Vis enkel innførsel

dc.contributor.authorYin, P
dc.contributor.authorMa, HC
dc.contributor.authorLiu, X.W.
dc.contributor.authorBi, J.
dc.contributor.authorZhou, X.P.
dc.contributor.authorBerto, Filippo
dc.date.accessioned2019-02-26T13:43:37Z
dc.date.available2019-02-26T13:43:37Z
dc.date.created2018-11-26T10:56:22Z
dc.date.issued2018
dc.identifier.citationTheoretical and applied fracture mechanics (Print). 2018, 96 90-104.nb_NO
dc.identifier.issn0167-8442
dc.identifier.urihttp://hdl.handle.net/11250/2587548
dc.description.abstractThe General Particle Dynamics code (GPD) is developed to simulate initiation, propagation and coalescence of cracks in 3D brittle rock specimens subjected to dynamic loads. In GPD, fractures of particles are determined through a damage evolution law of brittle rock materials. An elasto-brittle damage model is employed to reflect the initiation and growth of cracks and the macro-failure of brittle rocks. Numerical examples, including pre-notched semi-circular bending and uniaxial compression testing, have been carried out to verify the applicability of GPD to simulate the dynamic failure of rocks. Results of pre-notched semi-circular bend test show that GPD is capable of realistically simulating the mechanical behavior of rock materials subjected to dynamic loads. Under dynamic uniaxial loadings, the dynamic increment factor increases with increasing strain rate. Failure modes of samples pass from tensile to mixed shear-tension mode with increasing the loading speed. The number of fractions of sample increases with increasing the loading speed. Moreover, the failure mode of samples pass from a typical splitting failure to a mixed mode failure with decreasing heterogeneity coefficient while the number of cracks and fractions increases with decreasing the heterogeneity coefficient. The numerical results obtained from GPD are in excellent agreement with experiments and other numerical methods.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleNumerical study on the dynamic fracture behavior of 3D heterogeneous rocks using General Particle Dynamicsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber90-104nb_NO
dc.source.volume96nb_NO
dc.source.journalTheoretical and applied fracture mechanics (Print)nb_NO
dc.identifier.doi10.1016/j.tafmec.2018.04.005
dc.identifier.cristin1634939
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 12.4.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,92,0
cristin.unitnameInstitutt for maskinteknikk og produksjon
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal