Vis enkel innførsel

dc.contributor.authorBø, Torstein Ingebrigtsen
dc.contributor.authorJohansen, Tor Arne
dc.contributor.authorSørensen, Asgeir Johan
dc.contributor.authorMathiesen, Eirik
dc.date.accessioned2017-12-05T12:03:56Z
dc.date.available2017-12-05T12:03:56Z
dc.date.created2016-05-20T13:22:51Z
dc.date.issued2016
dc.identifier.citationApplied Ocean Research. 2016, 57 30-39.nb_NO
dc.identifier.issn0141-1187
dc.identifier.urihttp://hdl.handle.net/11250/2469277
dc.description.abstractDiesel-electric power and propulsion systems with electric thrusters are the industry standard for vessels with dynamic positioning (DP) systems. Diesel engines are paired with generators in generator sets and are used to produce electric power used by thrusters and main propellers during stationkeeping and transit, and other consumers such as hotel load, drilling drives, cranes, and heave compensators. Consequence analysis is used to verify the safety of a DP operation. It is used to check whether there is sufficient running power and thruster capacity available to retain sufficient thrust to maintain vessel position after a worst single failure. Recently, extensions of class rules enable standby generators to be considered in this analysis. This provides a more efficient configuration as relatively fewer generator sets may be running. However, DP performance is degraded during the transition from the fault occurrence until the plant is completely recovered. It is important to determine if this degradation leads to a loss of position during the transition. This study presents a simulation-based dynamic consequence analysis method that can be used to dynamically simulate fault scenarios such that the dynamics of the transient recovery can be analyzed. This analysis can be used for decision-support to configure marine electric power plants in DP. Results from the simulation study show that the currently used static consequence analysis method may provide non-conservative results under certain configurations.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.relation.urihttp://folk.ntnu.no/torarnj/dyncap.pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleDynamic consequence analysis of marine electric power plant in dynamic positioningnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber30-39nb_NO
dc.source.volume57nb_NO
dc.source.journalApplied Ocean Researchnb_NO
dc.identifier.doi10.1016/j.apor.2016.02.004
dc.identifier.cristin1356551
dc.relation.projectNorges forskningsråd: 210670nb_NO
dc.relation.projectNorges forskningsråd: 223254nb_NO
dc.description.localcode© 2016. This is the authors’ accepted and refereed manuscript to the article. LOCKED until 12.3.2018 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,63,25,0
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for teknisk kybernetikk
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal