Vis enkel innførsel

dc.contributor.authorUlveseter, Jan Vidar
dc.contributor.authorSævik, Svein
dc.date.accessioned2017-11-28T10:18:57Z
dc.date.available2017-11-28T10:18:57Z
dc.date.created2017-10-26T14:24:35Z
dc.date.issued2017
dc.identifier.isbn978-0-7918-5764-9
dc.identifier.urihttp://hdl.handle.net/11250/2468225
dc.description.abstractA semi-empirical prediction tool for pure in-line vortex-induced vibrations is under development. The long-term goal is to be able to realistically model the dynamic behavior of free spanning pipelines exposed to arbitrary time dependent external flows at low velocities. Most VIV programs operate in frequency domain, where only steady currents and linear structural models can be simulated. In contrast, the proposed model predicts hydrodynamic forces as function of time, enabling a time integration scheme to solve the equation of motion. Non-linear time domain simulations allow for modelling of excitation from non-steady currents. In addition, non-linear effects such as soil-pipe interaction, varying tension, and response dependent material, stiffness and damping properties may be included in the analysis, when combining the hydrodynamic force model with a structural non-linear finite element model. Hydrodynamically, the proposed prediction tool consists of the general Morison equation plus two vortex shedding forcing terms. The latter two are able to synchronize with the structural motion for a given frequency band, to induce vibrations in lock-in regimes. In this paper, the proposed pure in-line VIV model is compared to the frequency domain model VIVANA and DNV Recommended Practice, simulating experiments with a model-scale flexible pipe exposed to current velocities at which cross-flow vibrations have not yet developed. A few experimental data points are included in verifying the performance of the newly developed time domain model. The effect of changing empirical coefficients in the vortex shedding forcing terms, and allowing only one of the terms to excite structural vibrations during a simulation, is numerically investigated. A goal is to obtain increased understanding of how the proposed time domain model performs when simulating VIV of a flexible pipe, which is more complex than that of an elastically mounted rigid cylinder since several natural frequencies and corresponding modes might be excited.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Society of Mechanical Engineers (ASME)nb_NO
dc.relation.ispartofASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering - Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
dc.titleIn-Line Vibrations of Flexible Pipesnb_NO
dc.typeChapternb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.identifier.doi10.1115/OMAE2017-61325
dc.identifier.cristin1508060
dc.description.localcodeThis chapter will not be available due to copyright restrictions (c) 2017 by ASMEnb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel