Vis enkel innførsel

dc.contributor.authorGhane, Mahdi
dc.contributor.authorNejad, Amir Rasekhi
dc.contributor.authorBlanke, Mogens
dc.contributor.authorGao, Zhen
dc.contributor.authorMoan, Torgeir
dc.date.accessioned2018-05-02T11:39:46Z
dc.date.available2018-05-02T11:39:46Z
dc.date.created2018-04-17T09:31:54Z
dc.date.issued2018
dc.identifier.issn1095-4244
dc.identifier.urihttp://hdl.handle.net/11250/2496733
dc.description.abstractOperation and maintenance costs are significant for large‐scale wind turbines and particularly so for offshore. A well‐organized operation and maintenance strategy is vital to ensure the reliability, availability, and cost‐effectiveness of a system. The ability to detect, isolate, estimate, and perform prognoses on component degradation could become essential to reduce unplanned maintenance and downtime. Failures in gearbox components are in focus since they account for a large share of wind turbine downtime. This study considers detection and estimation of wear in the downwind main‐shaft bearing of a 5‐MW spar‐type floating turbine. Using a high‐fidelity gearbox model, we show how the downwind main bearing and nacelle axial accelerations can be used to evaluate the condition of the bearing. The paper shows how relative acceleration can be evaluated using statistical change‐detection methods to perform a reliable estimation of wear of the bearing. It is shown in the paper that the amplitude distribution of the residual accelerations follows a t‐distribution and a change‐detection test is designed for the specific changes we observe when the main bearing becomes worn. The generalized likelihood ratio test is extended to fit the particular distribution encountered in this problem, and closed‐form expressions are derived for shape and scale parameter estimation, which are indicators for wear and extent of wear in the bearing. The results in this paper show how the proposed approach can detect and estimate wear in the bearing according to desired probabilities of detection and false alarm.nb_NO
dc.language.isoengnb_NO
dc.publisherWileynb_NO
dc.titleCondition monitoring of spar‐type floating wind turbine drivetrain using statistical fault diagnosisnb_NO
dc.typeJournal articlenb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.journalWind Energynb_NO
dc.identifier.doi10.1002/we.2179
dc.identifier.cristin1579694
dc.description.localcodeThis is the pre-peer reviewed version of the following article: [Condition monitoring of spar‐type floating wind turbine drivetrain using statistical fault diagnosis], which has been published in final form at [https://doi.org/10.1002/we.2179]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.nb_NO
cristin.unitcode194,64,20,0
cristin.unitcode194,63,25,0
cristin.unitnameInstitutt for marin teknikk
cristin.unitnameInstitutt for teknisk kybernetikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel