Vis enkel innførsel

dc.contributor.authorRongved, Mats
dc.contributor.authorCerasi, Pierre
dc.date.accessioned2019-11-18T11:53:10Z
dc.date.available2019-11-18T11:53:10Z
dc.date.created2019-10-09T14:16:19Z
dc.date.issued2019
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/11250/2629011
dc.description.abstractCO2 sequestration projects will in the coming years include both aquifer and depleted oil and gas field sites, with different stress paths and history. Stress changes and stress concentration effects on faults will have to be readily assessed, potentially endangering shallower permeable formations. Usually, a fault is modeled as a singularity with shear strength or friction properties, and simulations are run to determine whether the fault is reactivated through shear failure. In this paper, we model a simple rectilinear fault as a finite surface with lowered mechanical properties compared to elsewhere in the domain, which represents a fractured zone alongside the fault core. SINTEF’s Modified Discrete Element code is used coupled to the flow simulator TOUGH2, to model the fracture initiation and propagation, monitoring the permeability increase along the fault. A simplified scenario is simulated, with a sandstone storage reservoir bounded by a fault, penetrating a shale caprock to a shallower sandstone layer. The storage site either undergoes depletion before CO2 injection or has its pore pressure increased to simulate the case of aquifer storage. Results show that during depletion, shear stresses may develop such that fractures propagate alongside the fault to the upper aquifer. However, for the mirror fault orientation with regards to verticality, no such fractures develop. These results are reversed for the aquifer storage case.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSimulation of stress hysteresis effect on permeability increase risk along a faultnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume12nb_NO
dc.source.journalEnergiesnb_NO
dc.source.issue18nb_NO
dc.identifier.doi10.3390/en12183458
dc.identifier.cristin1735540
dc.description.localcode© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,64,90,0
cristin.unitnameInstitutt for geovitenskap og petroleum
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal