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A numerical model was used to compute the formation of a braided channel system. The model calculated the
water flow field from the fully 3D Navier-Stokes equations on a non-orthogonal unstructured adaptive grid.
The sediment transport was computed from the Engelund-Hansen formula. A free surface algorithm based on
local pressure gradients was used. Themodel was applied to an idealized geometry of an initially straight alluvial
channel, where the evolution of the braided channel system over time was computed. The complex processes
and geometry for this case made it very well suited for testing the numerical model. The purpose of the study
was also to explain avulsion processes of a braided river in more detail. Figures are presented with water
depth, velocity, water level and secondary currents during an avulsion. The effect of the water level changes
and the secondary currents are shown. The geometry, sediment size and water discharge used in the numerical
model was identical to a laboratory study. Reasonable agreementwas foundwhen comparing the active braiding
intensity (BIA) computed by the numerical model with measurements from the flume experiment. Parameter
tests include sediment transport formula, grid size, secondary current damping and grid parameters related to
wetting/drying. The results using the Engelund-Hansen formula show a higher degree of braiding than the van
Rijn or Mayer-Peter Müller formula. The secondary current strength is also shown to be very important for the
braiding process and the BIA values.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

A braided river consists ofmultiple channels that run parallel, where
the channels are interconnected with bifurcations and confluences
(Schumm et al., 1987). The geometry of the braided system changes
over time, as some channels move laterally, some disappear and new
branches are formed. The complexity of the geometry and its changes
over time makes the braided channel difficult to model from a numeri-
cal point of view. It is therefore well suited for testing new algorithms
for modelling sediment transport in natural rivers. This is one of the
main motivations for focusing on braided rivers in the current study.

Braiding occurs in many natural river systems and has been the
focus of a number of studies in the science of geomorphology (Hooke,
2004; van Dijk et al., 2014; Javernick et al., 2016). A motivation factor
for studying braided channels in water engineering is their emergence
during dam removal (Randle et al., 2015) and reservoir flushing
(Haun and Olsen, 2012).When thewater level in a reservoir is lowered,
a braided channel can form and increase the effective width where
sediments can be eroded. A larger volume of sand and silt can then be
eroded from the reservoir than if only a single deep channel would
have formed. This has economical implications for sediment
. This is an open access article under
management. The braiding of a river is therefore of special engineering
interest when studying reservoir flushing or effects of a dam removal.

Early work on braided rivers was carried out using physical model
studies, for example Einstein and Shen (1964), who studied the effect of
the Froude number on the formation of meanders. They also looked at
how rough side bankswould affect the erosion pattern of themeandering
channel. Engelund and Skovgaard (1973) carried out a mathematical
stability analysis of the momentum equations and sediment transport
equations. The resulting amplification factor was connected to the wave-
lengths of themeanders. A recent study ofmeandering channels was car-
ried out by da Silva and Ebrahimi (2017), presenting data from laboratory
studies together with detailed descriptions of the flow and sediment
transport physics.

Ferguson (1993) stated that numerical models have the potential to
explain the processes of a braided river system. The growth in comput-
ing power over recent decades has made it possible to model water
flow, sediment transport and morphological changes directly (Baranya
et al., 2018; Xie et al., 2019). This can be done in one, two or three di-
mensions (Parsapour-Moghaddam and Rennie, 2017). The two and
three-dimensional models showmost promise because of the complex-
ity of the braided river geometry. The technology behind suchmodels is
often called computational fluid dynamics (CFD), where the shallow-
water equations or the Navier-Stokes equations are solved (Kim et al.,
2020). A CFD model for a braided river requires algorithms for how to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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incorporate laterally moving channels in the grid through a wetting/
drying process (Khosronejad et al., 2019).

Two-dimensional models have been used by a number of re-
searchers to compute vertical and lateral changes in rivers. Lotsari
et al. (2014) computed the channel pattern changes over a year in the
braided section of the Tana River in Norway using the 2D model
TUFLOW. The results were compared with field observations. Williams
et al. (2016) used a 2D version of Delft3D to compute the changes in a
braided river on New Zealand, during a two-day high-flow event. The
changes in the bed features were reasonably well reproduced, together
with the volume of eroded and deposited sediments. Both these studies
started the computation with a naturally braided geometry. A different
initial boundary condition was used by other researchers, starting with
a straight channel and looking at how it evolved into a braided system
over time. Such physical model studies are well suited to test a numer-
ical model. Jang and Shimizu (2005) computed the formation of a
braided channel in a laboratory flume and compared the results with
measurements. A structured grid that moved laterally according to the
bank erosionwas used. Good agreementwas found between the results
from the computations and the measurements for the channel wave-
length andwidth. Schuurman et al. (2016) used two 2Dmodels, Delft3D
and Nays2D together with one 1D model to compute the formation of
meandering and braided channel systems. They compared the results
with empirical formulas for meander and bar lengths. Perturbations of
the inflowing sediments were studied and found to be important.
Rousseau et al. (2016) tested six 2D and 3D CFD models on three
meandering channels with different sinuosity. Lateral movements of
the geometries were not computed. The models gave varying accuracy,
but the authors did not find anymodel that gave better results than the
others. The numerical models usually include a substantial number of
formulas and algorithms to take different fluid and sediment transport
phenomena into account. Then it is necessary to have detailed knowl-
edge about each model to be able to choose the most appropriate
options.

Sun et al. (2015) used a 2D model to compute the same case as the
current study: a braided flume experiment by Egozi and Ashmore
(2009). Only the first 70 h of the 210 h physical laboratory experiment
were computed, where the water discharge was kept constant. The
computed total braiding intensity compared well with the measure-
ments. Yang et al. (2017) used a similar numerical model to compute
140 h of the 210 h experiment.

The flow in river bends usually includes secondary currents causing
the sediment tomove towards the inside of bends. The process is impor-
tant for the formation and development of meandering channels. A 2D
model is not able to compute this 3D effect directly, but must rely on
empirical formulas for the secondary currents. These formulas are usu-
ally in the form of a constant, K1, multipliedwith thewater depth, h, and
divided by the streamline curvature, R:

tan δ ¼ −
K1h
R

ð1Þ

The angle between the depth-averaged velocity and the sediment
velocity vector is denoted as δ.

A concern is how to choose the value of the constant K1. This can be
varied as a calibration parameter.Many researchers have used a value of
seven (Jang and Shimizu, 2005; Sun et al., 2015, Langendoen et al.,
2016). It is also possible to use a formula forK1 that includes several con-
stants and the friction factor of the bed (Lotsari et al., 2014; Li andMillar,
2011). Another problemwith a 2D approach is that a secondary current
may form at one bend and continue farther downstream of the bend
(Stoesser et al., 2010; da Silva and Ebrahimi, 2017). There it still may
have an effect on the sedimentation/erosion process. A 2D model
would not be able to replicate this process, as the secondary current is
only a function of the local depth-averaged streamline curvature. A 3D
numerical model solves both these problems by computing the
2

secondary current directly from the Navier-Stokes equations. The
downstream transport of the transverse circulation pattern is computed
directly by the model.

Another concern with the 2D models is the computation of the tur-
bulence. A zero-equation model is often used such as, for example, the
following formula (Jang and Shimizu, 2005):

υT ¼ K2hu� ð2Þ

The eddy-viscosity, υT, is computed as a function of the water depth
and the shear velocity, u⁎, multiplied by a constant, K2. This constant can
be used as a calibration parameter. The approach assumes that the tur-
bulence is in local equilibrium in each cell. Turbulence that is produced
in an upstream cell and transported downstream is not taken into ac-
count. A fully 3D numerical model most often computes the turbulence
using a more advanced approach, for example the k-epsilon model
(Launder and Spalding, 1974). This model solves partial differential
equations for the turbulence, which allows it to be transported with
the flow.

Three-dimensional numerical morphological models have been
used previously by Olsen (2003) to model formation of a meandering
river. Another example is Liedermann et al. (2013), who used a fully
3D model to compute the movement of sediment particles in the Dan-
ube River. Fischer-Antze et al. (2008) also modelled a reach of the Dan-
ube Riverwith a 3Dmodel and compared the resultswithmeasured bed
level changes during a largeflood. Zinke et al. (2011) used a 3Dmodel to
compute sediment deposition on the vegetated banks in the braided
delta of Lake Øyern in Norway. Changes in the main braiding pattern
of the delta were, however, not computed.

The novelty of the present paper lies in the computation of a braided
channel formation using a fully 3D numerical model, which uses an ad-
vanced turbulence model and computes the secondary currents di-
rectly. The results are compared with data from a physical model
study, showing that the numerical model can reproduce the most im-
portant processes in the evolution of the braided system. This is also
one of the aims of the current study. Another aim is to give additional
insight into the physics of the avulsion process, which is important in
the braiding process. Although physical model studies and field obser-
vations can give information about the braiding pattern evolution, a nu-
merical model can still provide additional insight. The secondary
currents are important for the lateral movement of a meandering river
or a braided river branch. The strength of the secondary current is diffi-
cult to measure in a physical model of a braided river, as the vertical di-
mensions are small. It is also not straightforward to measure secondary
currents in the field. A numerical model will easily produce figures of
secondary current distributions, water depths, velocities andwater sur-
face elevations over time. This information enables the numericalmodel
to explain more details of the processes of the braiding system, includ-
ing avulsions. An example is given in the current article.

2. Physical model study

Physical models have a long tradition of being used in explaining
geomorphological processes (Schumm et al., 1987). Laboratory models
of braided rivers have been used by many researchers (Ettema et al.,
2016; Bertoldi et al., 2014). The current study tests the numerical
model against data from a flume study by Egozi and Ashmore (2009).
An 18 m long and 3 m wide flume filled with sand was used. The
slope of the flume was 1.5%. A 0.5 m wide and 1.5 cm deep channel
was excavated in themiddle of theflume before the experiment started.
The sand had an average diameter of 1.2 mm, and a d90 of 3.6 mm. The
sediment was recirculated during the experiment. The water discharge
was varied in three stages. A constant discharge of 1.4 L/s was used in
the first stage. This was increased to 2.1 L/s after 70 h, when the second
stage started. The discharge was increased to 2.8 L/s after 140 h, when
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the third stage started. The third stage and thewhole experiment ended
after 210 h.

Detailed replication of the geometry of a braided channel is impossi-
ble, both for physical and numerical models. Instead, parameters de-
scribing the braiding pattern can be used. Egozi and Ashmore (2009)
measured the braiding intensity (BI) in the flume each hour of the ex-
periment, in 13 cross sections. The average braiding intensity for all
the cross sections was then computed and the values presented as a
time series. The active braiding intensity (BIA) was computed as the av-
erage number of active channels in the cross section. An active channel
was defined as a channel with visible sediment transport, or particle
movement. The total braiding intensity (BIT), was defined as the num-
ber of channels with a finite water depth in a cross section. The active
braiding intensity started at one in the first stage of the experiment
and increased to 1.84 as an average value for the third and final stage.
The total braiding intensity also started at one and increased to four at
the end of the experiment.

3. Numerical model

The computer program used in the current study is called SSIIM
(Sediment Simulation In Intakes with Multiblock option), and has
been applied to a number of previous studies on 3D numerical model-
ling of sediment transport (Olsen, 1994; Olsen, 2003; Ruether and
Olsen, 2007; Zinke et al., 2011; Olsen, 2017).

The numericalmodel solved theNavier-Stokes equations in three di-
mensions to find thewater velocities. A fully 3D solver was used, where
the vertical velocitywas computedwith the same algorithms as the two
horizontal velocity components. A non-hydrostatic pressure could
thereby be computed. The SIMPLE method was used to calculate the
pressure, and the turbulence was computed by the k-epsilon model
(Launder and Spalding, 1974). The numerical algorithms for computing
the water velocities had previously been tested on a number of other
cases, for example, in modelling local scour (Baranya et al., 2015) and
a two-stage channel (Wilson et al., 2003).

The changes in the water surface elevations were computed by the
IPDA method (Olsen, 2015). The algorithm uses an implicit method to
compute the water elevation difference between cells using the pres-
sure field found by the SIMPLE method. The downstream water level
was kept fixed as a boundary condition, but the rest of the free surface
would move according to the numerical solution procedure. An adap-
tive grid was used in the vertical direction, following the computed
free surface.

The sediments were computed by a convection-diffusion equation
for suspended sediments and bedload. The Engelund and Hansen
(1967) formula was used to compute the pick-up rate of the particles
and the sediment transport, qs:

qs ¼ 0:05ρsU
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d50

g
ρs

ρ
−1

� �
vuuut

τ
g ρs−ρð Þd50

� �3=2
ð3Þ

The depth-averaged velocity is denoted U, d50 is the average particle
size, g is the acceleration of gravity, ρ is the density of water, ρs is the
density of the sediments (2650 kg/m3) and τ is the bed shear stress.
The numerical model for computation of thewater velocity in combina-
tion with sediment transport was previously tested by Haun et al.
(2013). They computed suspended sediments concentrations in a hy-
dropower reservoir and compared the results with fieldmeasurements.

The continuity equation for the sediments was used to compute the
vertical elevation changes of the bed. Two grids were used: a 2D depth-
averaged orthogonal grid that covered the whole flume geometry, both
thewet and the dry areas. This grid was kept constant during the simu-
lations. The cells were 4 cm in the longitudinal direction and 2.5 cm in
the lateral direction. A coarser grid was also used, where the cells
3

were 5 cm in the longitudinal direction and 3 cm in the lateral direction.
The fine 2D grid therefore had 450 × 120 cells and the coarse grid had
380×100 cells. The changes in thewater and bed levelswere computed
in the 2D grid. These valueswere then used to generate an unstructured
3D grid, where the number of cells in the vertical direction was a func-
tion of the water depth. The regeneration of the grid for each time step
meant that an adaptive 3D grid was used, where the total number of
cells in the grid varied over time. The Navier-Stokes equations and the
sediment transport were computed in the 3D grid.

Fig. 1 shows details of the grid in plan view (A) and a cross section
(B). The plan view of the grid shows the 3D wetted area. The areas not
covered with cells are dry. Also, note the change in the shape of the
cells close to the banks. The rectangular shape can be modified some-
what to follow a complex geometry.

The cross section in Fig. 1 shows three branches of the braided sys-
tem. The number of grid lines, n, in the vertical direction was computed
from Eq. (4). The equation is based on thewater depth, d, in the corners
of a 2D cell:

n ¼ 0if d < dc1
n ¼ 2if dc1 < d < dc2

n ¼ nmax
d

dmax

� �0:7

if d > dc2
ð4Þ

The values used in the current studywere nmax=9and dmax=2 cm.
In the default computation, the values of dc1 and dc2 were 3 mm.

The values from Eq. (4) were applied to the four corners of each 2D
grid cell. The number of cells generated in the vertical direction would
be the maximum of these four values minus one. If the water depth
was below the value of the dc1 parameter for all four corners of a 2D
cell, no 3D cell would be generated. The 2D cell would thereby be dry
in the next time step. The areas without cells in Fig. 1A are dry. Also,
the part of the cross section in Fig. 1B without cells have dried up. This
would be the area between the channels in the cross section.

Many studies of braided rivers using a 2D numerical model will use
special algorithms to take lateral movements of the channels into ac-
count. Often, empirical formulas are used for the magnitude of the lat-
eral migration. Steep banks at the outside of a bend of a river may
collapse because of geotechnical failures. Several models exist for such
processes, for example Ikeda et al. (1981) and Olsen and Haun (2018).
In the current study, the banks were not very high, and the sediments
did not have substantial cohesion. The lateral migration was therefore
not computed explicitly by a specific formula. Instead, the migration
of the channels was implicitly computed by the wetting/drying algo-
rithm. Further details of the method are given by Olsen (2003).

The numerical model used a non-uniform sediment grain size distri-
bution with 10 multiple fractions. This was similar to earlier work by
Sun et al. (2015). The initial bed sediments were made up of 10% of
each of the 10 sizes. The particle diameters were taken from the data
of the laboratory experiment by Egozi and Ashmore (2009). Table 1
shows the details of the grain sizes, with particle diameters and initial
grain size distribution.

The continuity algorithm for the bed elevation changes was used for
each size as the erosion and deposition were computed, resulting in
changes in the grain size distribution over time.

The bed roughness, ks, was computed from the following formula
(van Rijn, 1982):

ks ¼ 3d90 ð5Þ

The parameter d90 is the grain sizewhere 90% of thematerial is finer.
The roughness was used in the wall laws solving the Navier-Stokes
equations. The parameter affected the magnitude of the bed shear
stress. In cells with erosion, the coarser size would dominate, causing
a larger roughness. This would again increase the bed shear stress and
the sediment transport capacity. Cells with deposition of the finest



Fig. 1. A part of the grid seen in plan view (A) and in a cross-section (B).
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fraction would have a lower roughness and again a lower shear stress.
This would cause a reduced sediment transport capacity. These pro-
cesses would only be possible to model with multiple sediment sizes.
The variation of the roughness as a function of changes in the grain
size distribution was found to be important by earlier studies
(Vázquez-Tarrío et al., 2017).

The Navier-Stokes solver, sediment module and grid algorithms
were all included in one program, so that eachmodule had common ac-
cess to all the necessary variables. Special functions to transfer variables
from one module to another were therefore not needed.

A time step of 4 s was used in all the runs. With a total simulated
time of 210 h, this meant that 189,000 time steps were used. The com-
putational time for the 210 h of the physical experiment was five days
on a PC with a 3.6 GHz i7 processor on the coarser grid. Eight days
were needed for the fine grid.
4. Braided channel formation

The numerical model was used with input data from the initial ge-
ometry of the physical model study of Egozi and Ashmore (2009). The
time series of inflowing water discharge from the physical model
study was given to the numerical model. Recirculation of the sediments
was computed by the numerical model, in that the sediment concentra-
tion at the upstream boundary was set equal to the outflow concentra-
tion. The resulting computed water depth is given in Fig. 2 for different
Table 1
Grain size distribution.

Size number Diameter (mm) Initial part in bed material (%)

1 4 10
2 3 10
3 2.1 10
4 1.7 10
5 1.3 10
6 1 10
7 0.75 10
8 0.55 10
9 0.45 10
10 0.2 10

4

times during the simulation. The figure shows that initial perturbations
of the uniform flow field formed at the upstream end, spreading down-
stream. At 18h, awavy depth pattern had formed over thewhole length
of the flume. This pattern was also observed in laboratory models
(Einstein and Shen, 1964) and the numerical modelling results of
Zhang et al. (2020). The variation in depth increased over time, causing
multiple channels to form in the initially 50 cmwide channel. The initial
erosion/deposition process was similar to the formation of a meander-
ing river (Olsen, 2003). In the current case, some channels started to
show a non-symmetrical pattern at 31 h in Fig. 2. The braided channels
then expanded in the lateral direction and formed more branches over
time. The channels had different widths, often with one main channel
and smaller side channels. This was also observed by Egozi and
Ashmore (2009) in their physical model study. The channels formed
and disappeared in a typical braided pattern.

One of the differences between a 3D and a 2Dnumericalmodel is the
computation of the secondary currents. This parameter was believed to
be important for the formation of a meandering and braided channel
system. To study the effect of the secondary current in the 3D model,
the vertical diffusion coefficient in the Navier-Stokes equations was
multiplied with a factor five. The increase in the diffusion coefficient
caused a stronger connection between the velocities at the bed and
the surface. Thereby, the secondary current was reduced. The resulting
braided channel evolution given in Fig. 3. Comparing Figs. 2 and 3, it is
seen that the increase in the vertical diffusion coefficient produces less
braiding. Fewer channels are seen in Fig. 3 than in Fig. 2.

The avulsion processes are alsomore clearly seen. At 123 h, themost
upstream bend to the left (upper) side is formed. At 140 h, a chute has
formed and at 175 h the bend is dry. However, at 210 h, the water
level in the bend has risen, so the previously dry bend is wet again.

One of the input parameters for the numerical model is the critical
depth for the wetting/drying process. The default computation uses a
dc1 value of 3 mm (Eq. (4)), which is 12% of the width of the cells for
the fine grid. To investigate the importance of this parameter, a compu-
tation was done with a dc1 value of 2 mm instead. Additionally, the
criteria for deciding if only one cell should be used over the depth (dc2
in Eq. (4)) was changed from 3 to 4 mm. This meant more 2D cells in
the shallower areas. The results are shown in Fig. 4.

The first 18 h of the run seems to be similar for Figs. 2 and 4. The
braiding process will have a random feature as also seen in a physical



Fig. 2.Plan viewof the channelwith computedwater depths for the default parameter configuration. The legends are depths and bed level changes in cm, and the numbers on the right are
time in hours from the start. The water flow direction is from left to right. The length of the flume is 18 m. Colour animations of these results are given at http://pvv.org/~nilsol/cases/
braided.
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model. This means that small differences at one point can give large
changes in the following braiding pattern. Comparing the results
after 210 h for Figs. 2 and 4 shows a different pattern. But it is difficult
to say if more or less braided channels have been formed.

Another parameter that is often very important in CFDmodelling
is the grid size. The current study used two grids: a coarse and a fine.
Although the difference in size was not large, a comparison of the
results from the two grids can be interesting. The first three
5

computations were done with the fine grid (Figs. 2–4). Fig. 5
shows the braided channel evolution using the coarser grid with
the same parameters as used for the results in Fig. 2. Looking at 18
h in Fig. 5, the depth pattern is less pronounced than in Fig. 2. This
is because of the coarser grid. Comparing Figs. 2 and 5 after 18 h is
difficult because of the random nature of the braided system.
However, the number of parallel channels and the braiding inten-
sity seems similar.

http://pvv.org/~nilsol/cases/braided
http://pvv.org/~nilsol/cases/braided


Fig. 3. Plan view of computedwater depthswith an increase in the vertical diffusion coefficient with a factor 5. The legends are depths and bed level changes, and the numbers on the right
are time in hours from the start. The water flow direction is from left to right.
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The basis of the numerical modelling of sediment transport is the
sediment transport capacity, given by a transport formula. The
Engelund-Hansen (1967) formula was used in the previously de-
scribed results, but it was also interesting to see what other formulas
produced. The default computation was therefore repeated with two
alternative sediment transport formulas: The bedload formula of van
Rijn (1984) and the Meyer-Peter and Mueller (1948) formula, called
MPM from this point forward. These two formulas were also used in
the modelling of a braided river by Lotsari et al. (2014). Sun et al.
(2015) also used the van Rijn formula. The result using the van Rijn
formula is given in Fig. 6. The other parameters used for this compu-
tation were similar to the default computation, which is shown in
Fig. 2.

Fig. 6 shows a different braiding pattern that the results from the
Engelund-Hansen formula (Fig. 2). Lateral erosion of the initially
6

straight channel continues, forming a meandering pattern. This pattern
grows laterally over time, similar to theprevious results. However, there
ismuch less braiding. At 105 h, one of the largermeander bendswas cut
off, and during this processmultiple channels existed. Also, at 175h, one
of the bends has two channels. Themain part of the geometry, however,
only has one channel.

Another sediment transport formula that has been used over many
years is the MPM formula. The default computation was also repeated
using this approach. The results are given in Fig. 7.

The results in Fig. 7 are more similar to the planform of Fig. 6 than
Fig. 2. The MPM formula gives fewer braiding channels than the
Engelund-Hansen formula. The initial channel expands more slowly in
the lateral direction after 35 h, compared with both the Engelund-
Hansen and the van Rijn formula. From 105 h, meander cut-offs are
seen in steps, producing multiple braiding channels. However, the



Fig. 4. Plan view of computed water depthswithmodified depth criteria for thewetting/drying of cells. The legends are depths and bed level changes in cm, and the numbers on the right
are time in hours from the start. The water flow direction is from left to right.
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main channel pattern is more similar to a meandering river than a
braided system.

5. Braiding intensity

Because the evolution of the braided channel has a random compo-
nent, it is difficult to comparemeasured and computed braided channel
patterns directly at one particular time from a plan view as shown in
7

Figs. 2–7. Lotsari et al. (2014) attempted this with geometry data from
echo soundings in the Tana River in Norway, but the computed and
measured braiding patterns were not similar.

The proposed solution to this problem is the previously described
parameter braiding intensity (BI) (Egozi and Ashmore, 2009). This pa-
rameter was also computed in the numerical model. All cross sections
downstream of the first four meters were used and averaged. The com-
putation was done for each 400 s. The total number of channels was



Fig. 5. Plan view of computedwater depths with the coarser grid. The legends are depths and bed level changes, and the numbers on the right are time in hours from the start. The water
flow direction is from left to right.
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computed from the cells that had a finite water depth. For BIA, criteria
for determination of sediment movement was needed. Using Shields
(1936) curve for the d75 of the grain size distribution gave a critical
shear stress of 1.0 Pa. This value was used in defining a cross section
with active sediment transport. For the fine grid, at least four
neighbouring cells in a cross section had to have a shear stress exceed-
ing this value to be counted in the active braiding intensity. Only three
cellswere used for the coarse grid. Because the cell size in the transverse
8

direction was 2.5 cm for the fine grid, this meant that the shear stress
had to exceed the critical value over a channel width of 10 cm to be de-
fined as an active channel. For the coarse grid, this critical width was 9
cm.

The braiding intensities provided a numerical value to compare the
results from the physical and numerical models (Sun et al., 2015).
Fig. 8 shows the resulting computed active braiding intensity for the de-
fault configuration and the test where the secondary current was



Fig. 6. Plan view of channel evolution using the van Rijn bedload formula. The legends are depths and bed level changes and the numbers on the right are time in hours from the star. The
flow direction is from left to right.

Fig. 7. Plan view of channel evolution using the MPM formula. The legends are depths and bed level changes and the numbers on the right are time in hours from the star. The flow
direction is from left to right.
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Fig. 8. Time series of computed Active Braiding Intensity (BIA). Average values over each time period are shown from the laboratory experiment.
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damped by increasing the vertical diffusion. It also shows the results
from the coarser grid. The average BIA values for each of the three dis-
charges are also shown from the laboratory study.

Fig. 8 shows that the BIA value starts at one and increases over time,
with considerable fluctuations. This was also observed in the results
from the physical study. The increase of the BIA value is less pronounced
for the computationwith the dampened secondary current, particularly
in the last discharge period. This is similar to what was observed in
Fig. 3.

Comparing the results of the physical model study with the com-
puted values from the numerical model can also be done in a table
using time-averaged values of BIA. Table 2 shows the computed and
measured BIA values for the different model runs during the three dis-
charge periods.

A systematic difference between the computed andmeasured active
braiding intensity is observed in the first time period. The computed BIA
value is around 1.2, while the measured laboratory value is around 1.1.
This is a 10% difference. Figs. 2–5 show that more than one channel
emerge at 35 h. The numerical model was started with a wet channel
that had perfectly uniform flow from time zero. This was probably not
possible in a physical model. The difference in initial boundary condi-
tions may have affected the formation in the special depth-pattern
shown after 18 h in Figs. 2–5. This caused a several parallel channels
to form, leading to the high BIA value in the first period.

The results from the four different computations using the
Engelund-Hansen formula presented in Table 1 all show that the BIA in-
creases up to around 1.8 at the end of the simulation in Period 3. The ex-
ception is the run with the reduced secondary current, which only
shows a BIA value of 1.44. This is in line with observations from Fig. 3
Table 2
Active Braiding Intensities (BIA) for different runs and periods.

Model Period 1 Period 2 Period 3

Laboratory 1.1 1.4 1.84
Default computation 1.20 1.44 1.81
Secondary current 1.22 1.31 1.42
Grid parameters 1.14 1.31 1.78
Coarser grid 1.24 1.30 1.87
Van Rijn formula 1.09 1.04 1.10
MPM formula 1.18 1.16 1.14

10
that the reduction of the secondary currents causes less braiding. The
BIA values are also smaller when using the van Rijn and the MPM for-
mula, which corresponts well with the observations in Fig. 6 and 7.

6. Chute cutoff

The channels in a braided river systemwill bifurcate at several loca-
tions. Ferguson (1993) described chute cutoffs as local avulsions.
Slingerland and Smith (2004) described avulsion as a process where
the water flow diverts from the main channel into a new course on
the floodplain. A full avulsion would leave the original channel dry,
whereas a partial avulsion would mean that water would flow in both
channels. A braided system with multiple parallel channels would
imply that avulsions had to have taken place.

Once the numerical model is verified to replicate the braided system
formation, it can also be used to give insights into the avulsion processes
(Yang et al., 2018). Important characteristics are erosion, sediment
transport, secondary currents and changes in water surface elevations.
The secondary current occurs in bends where the high-momentum
water close to the surface moves more towards the outside of the
bend. The water at the bed will then be forced more to the inside of
the bend. The 3D grid used in the current study had multiple cells lo-
cated directly above each other (Fig. 1B). In a plan view, the velocity
vectors in the surface cell and in the bed cell below will then start
from the same point: the centre of the two cells. These two vectors are
shown in Fig. 9, where the circle marks the cell centre. The angle be-
tween these two vectors is denoted a in the figure. This is the secondary
current angle.

Because the sediments move mostly as bedload, the particles will
move in the direction of the velocity vector close to the bed towards
the inside of a bend. Erosion will normally take place at the outside
of the curve. The process will lead to a lateral movement of the
channel.

The bend flow will also produce a higher water surface elevation at
the outside of the curve because of the centrifugal force. This may
cause the flow to spill over the bank. If an already existing channel is lo-
cated at the outside of the curve, the water may follow this channel.
Slingerland and Smith (2004) classified this process as avulsion by an-
nexation. The water close to the surface at the outside of the curve
will have a higher velocity, causing erosion at the entrance of the new
channel. The new channel may also form in a curve, with deposition



Fig. 9.Definition of the secondary current angle, a, from the velocity vectors at the surface
and at the bed. The vectors are shown in plan view.
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on the inside of the bend. This may cause most of the bedload to move
towards the old channel. The decreasing water discharge in the old
channel can cause the bed levels here to increase. The water surface el-
evationwill also be lower at the inside of the curve,whichnow is the old
channel. The reduced water level and increased bed level at the old
channel will decrease its capacity to transport water. More of the
water will therefore enter the new channel.

The braided channel formation presented earlier includes a num-
ber of abrupt changes in the channel geometry. A selection has been
made to focus on a chute cutoff taking place in the run with the in-
crease in the vertical diffusion with a factor of five (Fig. 3). The par-
ticular bend studied in more detail is shown at the downstream
part of the system in Fig. 3. During the time period from 180 to 210
h, there is a meander bend that is being cut off by formation of a
new chute. An enlargement of the bend is shown in Fig. 10, giving
more details. Also, images are shown for more time steps to better
understand the temporal evolution.

The process starts with the bend shown at 180 h. Because of sedi-
ment transport and the secondary current, the bend moves down-
stream and increases in amplitude. At 190 h, the water spills over the
left bank of the first bend, which initiates the chute. Erosion occurs in
the chute, which deepens as shown at 200 h. At 210 h, the new channel
Fig. 10. Computed water depths during a local avulsion. The numbers
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has formed where the chute started, and the old channel has partly
dried up. This is the classical avulsion of a meander bend.

An interesting question that arises is whether the numerical model
can shed light on more details of this process? Parameters such as the
secondary currents and water elevations are not trivial to measure in
detail in a physical model with a changing geometry. Fig. 11 shows
the same bend as in Fig. 10 at 190 h, but with four different parameters:
water depth,water velocity,water level and secondary current strength.
The water depth is large in the main channel, although the water level
has increased over the left overbank of the main curve. The velocity
also follows themain channel, meaning that there is no sediment trans-
port overbank. Fig. 11C shows the water elevation. The white arrow
points to the location where the chute starts. This is at the outside of
the first upstream bend. The centrifugal force causes the water level to
be higher at the outside of the bend. The upstream bend therefore cre-
ates an elevated water level where the chute starts. A rise in water
level in the main channel was also found by van Dijk et al. (2014) to
be important in the formation of the chute.

Fig. 11D shows the secondary currents in the bends. The black/red
areas indicate strong secondary currents with a bed vector component
to the right in the flow direction. Erosion of sediments from the outside
of the bend follows. This is exactlywhat occurs at the locationwhere the
chute starts to form. The erosion causes the bed level in the start of the
chute to be lowered. Together with the heightened water level caused
by the centrifugal force, this increases the water depth at the upstream
part of the chute. This is important in the avulsion process as a given
water depth is required to transport sediments. Another important ef-
fect of the secondary current is that the main bedload is directed to-
wards the inside of the curve, which is away from the chute inlet.
Water with less sediment will therefore enter the chute, facilitating
bed erosion and deepening of the chute.

Fig. 12 shows the channel bends at 195 h. The water depth in the
chute has increased together with the water velocity. The water level
still has a high value where the chute starts (Fig. 12C). This is pointed
to with the white arrow. The discrete shades in the figure makes it pos-
sible to observe contour lines of water elevations. Note that the contour
lines are more narrowly spaced in the direction of the chute than in the
are times in hours. The water flow direction is from left to right.



Fig. 11. Plan view of a channel section at 190 h for the computation with reduced secondary currents. A: water depth, B: water velocity, C: water level, D: secondary current. The flow
direction is from left to right.
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main channel. Thewaterwillflowa shorter distance in the chute than in
the bend. The water surface slope will therefore be steeper in the chute
than in the channel. The bed shear stress in a channelwith uniformflow
is proportional to the water surface slope. The shorter flow distance
through the chute will therefore cause an increased bed shear stress
and erosion.
Fig. 12. Plan view of a channel section at 195 h for the computation with reduced secondary c
direction is from left to right.
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Fig. 12D shows the secondary current at 195 h. The secondary cur-
rent is still strong in front of the chute, causing clearer water to enter
it. The sediments are directed towards the old channel. As thewater dis-
charge through the chute increases, less water will flow through the
original bend. Comparing Figs. 11B and 12B shows that the velocity
has decreased slightly. The lower velocity causes the sediment transport
urrents. A: water depth, B: water velocity, C: water level, D: secondary current. The flow
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capacity to decrease. The sediments that are pushed into the old bend
by the secondary currentwill therefore have a tendency to bedeposited.
This causes thewater depth in the original channel to decrease, pushing
more water into the chute.

Van Dijk et al. (2014) stated that sediment partitioning was impor-
tant in the formation of the chute cutoff. The current study shows that
the secondary current, or the helical flow, will move sediments to one
side of the channel. At a bifurcation point, this leads to more sediments
flowing into one branch than the other.When the sediments aremoved
away from the chute, then they will move into the original channel. The
higher sediment inflow combined with the lower water velocity and
sediment transport capacity will lead to sediment deposition in the
original channel. This process will cause more water to flow into the
chute and accelerate the cutoff.

7. Discussion

A braided channel system will evolve with a random component. It
is therefore not possible to exactly replicate a laboratory model study
of a braided channel in all details. The currently used numerical model
uses an OpenMP parallelization algorithm where the different cores in
the computer will handle separate parts of the grid. After each core is
finished, the results are sent to the other cores, which use the incoming
values as boundary conditions. Using standard solvers, this will give
somewhat different results depending on which core finishes the com-
putation first. A standard solver will therefore give a slightly different
result if the same computation is done twice. This will not affect the re-
sults in a significant way for most CFD computations, but for a braided
Fig. 13. Secondary currents in the bend from Fig. 3, with an
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system only a small perturbationwill increase to produce different geo-
metrical patterns. This means that running the same braided computa-
tion multiple times will lead to different braiding patterns (Figs. 2–7),
different time series (Fig. 8) and also different BIA values (Table 2),
even if the identical initial and boundary conditions are used. In the cur-
rent study, a special solver is made so that the parallelization problem is
avoided and exactly the same result is produced if a run is done twice.
However, the results must still be viewed as one solution of possibly
many for the same boundary condition. A similar random component
also exists in a laboratory study. Two laboratory runs with a braided
river will also not produce exactly the same geometrical pattern. The
computed BIA values in Table 2 will therefore have a fair amount of
uncertainty.

The sediment transport formula seems to have a significant effect on
the braided pattern. The current study shows that the formula by
Engelund-Hansen gives higher braiding intensities than the van Rijn
or MPM formulas. A possible reason is that the Engelund-Hansen for-
mula gives a higher sediment transport capacity than the other formu-
las. The Engelund-Hansen formula also gives a finite sediment transport
if the bed shear stress is above the critical value given by Shields (1936).
The other two formulas will give zero sediment transport capacity in
such cases. The sensitivity of the results to the sediment transport for-
mula was also found by Lotsari et al. (2014), modelling the braided
Tana River in Norway. Both the van Rijn and theMPM formula gave rea-
sonable results for the bed elevation changes. The formula by van Rijn
was found to give a more stable result.

The current study focuses on secondary currents as one of the main
parameters affecting braided channel evolution. A damping factor is
increase in the eddy-viscosity (A) and no increase (B).
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introduced for the secondary current by increasing the vertical diffu-
sion. The increase in the vertical eddy-viscosity should in theory give
less secondary currents in bends, as it increases the connection between
the velocity vectors at the bed and the surface. Comparing Figs. 2 and 3
shows a substantial difference in the braiding intensity. But are we sure
that this is caused by the secondary currents? To investigate this ques-
tion, the computation with an increase in the vertical eddy-viscosity
(Fig. 3) was stopped at 190 h and the bed andwater surface was frozen.
The water flow field was then recomputed without any increase in the
vertical eddy-viscosity. The resulting secondary current angles for the
two cases are shown in Fig. 13. The increase in the vertical eddy-
viscosity with a factor of five gives secondary angles that are less than
half of the original values. This shows that the increase in the vertical
eddy-viscosity affects the secondary currents substantially.

The next question regarding the secondary current damping is if this
actually takes place in nature? Photos from the physical model study
(Egozi and Ashmore, 2009) show ripples on the bed. Such bedforms
are often seen in physical models. Also, in natural rivers bedforms
such as dunes and antidunes occur. Ripples, dunes and antidunes will
introduce an extra vertical velocity component in themainflowbecause
of their geometry. A convective transport ofmomentumand turbulence
will take place in the vertical direction, which can reduce the secondary
currents. Also, there is often a variation of the water depth over
bedforms, which can introduce extra turbulence. Bedforms can be
modelled numerically (Olsen, 2017), but usually around 30–50 cells
are required for each ripple/dune to be modelled with a proper spatial
resolution. In the current study, the ripples have dimensions similar to
the size of one grid cell. The flow field over each individual ripple can
then not be modelled directly in the CFD model because of the coarse
grid. The solution chosen in the current study is to increase the diffusive
term in the Navier-Stokes equations. It is therefore possible that the
physically most correct results may not be what is seen in Fig. 2 as the
default computation. Results closer to what is shown in Fig. 3 may be
more in line with the processes in the physical model.

Another question related to avulsions is whether they are only
formed during high discharges? This seems to be the case for many
large floods. Hooke (2004) investigated multiple avulsions that took
place in the River Bollin in the UK during floods in 2000–2001. A flood
will cause an increase in the water velocity and sediment transport ca-
pacity of a river, increasing bank erosion and the possibility for geomet-
rical changes. The current study shows that braiding and local avulsions
also occur during constant water discharges. The two increases in the
water discharge during the experiment did cause a rise in the value of
the braiding intensity. However, the avulsion described in the previous
section took place during a constant water discharge.

8. Conclusions

A 3D numerical model has been used to model the formation of a
braiding channel. Computed time series of active braiding intensities
compare reasonably well with observations from the laboratory exper-
iment. The grid size and the critical depth for wetting/drying were
tested in the current study. Both parameters had some effects on the re-
sults, but main features of the braiding patterns were not substantially
changed. An important function for the evolution of the braided channel
systemwas the sediment transport capacity. The Engelund-Hansen for-
mula gave a higher braiding intensity than the formula by van Rijn or
Meyer-Peter and Müller. The latter two formulas gave a planform
more similar to a meandering river. Further studies with improved sed-
iment transport formulas are a topic for future research.

The numerical model also showed details of a local avulsion process:
how a chute is formed and how it is affected by the water depth, water
surface location, water velocity and secondary current change. The
changes in thewater surface elevationwere shown to be important dur-
ing the avulsion. The water level would increase at the outside of the
bend because of centrifugal forces at the location of the chute entrance.
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Therefore, the water depth in the chute would increase, causing higher
bed shear stress and erosion in the chute. The secondary current was
also shown to be important, as it pushes the bedload away from
the chute and into the main channel. In so doing, clearer water enters
the chute, causing erosion and an expansion of the new channel. At
the same time, the bedload is directed towards the old channel where
the water discharge is reduced. The process promotes clogging of the
old channel, which can lead to a complete avulsion. The fully 3D ap-
proach of the numerical model is able to predict the secondary current
directly, instead of relying on empirical formulas, which is required in
2D models.

In a 3Dmodel, the secondary currents could be controlled by varying
the vertical turbulent diffusion coefficient in the Navier-Stokes equa-
tions. The increased diffusion would cause the bed and surface velocity
vectors to be closer to each other inmagnitude and direction. The phys-
ical reason for an increase in the vertical turbulence would be bedforms
as dunes and antidunes, causing an increase in the vertical velocities
over the water depth. This process is also a topic for future research.
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