Vis enkel innførsel

dc.contributor.authorRoberts, Victoria A.
dc.contributor.authorPique, Michael E.
dc.contributor.authorHsu, Simon
dc.contributor.authorLi, Sheng
dc.contributor.authorSlupphaug, Geir
dc.contributor.authorRambo, Robert P.
dc.contributor.authorJamison, Jonathan P.
dc.contributor.authorLiu, Tong
dc.contributor.authorLee, Jun H.
dc.contributor.authorTainer, John A.
dc.contributor.authorTen Eyck, Lynn F.
dc.contributor.authorWoods Jr., Virgil L.
dc.date.accessioned2019-10-14T07:05:05Z
dc.date.available2019-10-14T07:05:05Z
dc.date.created2012-06-12T10:07:31Z
dc.date.issued2012
dc.identifier.citationNucleic Acids Research. 2012, 40 (13), 6070-6081.nb_NO
dc.identifier.issn0305-1048
dc.identifier.urihttp://hdl.handle.net/11250/2621810
dc.description.abstractX-ray crystallography provides excellent structural data on protein–DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein–DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein–DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG–DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210–220 and 251–264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG–DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway.nb_NO
dc.language.isoengnb_NO
dc.publisherOxford University Pressnb_NO
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleCombining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylasenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber6070-6081nb_NO
dc.source.volume40nb_NO
dc.source.journalNucleic Acids Researchnb_NO
dc.source.issue13nb_NO
dc.identifier.doi10.1093/nar/gks291
dc.identifier.cristin929033
dc.description.localcodeOpen Access. This article is available under the Creative Commons CC-BY-NC license and permits non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.nb_NO
cristin.unitcode194,65,15,0
cristin.unitnameInstitutt for klinisk og molekylær medisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal