Vis enkel innførsel

dc.contributor.authorSigmundsson, Hermundur
dc.contributor.authorTrana, Leif Magnus
dc.contributor.authorPolman, Remco C.J.
dc.contributor.authorHaga, Monika
dc.date.accessioned2018-06-05T12:05:59Z
dc.date.available2018-06-05T12:05:59Z
dc.date.created2017-06-01T11:45:17Z
dc.date.issued2017
dc.identifier.citationSports. 2017, 5 (2), .nb_NO
dc.identifier.issn2075-4663
dc.identifier.urihttp://hdl.handle.net/11250/2500380
dc.description.abstractKnowledge about developmental theories is important for experts or specialists working with children following normal development and children who have various kinds of dysfunction, in order to better understand what happens with processes associated with motor behavior. In this article, we have explored how theories of development and learning can be used to understand processes associated with motor behavior. A probabilistic perspective emphasizes that the changes taking place in the development is a result of interaction: structural changes in the nervous system leading to changes in function and behavior and opposite, functional changes resulting in changes in structure. This bidirectional interaction between biological and experiential aspects is a continuous process which cannot be reduced to either organism or environment. Dynamical systems theory (DST) emphasizes that it is the interaction between the person, the environment, and the task that changes how our movements are, also in terms of how we develop and learn new movements. The interplay between these factors will, over time, lead to changes in motor development. The importance of experience is central to Edelman's theory of neuronal group selection (NGST). Activation of the nervous system increases the connections between certain areas of the brain, and the selection processes in the brain are a result of enhancement of neural connections involved in a "successful" motion. The central nervous system adapts its structure and function in response to internal and external influences, and hence neural plasticity is a prerequisite for learning and development. We argue that Edelman´s approach supports the theory of specificity of learning. From the perspectives of probabilistic epigenesis, DST, and NGST, we can see that being physically active and having the opportunity to get different movement experiences are of great significance for promoting motor development and learning. A variation of purposeful or rewarding physical activity in a variety of contexts will provide individual opportunities for changes of behavior in terms of both quantitative and qualitative changes in motor development.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPI AGnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleWhat is trained develops! Perspective on skill learning.nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber11nb_NO
dc.source.volume5nb_NO
dc.source.journalSportsnb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.3390/sports5020038
dc.identifier.cristin1473451
dc.description.localcode© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,67,40,0
cristin.unitcode194,65,30,0
cristin.unitnameInstitutt for psykologi
cristin.unitnameInstitutt for nevromedisin og bevegelsesvitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal