Show simple item record

dc.contributor.authorWu, M.C.H.
dc.contributor.authorZakerzadeh, R.
dc.contributor.authorKamensky, David
dc.contributor.authorKiendl, Josef
dc.contributor.authorSacks, Michael
dc.contributor.authorHsu, Ming-Chen
dc.date.accessioned2018-12-17T14:54:12Z
dc.date.available2018-12-17T14:54:12Z
dc.date.created2018-04-24T17:52:54Z
dc.date.issued2018
dc.identifier.citationJournal of Biomechanics. 2018, 74 23-31.nb_NO
dc.identifier.issn0021-9290
dc.identifier.urihttp://hdl.handle.net/11250/2577982
dc.description.abstractThis paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee–Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid–structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee–Sacks model is well-suited to reproduce the anisotropic stress–strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee–Sacks model that matches biaxial stress–strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee–Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAn anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valvesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber23-31nb_NO
dc.source.volume74nb_NO
dc.source.journalJournal of Biomechanicsnb_NO
dc.identifier.doi10.1016/j.jbiomech.2018.04.012
dc.identifier.cristin1581373
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 12.4.2019 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal