Vis enkel innførsel

dc.contributor.authorCao, Pinqiang
dc.contributor.authorWu, Jianyang
dc.contributor.authorZhang, Zhisen
dc.contributor.authorFang, Bin
dc.contributor.authorPeng, Li
dc.contributor.authorLi, Tianshu
dc.contributor.authorVlugt, Thijs J.H.
dc.contributor.authorNing, Fulong
dc.date.accessioned2019-09-18T05:58:48Z
dc.date.available2019-09-18T05:58:48Z
dc.date.created2019-03-16T14:01:54Z
dc.date.issued2018
dc.identifier.citationAIP Advances. 2018, 8:125108 (12), 1-23.nb_NO
dc.identifier.issn2158-3226
dc.identifier.urihttp://hdl.handle.net/11250/2617310
dc.description.abstractA sound knowledge of fundamental mechanical properties of water ice is of crucial importance to address a wide range of applications in earth science, engineering, as well as ice sculpture and winter sports, such as ice skating, ice fishing, ice climbing, bobsleighs, and so on. Here, we report large-scale molecular dynamics (MD) simulations of mechanical properties of bi- and poly-crystalline hexagonal ice (Ih) under mechanical loads. Results show that bicrystals, upon tension, exhibit either brittle or ductile fracture, depending on the microstructure of grain boundaries (GBs), whereas they show ductile fracture by amorphization and crystallographic slips emitted from GBs under compression. Under shearing, the strength of bicrystals exhibits a characteristic plateau or sawtooth behavior drawn out the initial elastic strains. Nanograined polycrystals are destabilized by strain-induced amorphization and collective GB sliding. Their mechanical responses depend on the grain size. Both tensile and compressive strengths decrease as grain size decreases, showing inverse Hall-Petch weakening behavior. Large fraction of amorphous water structure in polycrystals with small grain size is mainly responsible for the inverse Hall-Petch softening. Dislocation nucleation and propagation are also identified in nanograined ice, which is in good agreement with experimental measurements. Beyond the elastic strain, a combination of GB sliding, grain rotation, amorphization and recrystallization, phase transformation, and dislocation nucleation dominate the plastic deformation in both bicrystals and polycrystals.nb_NO
dc.language.isoengnb_NO
dc.publisherAIP Publishingnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMechanical properties of bi- and poly-crystalline icenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-23nb_NO
dc.source.volume8:125108nb_NO
dc.source.journalAIP Advancesnb_NO
dc.source.issue12nb_NO
dc.identifier.doi10.1063/1.5042725
dc.identifier.cristin1685310
dc.description.localcodeOpen Access CC-BYnb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal