-17.nb_NO
dc.identifier.issn0734-743X
dc.identifier.urihttp://hdl.handle.net/11250/2629114
dc.description.abstractIn this study, we use the explicit finite element method in combination with higher order elements and 3D node splitting to simulate fracture and fragmentation of blast-loaded laminated glass. Node splitting is a modelling technique where elements are separated instead of being eroded when a fracture criterion is reached. The resulting FE simulations are thus capable of describing behaviours such as fragmentation without loss of mass or momentum, fine cracking of the glass plates, and delamination and separation between the glass and the polymer interlayer. The simulations are compared to blast experiments conducted in a shock tube. In total, 15 laminated glass specimens (consisting of annealed float glass plates and PVB) were tested at five different pressure levels. The time and position of fracture initiation in the glass plates varied, which in turn resulted in varying post-fracture behaviour within the different pressure levels. The simulations were in good agreement with the blast tests, revealing the potential of the selected numerical method. Additional simulations of monolithic (i.e., non-laminated) glass plates were conducted and compared to experiments that were presented in an earlier study. Again, these simulations displayed a highly comparable response to the experiments, and were able to describe crack branching, formation of large glass splinters and free-flying fragments.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFracture and fragmentation of blast-loaded laminated glass: An experimental and numerical studynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-17nb_NO
dc.source.volume132nb_NO
dc.source.journalInternational Journal of Impact Engineeringnb_NO
dc.identifier.doi10.1016/j.ijimpeng.2019.103334
dc.identifier.cristin1718123
dc.relation.projectNorges forskningsråd: 237885nb_NO
dc.description.localcode© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).Tnb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal