Vis enkel innførsel

dc.contributor.authorPierella, Fabio
dc.contributor.authorBredmose, Henrik
dc.contributor.authorDe Vaal, Jacobus Bernardus
dc.contributor.authorEliassen, Lene
dc.contributor.authorKrokstad, Jørgen R
dc.contributor.authorNygaard, Tor Anders
dc.contributor.authorOggiano, Luca
dc.contributor.authorStenbro, Roy
dc.date.accessioned2019-01-09T14:36:12Z
dc.date.available2019-01-09T14:36:12Z
dc.date.created2018-12-21T10:29:28Z
dc.date.issued2018
dc.identifier.issn1742-6588
dc.identifier.urihttp://hdl.handle.net/11250/2580045
dc.description.abstractDIMSELO is a Competence Building for Industry project (KPN), granted by the Norwegian Research Council under the ENERGIX program, which ran from 2013 to 2017. The project's objective was to quantify the consequences of using advanced sea loads modeling in integrated simulations of offshore wind turbines in shallow to intermediate waters. During the project, engineering hydrodynamics load and wave kinematics models of increasing complexity and fidelity were chosen from the literature and implemented. The effect of different model combinations on the substructure loads was was tested for three reference turbines: a DTU 10 MW rotor positioned on a monopile at a water depth of h = 25 m, on a second monopile at h = 35 m and on a jacket, also at h = 35 m. In this paper, the fatigue loads in a production case for the h = 25 m monopile was calculated via three different load models: the well-known Morison model, the Rainey nonlinear force model and the McCamy-Fuchs linear diffraction model. The models were coupled to kinematics coming both from linear irregular waves and second order irregular waves. The comparison showed that using the McCamy-Fuchs diffraction theory reduced the predicted fatigue damage by 15% with respect to a base case where the Morison load model was used. Nonlinear wave kinematics and nonlinear force models influenced the force calculations but did not alter the total fatigue damage, since the load cases with high wave steepness were less likely to happen.nb_NO
dc.language.isoengnb_NO
dc.publisherIOPnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe Dimensioning Sea Loads (DIMSELO) projectnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume1104nb_NO
dc.source.journalJournal of Physics, Conference Seriesnb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.1088/1742-6596/1104/1/012037
dc.identifier.cristin1646599
dc.relation.projectNorges forskningsråd: 228865nb_NO
dc.description.localcodeContent from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltdnb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal