Vis enkel innførsel

dc.contributor.authorLyu, Jing
dc.contributor.authorCai, Xu
dc.contributor.authorMolinas Cabrera, Maria Marta
dc.date.accessioned2017-06-16T11:12:01Z
dc.date.available2017-06-16T11:12:01Z
dc.date.created2016-12-07T13:25:29Z
dc.date.issued2016
dc.identifier.citationIEEE Journal of Emerging and Selected Topics in Power Electronics. 2016, 4 (1), 141-151.nb_NO
dc.identifier.issn2168-6777
dc.identifier.urihttp://hdl.handle.net/11250/2446240
dc.description.abstractThis paper investigates the stability of offshore wind farms integration through a modular multilevel converter-based high-voltage dc (MMC-HVdc) transmission system. Resonances or instability phenomena have been reported in between wind farms and MMC-HVdc systems. They are arguably originated due to interactions between the MMC and the wind power inverters. However, the nature of these interactions is neither well understood nor reported in the literature. In this paper, the impedance-based analytical approach is applied to analyze the stability and to predict the phase margin of the interconnected system. For that, analytical impedance models of a three-phase MMC in a compensated modulation case and a direct modulation case are separately derived using the small-signal frequency domain method. Moreover, the impedance models of the MMC take the circulating current control into account. The derived impedance models are then verified by comparing the frequency responses of the analytical model with the impedance measured in a nonlinear time-domain simulation model developed in MATLAB. The results show that the potential resonances or instability of the interconnected system can be readily predicted through the Nyquist diagrams. In addition, the analysis indicates that the circulating current control of the MMC has a significant impact on the stability of the interconnected system. Finally, the time-domain simulations validate the theoretical analysis.nb_NO
dc.language.isoengnb_NO
dc.publisherIEEEnb_NO
dc.titleFrequency Domain Stability Analysis of MMC-Based HVdc for Wind Farm Integrationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber141-151nb_NO
dc.source.volume4nb_NO
dc.source.journalIEEE Journal of Emerging and Selected Topics in Power Electronicsnb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.1109/JESTPE.2015.2498182
dc.identifier.cristin1409566
dc.description.localcode© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the authors' accepted and refereed manuscript to the article.nb_NO
cristin.unitcode194,63,25,0
cristin.unitnameInstitutt for teknisk kybernetikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel