Vis enkel innførsel

dc.contributor.authorGjuvsland, Arne Bjørke
dc.contributor.authorZörgö, Enikö Beatrix
dc.contributor.authorAntony Samy, Jeevan Karloss
dc.contributor.authorStenberg, Simon
dc.contributor.authorDemirsoy, Ibrahim H
dc.contributor.authorRoque, Francisco
dc.contributor.authorMaciaszczyk-Dziubinska, Ewa
dc.contributor.authorMigocka, Magdalena
dc.contributor.authorAlonso-Perez, Elisa
dc.contributor.authorZackrisson, Martin
dc.contributor.authorWysocki, Robert
dc.contributor.authorTamas, Markus J
dc.contributor.authorJonassen, Inge
dc.contributor.authorOmholt, Stig William
dc.contributor.authorWarringer, Jonas
dc.date.accessioned2018-01-02T15:51:22Z
dc.date.available2018-01-02T15:51:22Z
dc.date.created2017-01-27T14:36:38Z
dc.date.issued2016
dc.identifier.issn1744-4292
dc.identifier.urihttp://hdl.handle.net/11250/2474167
dc.description.abstractA major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical–experimental framework for disclosing the presence of such adaptation‐speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation–accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic‐adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data‐driven individual‐based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation‐speeding mechanisms in general.nb_NO
dc.language.isoengnb_NO
dc.publisherWiley Open Accessnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDisentangling genetic and epigenetic determinants of ultrafast adaptationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume12nb_NO
dc.source.journalMolecular Systems Biologynb_NO
dc.source.issue12nb_NO
dc.identifier.doi10.15252/msb.20166951
dc.identifier.cristin1439471
dc.relation.projectNorges forskningsråd: 222364nb_NO
dc.relation.projectNotur/NorStore: NN4653Knb_NO
dc.relation.projectNorges forskningsråd: 223257nb_NO
dc.description.localcode© 2016 The Authors. Published under the terms of the CC BY 4.0 license.nb_NO
cristin.unitcode194,66,10,0
cristin.unitnameInstitutt for biologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal