Vis enkel innførsel

dc.contributor.authorDhoke, Chaitanya
dc.contributor.authorZaabout, Abdelghafour
dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorSeo, Hwimin
dc.contributor.authorPark, Yong-ki
dc.contributor.authorBlom, Richard
dc.contributor.authorAmini, Shahriar
dc.date.accessioned2019-02-27T11:58:34Z
dc.date.available2019-02-27T11:58:34Z
dc.date.created2018-11-14T18:38:03Z
dc.date.issued2018
dc.identifier.citationChemical Engineering Journal. 2018, 1-7.nb_NO
dc.identifier.issn1385-8947
dc.identifier.urihttp://hdl.handle.net/11250/2587786
dc.description.abstractThis paper presents the first experimental demonstration of the novel swing adsorption reactor cluster (SARC) for post combustion CO2 capture. The SARC concept combines a temperature and vacuum swing for sorbent regeneration. A heat pump is used for transferring heat from the exothermic carbonation reaction to the endothermic regeneration reaction. Sorbent regeneration under vacuum allows for a small temperature difference between carbonation and regeneration, leading to a high heat pump efficiency. This key principle behind the SARC concept was demonstrated through lab-scale experiments comparing combined vacuum and temperature swing adsorption (VTSA) to pure temperature swing adsorption (TSA), showing that a 50 mbar vacuum can reduce the required temperature swing by 30–40 °C. A complete SARC cycle comprising of carbonation, evacuation, regeneration and cooling steps was also demonstrated. The cycle performed largely as expected, although care had to be taken to avoid particle elutriation under vacuum and the CO2 release rate was relatively slow. The SARC principle has therefore been successfully proven and further scale-up efforts are strongly recommended.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleThe swing adsorption reactor cluster (SARC) for post combustion CO2 capture: Experimental proof-of-principlenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber1-7nb_NO
dc.source.journalChemical Engineering Journalnb_NO
dc.identifier.doi10.1016/j.cej.2018.10.082
dc.identifier.cristin1630660
dc.relation.projectNorges forskningsråd: 268507nb_NO
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 9.10.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal