Vis enkel innførsel

dc.contributor.advisorSkaar,nb_NO
dc.contributor.advisorMakarov,
dc.contributor.authorLydersen, Lars Vincent van de Wielnb_NO
dc.date.accessioned2014-12-19T13:46:43Z
dc.date.accessioned2015-12-22T11:45:22Z
dc.date.available2014-12-19T13:46:43Z
dc.date.available2015-12-22T11:45:22Z
dc.date.created2011-09-25nb_NO
dc.date.issued2011nb_NO
dc.identifier443387nb_NO
dc.identifier.isbn978-82-471-3012-4nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/2370269
dc.description.abstractThe peculiar properties of quantum mechanics enable possibilities not allowed by classical physics. In particular, two parties can generate a random, secret key at a distance, even though an eavesdropper can do anything permitted by the laws of physics. Measuring the quantum properties of the signals generating the key, would ultimately change them, and thus reveal the eavesdropper’s presence. This exchange of a random, secret key is known as quantum cryptography. Quantum cryptography can be, and has been proven unconditionally secure using perfect devices. However, when quantum cryptography is implemented, one must use components available with current technology. These are usually imperfect. Although the security of quantum cryptography has been proven for components with certain imperfections, the question remains: can quantum cryptography be implemented in a provable, unconditionally secure way, using components available with current technology? This thesis contains both a theoretical, and an experimental contribution to the answer of this question. On the experimental side, components used in, and complete quantum cryptography systems have been carefully examined for security loopholes. In particular, it turned out that two commercial quantum cryptography systems contained loopholes, which would allow an eavesdropper to capture the full secret key, without exposing her presence. Furthermore, this detector control attack could be implemented with current technology. The attack is applicable against a variety of quantum cryptography implementations and protocols. The theoretical contribution consists of security proofs for quantum cryptography in a very general setting. Precisely, the security is proven with arbitrary individual imperfections in the source and detectors. These proofs should make it possible to use a wide array of imperfect devices in implementations of quantum cryptography. Finally, a secure detection scheme is proposed, immune to the detector control attack and compatible with those security proofs. Therefore, if this scheme is implemented correctly, it offers provable security.nb_NO
dc.languageengnb_NO
dc.publisherNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for elektronikk og telekommunikasjonnb_NO
dc.relation.ispartofseriesDoktoravhandlinger ved NTNU, 1503-8181; 2011:227nb_NO
dc.relation.haspartLydersen, Lars; Skaar, Johannes. Security of quantum key distribution with bit and basis dependent detector flaws. Quantum information & computation. (ISSN 1533-7146). 10: 60-76, 2010.nb_NO
dc.relation.haspartMarøy, Øystein; Lydersen, Lars; Skaar, Johannes. Security of quantum key distribution with arbitrary individual imperfections. Physical Review A. Atomic, Molecular, and Optical Physics. (ISSN 1050-2947). 82(032337), 2010. <a href='http://dx.doi.org/10.1103/PhysRevA.82.032337'>10.1103/PhysRevA.82.032337</a>.
dc.relation.haspartLydersen, Lars; Makarov, Vadim; Skaar, Johannes. Secure gated detection scheme for quantum cryptography. Physical Review A. Atomic, Molecular, and Optical Physics. (ISSN 1050-2947). 83: 032306, 2011. <a href='http://dx.doi.org/10.1103/PhysRevA.83.032306'>10.1103/PhysRevA.83.032306</a>.
dc.relation.haspartJain, Nitin; Wittmann, Christoffer; Lydersen, Lars; Wiechers, Carlos; Elser, Dominique; Marquardt, Christoph; Makarov, Vadim; Leuchs, Gerd. Device calibration impacts security of quantum key distribution. Physical Review Letters. (ISSN 0031-9007). 107: 110501, 2011. <a href='http://dx.doi.org/10.1103/PhysRevLett.107.110501'>10.1103/PhysRevLett.107.110501</a>.
dc.relation.haspartLydersen, Lars; Jain, Nitin; Wittmann, Christoffer; Marøy, Øystein; Skaar, Johannes; Marquardt, Christoph; Makarov, Vadim; Leuchs, Gerd. Superlinear threshold detectors in quantum cryptography. Physical Review A. Atomic, Molecular, and Optical Physics. (ISSN 1050-2947). 84: 032320, 2011. <a href='http://dx.doi.org/10.1103/PhysRevA.84.032320'>10.1103/PhysRevA.84.032320</a>.
dc.titlePractical security of quantum cryptographynb_NO
dc.typeDoctoral thesisnb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for elektronikk og telekommunikasjonnb_NO
dc.description.degreePhD i elektronikk og telekommunikasjonnb_NO
dc.description.degreePhD in Electronics and Telecommunication


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel