Vis enkel innførsel

dc.contributor.authorTjønnås, Johannesnb_NO
dc.date.accessioned2014-12-19T14:00:59Z
dc.date.available2014-12-19T14:00:59Z
dc.date.created2008-06-30nb_NO
dc.date.issued2008nb_NO
dc.identifier124748nb_NO
dc.identifier.isbn978-82-471-7250-6nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259444
dc.description.abstractThis work addresses the control allocation problem for a nonlinear over-actuated time-varying system where parameters a¢ ne in the actuator dynamics and actuator force model may be assumed unknown. Instead of optimizing the control allocation at each time instant, a dynamic approach is considered by constructing update-laws that represent asymptotically optimal allocation search and adaptation. A previous result on uniform global asymptotic stability (UGAS) of the equilibrium of cascaded time-varying systems, is in the thesis shown to also hold for closed (not necessarily compact) sets composed by set-stable subsystems of a cascade. In view of this result, the optimal control allocation approach is studied by using Lyapunov analysis for cascaded set-stable systems, and uniform global/local asymptotic stability is guaranteed for the sets described by; the system dynamics, the optimizing allocation update-law and the adaptive update-law. The performance of the proposed control allocation scheme is demon- strated throughout the thesis by simulations of a scaled-model ship manoeuvred at low-speed. Furthermore, the application of a yaw stabilization scheme for an automotive vehicle is presented. The stabilization strategy consists of; a high level module that deals with the vehicle motion control objective (yaw rate reference generation and tracking), a low level module that handles the braking control for each wheel (longitudinal slip control and maximal tyre road friction parameter estimation) and an intermediate level dynamic control allocation module. The control allocation module generates longitudinal slip reference for the low level brake controller and commands front wheel steering angle corrections, such that the actual torque about the yaw axis tends to the desired torque calculated by the high level module. The conditions for uniform asymptotic stability are given and the scheme has been implemented in a realistic nonlinear multi-body vehicle simulation environment. The simulation cases show that the control strategy stabilizes the vehicle in extreme manoeuvres where the nonlinear vehicle yaw dynamics otherwise become unstable in the sense of over- or understeering.nb_NO
dc.languageengnb_NO
dc.publisherFakultet for informasjonsteknologi, matematikk og elektroteknikknb_NO
dc.titleNonlinear and Adaptive Dynamic Control Allocationnb_NO
dc.typeDoctoral thesisnb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO
dc.description.degreePhD i informasjons- og kommunikasjonsteknologinb_NO
dc.description.degreePhD in Information and Communications Technologyen_GB


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel