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Abstract

This thesis investigates the relatively novel concept of Digital Twin (DT) in
the context of offshore wind turbine drivetrains. DT can be described as a
virtual representation of a system or asset that calculates system states and
makes system information available, through integrated models and data,
with the purpose of providing decision support over its life cycle. Applying
these ideas to the use case of drivetrains, there remain many research ques-
tions on the specifics of drivetrain DTs such as its model architecture, its
capability and value to the user, its limitations and remaining development
obstacles, and the errors and uncertainty in its output, which are addressed
in this thesis. The scope is narrowed to the fault diagnosis and prognosis,
i.e. the remaining useful life (RUL) estimation of mechanical drivetrain
components such as bearings and gears. Through this capability, DTs can
provide wind farm operators with a form of decision support and thereby
contribute to a higher reliability and availability.
The investigation is divided into three sections that cover each of the main
elements of DT: the data, the models and the decision support. Real-time
data streams from physical sensors are crucial to inform the DT on the
current state of the drivetrain. The methodology of data acquisition, pro-
cessing and analysis from different sources such as SCADA and CM systems
is presented.
DT models differ from conventional, standalone simulation models, in that
they are connected to the physical drivetrain and must be updated continu-
ously to reflect its behaviour. Reduced-order models are investigated, which
are computationally efficient to allow real-time simulation while maintain-
ing a sufficient model fidelity to accurately capture the complex drivetrain
dynamics. In addition, state estimation and system identification methods
are presented to synchronize the DT and the physical drivetrain in the kine-
matic states and model parameters.
Decision support are services provided by the DT that assist stakeholders in
making key decisions. The focus of this thesis is the RUL estimation based
on fatigue assessment, which is facilitated through online load monitoring
techniques, referred to as virtual sensing. The methodology for virtual load
sensing at the main bearings and at the gearbox components is developed
and evaluated in numerical and experimental case studies.
This thesis contributes to a better understanding of the DT concept by
developing and showcasing concrete applications for offshore wind turbine
drivetrains and elaborating their capabilities, as well as the arising chal-
lenges and limitations.
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Chapter 1

Introduction

1.1 Motivation

Digital Twin (DT) has in recent years attracted tremendous attention among
researchers and businesses alike. What was once a fringe idea in the 2000s,
has developed to a major technological trend, reportedly one of the top ten
strategic technology trends according to the Gartner’s report of the years
2017 to 2019 [7]. The DT concept has been adopted in a diverse range of
industries ranging from the aerospace to health care and recently making
grounds in the offshore wind energy sector.
The exponential growth of research and business activities is fueled on the
supply side by technological advancements and on the demand side by mar-
ket forces (Fig. 1.1). Advancements in sensor technologies and Internet of
Things (IoT) platforms enable the acquisition of ever increasing amounts of
data that are instantly and remotely accessible via cloud services. In off-
shore wind turbines the industry standard are supervisory control analysis
and data acquisition (SCADA) and condition monitoring (CM) systems that
feature a wide range of sensors for the observation of the operational status
and the health condition. Artificial Intelligence (AI) and Big Data algo-
rithms are invaluable to transform the large amounts of data into serviceable
information, in particular, machine learning (ML) models have proven to be
highly effective to analyze SCADA and CMS data. Physics-based models
of wind turbine drivetrains have also advanced in recent years. Multi-body
simulation (MBS) models have matured to high levels of fidelity and are ca-
pable of simulating drivetrain dynamics to great detail and accuracy, while
demanding fewer computational resources than finite element (FE) models.
These technologies are critical to construct DTs for wind turbine drive-
trains.

1
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Figure 1.1: Push- and pull-factors for the research into DTs of offshore
wind turbine drivetrains.

At the same time, the demand for increased digitization and automation
is voiced in the offshore wind energy sector, a trend commonly referred to
as Industry 4.0. The major market force that drives this trend are the
high operation and maintenance (O&M) expenditures of offshore wind tur-
bines that amount to about 30% of the levelized cost of energy (LCOE)
[8]. The O&M expenditures are elevated due to the harsh environmental
conditions at sea and the poor reliability of electrical and mechanical driv-
etrain components that lead to frequent and premature failures [9]. The
repair of such failures is labour intensive, requires specialized maintenance
vessels and causes long downtimes. For this reason, there is growing inter-
est in advanced O&M strategies using intelligent controllers or predictive
maintenance methods that have the potential of improving the reliability of
offshore wind turbines.
While there exists abundant interest in DT, most of the previous publica-
tions are of theoretical nature and applied research on this topic is sparse.
Hence, there remain numerous research questions on the specifics of driv-
etrain DTs: Which methods of data acquisition, processing and fusion are
needed? Which modelling approach is best suited for drivetrain DTs? How
do these methods and models perform in realistic conditions and what is the
associated uncertainty? This thesis addresses these research questions by
applying the DT concept to the use case of offshore wind turbine drivetrains.

1.2 Aim and scope

This thesis is written as a summary of papers on the topic of DT for offshore
wind turbine drivetrains, including two published conference papers, three



1.3. Thesis outline 3

published journal articles and one journal article currently under peer re-
view. The overall objective is to develop, evaluate and assess novel methods
and models that can provide operators of offshore wind farms with a form
of decision support and ultimately improve the reliability and availability
of wind turbine drivetrains. Since DT is an extensive subject, it becomes
necessary to narrow the scope in the following ways.r Drivetrain configuration: Wind turbine drivetrains serve the pur-

pose of converting mechanical to electrical energy and transmitting
rotor loads into the bedplate and tower [10]. While many different
drivetrain designs exist, the investigation is limited to geared drive-
trains with a medium-speed or high-speed gearbox transmission and
excludes direct drive systems. In general, the term drivetrain refers
to the entire energy conversion system ranging from the main bear-
ings to the electrical generator and inverter. In this thesis, the focus
lies on the mechanical section of the drivetrain, i.e. the main shaft
suspension and the gearbox, and excludes all electrical components.r Site location: The tools and methods developed in this thesis are
exemplified on offshore wind turbines, however, they are generic in
nature and also apply to onshore wind turbines.r Data acquisition: The data input is limited to sensor measurements
that are already available in modern offshore wind turbines such as
SCADA and CMS data to mitigate the costs of additional sensor in-
stallation.r Lifecycle phase: DTs are envisioned to accompany the physical wind
turbine during its entire lifecycle, however, only DTs for the operation
and maintenance are investigated in this thesis.r Decision support capability: The research focuses on decision sup-
port with descriptive, diagnostic and predictive capability such as load
monitoring, fault diagnosis and remaining useful life prediction meth-
ods. Prescriptive methods that recommend maintenance actions are
part of the long-term vision of DT and are not investigated in this
thesis.

1.3 Thesis outline

This thesis is structured according to the internal composition of DT with
the three main elements of DT Data, DT Models and DT Decision support
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Figure 1.2: Thesis structure

(Fig. 1.2). Following the introductory and the background chapter, one
chapter is assigned to each of the three DT elements. These chapters de-
scribe the state-of-the-art, as well as the original contributions reported in
the appended papers 1 to 5. One additional chapter discusses the overall
uncertainty of DT based on the findings of paper 6. A brief description of
each chapter is provided as follows.

Chapter 1:
This introductory chapter presents the motivation, the aim and scope, and
the thesis outline.

Chapter 2:
This chapter lays out the background of DT. The defining characteristics
of DT are formulated, different DT frameworks are presented and potential
applications and challenges in the offshore wind energy sector are discussed.

Chapter 3:
This chapter addresses the role of data in DT and presents the methodol-
ogy of data acquisition, processing and fusion that is used in the appended
papers.
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Chapter 4:
This chapter covers the utilization of models in DT. The unique challenges
and differences to conventional, standalone models are discussed. The mod-
elling approach for the appended papers is described, which is based on
physics-based multi-body simulation models and model updating algorithms
such as state estimation and system identification methods. In addition, the
use of reduced order models for efficient real-time simulation is discussed
based on the findings of paper 1.

Chapter 5:
This chapter discusses decision support methods of various capability levels
ranging from descriptive to prescriptive. Section 5.2 covers descriptive de-
cision support such as load monitoring and is based on the virtual sensing
methods presented in papers 2, 3 and 4. Section 5.3 describes diagnostic
methods used for DT and refers to paper 5, which presents a rotor imbalance
diagnosis method. Section 5.4. addresses predictive methods, specifically
remaining useful life estimation methods for predictive maintenance strate-
gies, and discusses the approach used in papers 2, 3 and 4.

Chapter 6:
This chapter discusses different sources of uncertainty in DT and their im-
pact on the accuracy of remaining useful life estimates. The discussion is
based on the results of paper 6.

Chapter 7:
Concluding remarks and an outlook with recommendations for future works
are provided.
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Chapter 2

Background

2.1 Defining characteristics

The origin of the term Digital Twin can be traced back to Michael Grieves,
who in 2003 introduced DT in a lecture on product life cycle management
and in 2014 published a white paper to formalize the DT concept [11].
Grieves’ understanding of DT is “a set of virtual information constructs
that fully describes a potential or actual physical manufactured product from
the micro atomic level to the macro geometrical level“ [12]. The DT concept
model contains three main parts: the physical product, the virtual product
and the connection of data and information between the two. In the follow-
ing years research and business activities related to DT increased rapidly,
as the DT concept was adopted in different fields starting with aerospace
and manufacturing industries. With this influx of new ideas, many new, di-
verging and sometimes contradicting definitions have been put forward that
only fed the ambiguity of the DT concept. Several review papers have been
published that summarize the recent research with an attempt to define and
formalize the DT concept [13, 14, 15, 16, 17]. In 2020 the first formal de-
scription by a certifying body was presented by Det Norske Veritas (DNV)
in the recommended practice DNVGL-RP-A204 on the ”Qualification and
assurance of digital twins” [18]. DNVGL-RP-A204 provides a definition,
which nicely captures the current understanding of DT and is used for this
thesis.
”A digital twin is a virtual representation of a system or asset that calculates
system states and makes system information available, through integrated
models and data, with the purpose of providing decision support over its life
cycle.“ [18]
This definition summarizes several defining characteristics of DT that may

7
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benefit from further elaboration.
Virtual representation: DTs are first and foremost virtual representa-
tions that mirror the behaviour of a physical asset through calculation of
system states. The system states range widely depending on the use case
and may refer, for instance, to operational states or the health condition.
The system states in the physical and virtual realm are synchronized at
regular time intervals resulting in a real-time virtual replica of the physical
asset.
Integration of models and data: DT is not a singular model, but rather
an integrated framework of models, data and algorithms. The individual
DT components are defined in DNVGL-RP-A204 as functional elements,
”a part or module of a digital twin with the purpose of supporting the user
in making a key decision“ [18]. The fusion of models with real-time data
streams collected by physical sensors is a central principle in DTs, since it
facilitates updating and synchronizing the DT with its physical counterpart.
Providing decision support: DTs are developed with the clear purpose
of providing value for stakeholders and to ”improve business outcomes“ [18].
DTs offer value-adding services by means of decision support ; they collect,
analyze and present information to assist stakeholders in making key deci-
sions.
Life cycle perspective: DTs accompany the physical asset through every
stage of its life cycle and continuously evolve to reflect physical changes to
the asset. DTs are established during design and manufacturing as a DT
prototype, refined during installation with additional asset information and
updated during operation with operational and maintenance data [18].

2.2 Digital Twin frameworks

DT frameworks have been developed to further concretize the DT concept
and to reduce the level of abstraction without loss of generality. DT frame-
works define the DT architecture and characterize the functionality and
the relationships between each of the DT components, the so called func-
tional elements [18]. The earliest DT framework proposed by Grieves [11]
comprised three elements: the physical asset, the virtual model and the
connections that transfer data and information between the two. Grieves’
framework was further specified in later works by Kritzinger et al. [19], who
postulate the bidirectionality and automation of the connection. The vir-
tual model receives information from the physical asset in the form of sensor
measurements and returns information in the form of decision support (Fig.
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Figure 2.1: DT frameworks: (a) Grieves/Kritzinger et al.[11, 19], (b) Tao
et al. [20]

2.1). The bidirectional information exchange must also be automated, which
is the case when a change of state in the physical asset automatically leads
to a change of state in the digital counterpart and vice versa. Kritzinger et
al. introduced the alternative terms Digital Model and Digital Shadow to
describe technologies that do not fulfill the requirements of bidirectionality
and automation [19].
Tao et al. expanded this framework to incorporate the elements Digital
Twin Data and Services and thereby recognize the DT characteristics of the
data fusion and the provision of decision support [20]. The five-dimensional
framework consists of the Physical Entity, Virtual Entity, Digital Twin Data
and Services interconnected by Connections (Fig. 2.1). Each functional el-
ement contains a hierarchical substructure to further differentiate subcom-
ponents, for instance, the virtual entity comprises geometric models, physics
models, behaviour models and rule models. Tao’s DT framework is widely
popular and has been adopted for a variety of use cases in the wind energy
sector including reliability analysis [21], condition monitoring [22] and prog-
nostics [23].
DNVGL-RP-A204 presents a DT framework that shares Tao’s classification
into data, models and services, however, the information flow through the
DT is considered sequential [18]. The information flows through the func-
tional elements Input, Analysis, Output culminating in the decision support
(Fig 2.2). The Input contains different data types collected on the physical
asset such as data streams, master data, meta data and historical data. The
data are fed into the Analysis comprising different models and algorithms
and then further processed in the Output into usable and value-adding in-
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Figure 2.2: DT framework according to DNV [18].

formation.
Mehlan et al. present a DT framework loosely based on earlier works

by Tao and DNVGL and tailored to the use case of load monitoring and
remaining useful life estimation in wind turbine drivetrains (Fig. 2.3). The
DT framework, first conceptualized in paper 2 [3] and further developed in
papers 4 and 6 [4, 6], comprises the three functional elements DT Data,
DT Model and DT Decision support. The DT Data refers to data streams,
historical data, asset information and domain knowledge. The data streams
are real-time measurements by SCADA and CMS sensors and are utilized
for continuous model updating and synchronization. The historical data
refers to the load history of drivetrain components and is used in calculat-
ing the accumulated fatigue damage. The asset information includes the
gearbox topology and specifications, which are needed along with domain
knowledge for model construction.
The second functional element, the DT Model, comprises a drivetrain model
along with model updating algorithms. The drivetrain model is a reduced-
order model with two torsional degrees of freedom and serves the purposes of
simulating the load dynamics in local gear and bearing contacts. The model
updating algorithms include a state estimator and a system identification
method and are implemented to ensure the convergence of the drivetrain
model with its physical counterpart. A Kalman filter is employed to esti-
mate the dynamic states and the unknown rotor torque based on real-time
data streams, while a least squares system identification method is used to
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Figure 2.3: DT framework to enable load monitoring and remaining useful
life assessment in wind turbine drivetrains according to Mehlan et al. [6].

estimate unknown and time-variant model parameters such as inertia, stiff-
ness and damping values.
The third functional element, the DT Decision support, serves as the human-
machine interface and converts measurements and model predictions into
interpretable information, specifically the remaining useful life of drivetrain
components that can serve for predictive maintenance strategies. The DT
Decision support contains a fatigue damage model based on Miner’s rule of
damage accumulation, material models specified by S-N curves and stress
cycle counting algorithms.

2.3 Potential applications in offshore wind

Numerous benefits have been ascribed to DT by researchers and industry,
including higher efficiency, reliability, availability and safety of the asset,
however, one should be careful to distinguish between validated, tangible
benefits and unsubstantiated claims arisen from the hype around DT. In
light of the extensive development costs of DT, investors are interested in
assessing the economic benefits that yield a return on investment. Unfortu-
nately, relatively little work has been conducted to verify and validate the
benefits of potential DT applications, as the technology remains in early
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development stages. The following potential applications for the operation
and maintenance of offshore wind turbine drivetrains are commonly sug-
gested in the literature [13, 14, 15, 24, 25]:
Optimized control: DT could assist in the development of advanced con-
trol algorithms that optimize the energy yield while minimizing operational
loads. Model predictive controllers, in particular, could benefit from more
accurate DT models to forecast fatigue loads.
Analysis and visualization of data: DT could serve as the human-
machine interface that collects, analyzes and visualizes data from the phys-
ical wind turbine in a manner that is interpretable for technicians and can
assist in decision making.
Virtual inspection: DT could facilitate fully remote inspections using the
virtual replica of the wind turbine and thus saving on labour and logistical
costs.
Improved fault detection and diagnosis: DT could improve the detec-
tion and diagnosis of drivetrain faults through virtual inspection, advanced
physical modelling or novel data analysis techniques.
Risk and scenario assessment: DT could be used to simulate a variety
of scenarios for risk assessment, for instance, to predict the consequences of
future adverse operational conditions.
Predictive maintenance: DTs could advance fault progression forecasts
and remaining useful life estimations through advanced condition monitor-
ing techniques and predictive models. The remaining useful life predictions
are essential for predictive maintenance strategies, which increase the relia-
bility and availability while utilizing maintenance resources more efficiently.

2.4 Development challenges

While the prospects of DT in the offshore wind energy sector are promising,
there remain multiple challenges that must be overcome to realize the adop-
tion of DT. The challenges of DT are discussed in several review papers in
the context of condition monitoring [14, 24], risk assessment [25] and from a
modelling perspective [13, 26]. A non-exhaustive summary of the challenges
specific to the operation and maintenance of offshore wind turbine drive-
trains is presented here. Additional challenges related to the data, models
and decision support are discussed in their respective chapters.
Connectivity and processing power: Cloud-based solutions are envi-
sioned for many DT applications, however, the low bandwidth of the data
connection from remote offshore wind farms to onshore server centers rep-
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resents a limiting factor. In particular DT applications that rely on large
amounts of data such as data-driven machine learning models would face
challenges. Edge computing solutions, on the other hand, are limited by
the available processing power onboard of the offshore wind turbine, which
is likely insufficient to run high-fidelity simulations in real-time [14, 24, 26].
Intellectual property ownership of models: The ideal that the DT
accompanies the physical wind turbine throughout its life cycle stages is
difficult to do justice to, when the wind turbine changes ownership from
OEMs to wind farm operators. CAD drawings, simulation models and de-
sign specifications, which could build the basis for a DT in the operational
phase, are proprietary to the OEMs and likely contain confidential informa-
tion. For wind farm operators this represents a major obstacle in developing
DT models and it may become necessary to reverse engineer unknown sys-
tem properties [27].
Data quality: The performance of DTs hinges on the availability of high-
quality data. However, the available sensor data of SCADA and CM systems
that are commonly leveraged for DTs have several limiting factors. The low
temporal resolution of 10 min is insufficient to observe the dynamics in wind
turbine drivetrains [28]. Sensor malfunctions are a common occurrence and
lead to data gaps, bias or sensor drift in the measurements. Additionally,
data on faulty conditions are very sparse, which makes it challenging to
train data-driven models for fault diagnosis [14].
Cyber security: Concerns on the cyber security of offshore wind turbines
are raised, as their operation becomes increasingly digitalized and auto-
mated, and thus more vulnerable to malicious attacks. Wind turbines are a
critical part of the energy infrastructure and their failure can lead to severe
consequences, not only economical but also societal in case of a grid loss.
The cyber security must therefore be an integral part in the development
process of DTs [13, 24].
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Chapter 3

Digital Twin Data

3.1 Data categories

Data is one of the fundamental pillars of DT according to the frameworks by
Mehlan et al. [3], Tao et al. [20] and DNV [18]. With the rise of inexpensive
sensor technologies and IoT-platforms more and more data are collected in
modern offshore wind turbines. The large volume of data that is available
today offers immense potential for developing DTs, while at the same time
introducing challenges related to data analysis, transfer and storage. Intel-
ligent data analysis tools are necessary to convert raw data into serviceable
data that can aid in decision making. In addition to the data collected
in the physical space through sensor measurements, DT data also includes
data acquired in the virtual space by the DT models and algorithms. This
distinction is reflected in Tao’s classification into the five categories of phys-
ical entity data, virtual entity data, service data, domain data and fusion
data (Fig. 3.1 [20]). Physical entity data represent data collected at the
physical wind turbine such as sensor measurements, maintenance reports
or error alerts. Virtual entity data is produced by the virtual model and
may refer to simulation results, model parameters or boundary conditions.
Service data are the output of the decision support services such as fault di-
agnosis and prognosis or recommended maintenance actions. Domain data
are auxiliary data for the execution of the virtual model and the decision
support algorithms such as expert knowledge, industry standards, guide-
lines and asset information. Lastly, fusion data refers to the integration of
data from the physical and the virtual space with the objective of gaining
new knowledge or information that can assist in decision making.

15
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Figure 3.1: Categories of DT data according to Tao et al. [20].

3.2 Data acquisition

The most commonly investigated and cost-effective approach to the acqui-
sition of physical entity data is utilizing the existing sensor infrastructure of
SCADA and CM systems. SCADA and CM systems include a wide range of
sensors for monitoring and control purposes, as standardized by IEC 64100-
25-2 [29] and ISO 10816-21 [30]. The most common SCADA and CMS
signals are enlisted in Tab. 3.1, where it should be noted that the composi-
tion of sensors may vary from turbine to turbine, since not all systems are
designed strictly to code. The environmental conditions are monitored in
SCADA systems using nacelle mounted anemometers and wind vanes. The
operational conditions are controlled with electrical sensors to measure the
active and reactive power, shaft encoders to measure the rotor and generator
speed, and encoders to measure the yaw and pitch angles. Furthermore, a
variety of temperature sensors are installed at different locations such as the
main bearings, the gearbox bearings, the generator bearings, the oil in- and
outlet, and the nacelle, which may be utilized for health monitoring. Driv-
etrain CM systems rely primarily on vibration measurements for condition
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monitoring and thus include a range of accelerometers mounted on driv-
etrain. ISO 10816-21 [30] recommends the placement of piezo-resistive or
capacitive accelerometers on the housing of the main bearings, the gearbox
and the generator, in both radial and axial direction and with a bandwidth
of 10 Hz to 5 kHz. Additional accelerometers for structural health monitor-
ing are mounted on the nacelle housing in side-side and fore-aft direction.
Some drivetrain CMS also comprise oil particle sensors that measure the
quantity, type, shape or size of particles for monitoring the lubricant qual-
ity.
The second important source of DT data is virtual entity data simulated by
the DT model. Under the prerequisite that the DT model reflects the phys-
ical wind turbine’s behaviour to a satisfactory accuracy, simulated data
may complement or in part replace physical measurements. High-fidelity
dynamic drivetrain models, as described in Sec. 4.2.2, are used in many
academic studies to synthesize SCADA and CMS data, where the access to
field measurements is restricted. Simulated data has proven to be crucial
for the development and assessment of novel DT technologies, however, the
modelling errors should be kept in mind. In particular, CMS vibrations are
subject to simulation errors due to simplified modelling approaches to the
flexible gearbox housing.

3.3 Data pre-processing

Raw SCADA and CMS sensor data exhibit quality issues such as data gaps,
anomalies and scatter, which are addressed with data pre-processing meth-
ods. The first step, referred to as data cleaning, involves the treatment of
missing data and the detection and removal of anomalies. Data anomalies
can be attributed to either sensor malfunctions or abnormal operational
conditions such as idling or transient events (shut-down or start-up). In
many use cases such as in developing data-driven normal behaviour mod-
els, such anomalies are detrimental to the model accuracy and must be
filtered out. The filtering of explicit and obvious anomalies may be con-
ducted through discrete thresholds in several operational variables such as
wind speeds below cut-in or above cut-out, blade pitch angles of 80◦ to 90◦,
low rotor speeds or near zero active power, as practiced by Mehlan et al.
[4] and others [28]. Since this simplistic filter does not catch all anoma-
lies, it may be followed up by anomaly detection (AD) algorithms based on
machine learning. Morrison et al. [31] investigate different AD algorithms
for data cleaning of wind turbine power curves including Gaussian Mixture
Modelling (GMM), Isolation Forest (iForest), Local Outlier Factor (LOF)
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Table 3.1: Typical sensor signals in SCADA and CM systems.

Sensor system Signal Sensor type Sensor location

SCADA Wind speed Anemometer Nacelle top
Wind direction Wind vane Nacelle top
Active power Voltage/current Generator
Reactive power Voltage/current Generator
Rotor speed Encoder Main shaft
Generator speed Encoder High-speed shaft
Pitch angle Encoder Blade 1, 2, 3
Yaw position Encoder Yaw actuator
Temperature Thermometer Nacelle (ambient)
” ” Main bearings
” ” Gearbox bearings
” ” Generator bearing
” ” Generator winding
” ” Oil in-/outlet

CMS Drivetrain vibration Accelerometer Main bearings
” ” Torque arms
” ” Gearbox housing front/back
” ” Generator front/back
Tower top acceleration Accelerometer Nacelle side-side/fore-aft
Oil particle count Digital imaging Oil filter

and k-nearest neighbours (kNN), which only represent a small subset of
available AD algorithms. Alternative AD approaches use normal behaviour
modelling [28] or image-based detection.
The large volume of SCADA and CMS data also necessitates a data com-
pression step with the objective of reducing the data dimensionality while
retaining most of the information content. Principal component analysis
(PCA) is a powerful data compression tool that finds widespread application
in the analysis of SCADA and CMS data. PCA is a linear transformation of
measurement vectors into the orthonormal space spanned by principal com-
ponents that are the eigenvectors of the data’s covariance matrix. Only the
first few principal components are retained that correspond to the majority
of the data’s covariance. Further data compression that is typical in CMS
is the feature extraction that reduces the raw time series of a sensor mea-
surement to a scalar value. Typical features are statistical characteristics
such as the mean, standard deviation or root-mean-square or time-frequency
based characteristics calculated by Fourier transform, wavelet transform or
Cepstrum analysis [32].
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3.4 Data fusion

Data fusion, the combination of data from different sources with the objec-
tive of gaining new knowledge or information, is one of the key principles
of DT and offers an important avenue of providing value to stakeholders.
In DTs, data fusion may take place in both the physical and the virtual
domain and in through a variety of fusion methods.
Physical domain data fusion: Data fusion in the physical domain refers
to the combination of different sensor signals, predominantly for the purpose
of noise reduction and higher robustness against sensor failure. In drivetrain
CMS a certain level of redundancy is given by the multitude of vibration
sensors across the gearbox housing, which favours the fusion of different
sensor signals. A commonly investigated approach is the superposition of
sensor signals at the feature level using PCA [33, 34], neural networks [35] or
similar machine learning methods. In this procedure the background noise
is reduced by averaging over multiple signals, which expedites the detection
of weak fault signals, while the robustness is increased through filtering of
faulty sensors.
Other use cases of sensor data fusion are found in the combination of
SCADA and CMS data for improved fault diagnosis [5]. While fault diagno-
sis exclusively based on CMS vibration analysis or solely based on SCADA
data is extensively researched, comparatively little work has been published
on the intelligent fusion of SCADA and CMS data. One scenario, where
the fusion of SCADA and CMS can be beneficial, is the diagnosis of rotor
imbalance faults such as pitch misalignment, yaw misalignment and mass
imbalance. Numerical studies by Mehlan et al. [5] suggest that SCADA
data alone is insufficient to reliably classify these faults and that CMS vi-
bration data is crucial for identifying pitch misalignment faults. The results
of this study are discussed further in Sec. 5.3
Virtual domain data fusion: Similar to physical sensor signals, data from
different virtual models can be combined for greater accuracy and robust-
ness. Ensemble modelling is an approach in machine learning theory, where
multiple instances of the same model class are combined to make more ac-
curate predictions. Examples of ensemble models are random forests that
are constructed by combining decision trees with bootstrap aggregation and
boosting methods.
Physical/virtual domain data fusion: Arguably the greatest innovation
and benefit of DT arises from the fusion of data from the physical and the
virtual domain. The integration of real-time, physical sensor measurements
facilitates the construction of ”live“, virtual models that are continuously
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updated to reflect the behaviour of its physical counterpart at all times.
The continuous model updating is realized with various state estimation
and system identification methods, as presented in Sec. 4.3. Such virtual
models provide the operator with a much more detailed and informative
description of the asset’s current state, as they can calculate and visualize
additional states such as local loads or stresses that are not measured phys-
ically. The so called ”virtual measurements“ of local drivetrain loads have
a great potential for condition monitoring and fault prognosis, as discussed
in Sec. 5.2 and Sec. 5.4.



Chapter 4

Digital Twin Models

4.1 Modelling challenges and objectives

Conventional models of wind turbine drivetrains were developed for early
life cycle stages such as design, manufacturing or research and development
(R&D), whereas DT models are intended to be used for the operation and
maintenance and face unique challenges. Current guidelines and best prac-
tices on drivetrain modelling, presented by Guo et al. [36], are thus not
applicable to DT models. DT applications that require real-time simulation
such as load monitoring place higher demands on the computational effi-
ciency of DT models. At the same time, the available processing power in
remote offshore wind turbines, as well as the bandwidth of data connections
to onshore facilities is limited. This causes constrains on the model com-
plexity and favours leaner solutions. The second difference to conventional
models lies in the longevity and adaptability of DT models. The DT model
must accompany its physical counterpart over its entire lifespan and reflect
all physical changes such as faults or part replacements, which requires con-
tinuous model maintenance and the ability to update model properties.
Moyne et al. [37] summarize the requirements of DT with the terms re-
usability, interoperability, interchangeability, maintainability, extensibility,
and autonomy across the entire DT life cycle in a requirements-driven frame-
work. The requirements specific to wind turbine drivetrain DTs are elabo-
rated further by Mehlan et al. [1]
Fidelity: The DT model must possess an appropriate modelling depth to
capture the wind turbine’s behaviour. The DT model fidelity is neither re-
stricted to ultra-realistic levels, as stated in several review papers [38], nor
to the low levels of reduced order models; it is instead necessary to tailor
the fidelity to the application. For tasks in the design phase, a CAD model

21
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may suffice as DT model, while for use cases in load monitoring, the physics
of aerodynamics and elastomechanics may need to be considered.
Computational efficiency: The DT model must be computationally effi-
cient to allow real-time simulation.
Re-usability: The DT model must be re-usable and portable. This is of
importance when transferring a developed DT model between individual
turbines of a wind farm and necessitates a high model generalizability, i.e.
the model is universally applicable.
Interoperability: The communication of the DT model with other DT
functional elements or non-DT entities must be facilitated. DT models,
data and data analysis tools must be integrated in a DT architecture with
well defined interfaces and connections to enable intercommunication.
Maintainability: The DT model must be able to be tuned, rebuilt and
replaced. The physical wind turbine undergoes short-term and long-term
changes over its life cycle due to faults, material degradation, part replace-
ment or repairs, which must also be reflected in the DT model. Model
updating functionalities must be implemented to continuously adapt the
model properties and to ensure the convergence of the physical asset and
the virtual model.

4.2 Modelling techniques

4.2.1 Physics-based, data-driven and hybrid approaches

The first consideration in model development is whether to employ a physics-
based, a data-driven, or a hybrid approach. Physics-based models are devel-
oped by understanding the phenomenon of interest and then formulating the
governing, physical equations. The physics-based approach is prevalent in
classical engineering fields, but with recent advances in AI and the increased
availability of data enabled by IoT technologies, data-driven methods find
application in more areas. Data-driven models are developed by acquiring
large amounts of data and deriving relationships between input and output
variables to predict future outcomes. It is often further distinguished be-
tween statistical and machine learning models. The general advantages and
disadvantages of physics-based and data-driven models for DT applications
is discussed by Rasheed et al. [13] and Mehlan et al. [1] and briefly sum-
marized in Tab. 4.1.
The primary advantage of physics-based models lies in the solid foundation
of the governing physical equations, which allows for comprehension and
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interpretation of the solution by skilled technicians. The high transparency
and traceability has a positive impact on the confidence of stakeholders into
physics-based models, whereas data-driven models are developed as black-
box models, which has the adverse effect. The governing physical equations
are also universally applicable and not specific to the domain or the asset,
which allows for cross-domain knowledge transfer and re-use of developed
models. In fact, the earliest models of geared wind turbine drivetrains
were developed with expertise from the automotive industry. Data-driven
models on the other hand suffer from low generalizibility and only per-
form well within the boundaries of the training data set and struggle with
prediction tasks in unfamiliar situations. A further advantage of physics-
based models are the low costs of model development aided by software
with physics engines such as FE, MBS or CFD programs. The model de-
velopment, or ”training“ of data-driven models on the other hand requires
the acquisition of large amounts of training data, which can become pro-
hibitively expensive. In particular data of faulty conditions is challenging
to acquire due to its rare occurrence in natural environments. The devel-
opment costs of physics-based models is instead shifted to the verification
and validation tasks. These tasks are typically conducted experimentally
with full-scale test benches and become increasingly more expensive with
growing turbine sizes. The validation of data-driven models is performed
with cross-validation on the training data-set and does not require any addi-
tional resources. Data-driven models also exceed in terms of computational
efficiency for predictive tasks. While the training and validation of machine
learning models can be quite demanding on processing power, the simu-
lation of the trained model requires minimal numerical operations and is
in most use cases capable of real-time simulation. Physics-based models,
specifically those with low temporal and spacial resolution such as FE and
CFD models, are too resource intensive to be used for DT applications with
real-time simulation. Furthermore, the numerical stability of physics-based
model is not guaranteed and must be checked for the desired initial condi-
tions, boundary conditions and parametrization.
It is clear that both physics-based and data-driven modelling approaches
have their strengths and limitations and that neither can be deemed as
the optimal solution for DT models. A promising strategy to achieve the
best of both worlds are hybrid approaches that combine physics-based and
data-driven modelling techniques. Different modelling approaches may be
employed for different system components or for different physical domains.
The guiding principle here is to develop models for the physics that are well
understood such as classical mechanics, aerodynamics or electromagnetism
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Table 4.1: Advantages and disadvantages of physics-based and data-driven
modelling approaches for DT [13].

Physics-based Data-driven

Transparency, traceability + -
Generalizibility + -
Development and training costs + -
Verification and validation costs - +
Computational speed - +
Numerical stability - +

and to resort to data-driven methods for the physics that are poorly un-
derstood such as failure mechanisms. The hybrid approach is, for instance,
employed by Guo et al. [39] for the prognosis of white etching cracks in
high-speed bearings.

4.2.2 Multi-body simulation models

The best practice for dynamic drivetrain modelling is a physics-based ap-
proach, namely multi-body simulation (MBS). MBS models employ a lumped
parameter approach, where the system is divided into multiple point masses,
referred to as bodies, interconnected by elastic spring-damper connections or
rigid joints (Fig. 4.1). This approach is well suited to model the drivetrain
dynamics governed by complex multi-body interactions of shafts, gears and
bearings. MBS models were pioneered by Schlecht [40] in the early 2000s
and further developed with contributions from Peeters [41], Helsen [42], Guo
[43] and others. Extensive model fidelity studies were conducted with the
objective of determining the optimal modelling depth of drivetrain compo-
nents and have culminated in the fidelity guidelines presented in [36]. A
brief overview of recommended modelling practices is given here.
The system boundaries are typically set around the mechanical drivetrain
with interfaces at the rotor hub, the generator shaft and the yaw bear-
ing. The aerodynamic rotor loads and the tower top motions are calculated
with external, aeroelastic models and imposed as boundary condition in the
drivetrain model. This approach is referred to as the decoupled simulation
approach, as it decouples the ”global“, structural dynamics of the tower
and the blades from the internal drivetrain dynamics [44]. The decoupling
is motivated by the fact that aerodynamic excitations and the dominant
structural modes occur at low frequencies (< 10 Hz), while internal drive-
train dynamics are governed by high-frequency gear and bearing excitations
of up to 500 Hz at the HSS. Drivetrain MBS models typically comprise a
number of submodels for the shafts, planet carriers, gears, bearings, gearbox
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Figure 4.1: MBS modelling principle on the example of a helical gear stage
[1]

housing, bedplate and gearbox support.
Shafts: The main shaft is modelled as a flexible body based on Euler-
Bernoulli or Timoshenko beam theory or as a condensed FE model derived
by modal order reduction. The remaining shafts of the downwind gear
stages are generally modelled as rigid bodies with six DOF.
Bedplate, gearbox housing, planet carrier: The bedplate, gearbox
housing and the planet carriers are modelled as flexible bodies using con-
densed FE models.
Gearbox support: The gearbox support including the torque arm and
generator bushings are modelled as linear spring-damper connections with
six DOFs and diagonal stiffness and damping matrices.
Bearings: The main bearings and the gearbox bearings are modelled as
linear spring-damper connections that allow one rotational DOF. Any inter-
nal bearing dynamics such as cage or roller slip, characteristic excitations at
the ball pass frequency, or the load distribution are not considered at this
fidelity level.
Gears: The gears are modelled as rigid bodies by lumping the flexibility
into a gear contact function, which describes the gear body, tooth bend-
ing and Hertzian contact stiffness. The gear contact stiffness is spatially
discretized over the gear flanks, which allows for representing inhomoge-
neous load distributions and non-torque loads. The gear contact stiffness is
furthermore time-invariant, as it varies cyclically for each meshing period
depending on the amount and location of tooth contacts in order to repre-
sent characteristic gear meshing excitations.
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Figure 4.2: ROM of a wind turbine high-speed gear stage with simplified,
explicit gear contact force model for DT real-time simulation[1]

4.2.3 Reduced order modelling

Current high-fidelity MBS models are ill-suited for certain DT applications
such as load and fatigue damage monitoring due to limitations in the com-
putational costs and the observability of dynamic states. While MBS mod-
els are significantly faster than other modelling approaches such as FE or
CFD, the simulation of wind turbine drivetrains remains demanding, since
higher order drivetrain modes and high-frequency gear meshing excitations
drive the necessary numerical step size to 200 Hz and above. The computa-
tional speed of current MBS models with conventional desktop computers
remains below real-time speed by a factor of up to 10 depending on the
load case [1]. Further restrictions on the model complexity are imposed
by the observability requirement of the state estimation methods that are
used to synchronize the dynamic states of the DT model with the physical
wind turbine. The SCADA measurements of the main and generator shaft
speeds allow the observation of torsional drivetrain modes, whereas the ob-
servability of bending and lateral drivetrain modes is not guaranteed. CMS
accelerometers mounted on the gearbox housing may detect non-torsional
dynamics, however the sensitivity is relatively low due to measurement noise
and the observation function is complex due to the transfer path of the vi-
bration through the housing. Reduced order models (ROMs) are for this
reason preferable as DT models.
The simulation of gear meshing dynamics is particularly demanding due

to high-frequency discrete state changes in the teeth contacts. The classi-
cal approach in MBS software uses an implicit formulation of gear contact
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forces. Iterative algorithms are used to determine the contact points and
teeth deflections based on the shaft positions and gear geometry, and assign
a gear contact force orthonormal to the contact surface. Recent advances
in more efficient reduced order modelling of gear meshing dynamics are pre-
sented by Mehlan et al. [1]. A simplified, explicit gear contact formulation
is proposed that is numerically stable with explicit numerical solvers such as
Runge-Kutta variants and increases the computational speed by about 27%.
The mesh stiffness is modelled as a piece-wise linear function depending on
the shaft angle and the axial position, and the direction of the gear forces are
fixed along the line of action (Fig. 4.2). The ROM shows a good agreement
with state-of-the-art MBS models with respect to temporal load variations
due to gear meshing and with respect to the spatial load distribution over
the gear flank (Fig. 4.3). Despite the improvements in computational effi-
ciency, the ROM falls short of real-time capability by a factor of three [1].
The simulation of gear meshing dynamics remains resource intensive due to
the small step sizes, which renders it impractical to consider gear meshing
in DT.
Further model reduction techniques are commonly employed for the devel-
opment of DT models such as lumped parameter methods or data-driven
surrogate models. Lumped parameter reduction methods refer to decreasing
the model complexity by further condensing different model elements into a
single element. A common assumption is to replace the elements of a plane-
tary gear stage, the planet carrier, the planets, the ring and the sun with an
equivalent inertia, stiffness and damping element. This often coincides with
other measures such as limiting the of the body DOFs to only torsional mo-
tion and linearizing the gear contact stiffness. The lowest model fidelity is
reached with two DOF torsional drivetrain models comprising an equivalent
rotor inertia and generator inertia connected by a torsional spring-damper.
This fidelity level is best practice in aeroelastic simulation and is used as
drivetrain DT for load monitoring by Branlard et al. [45] and Mehlan et
al. [6], however, this fidelity level only allows the representation of torsional
drivetrain modes and does not consider any complex internal drivetrain dy-
namics such as gear meshing.
Data-driven surrogate models are regression models that are trained on sim-
ulated data to mimic the behaviour of the full-order model (FOM). A large
number of load cases is simulated first with the FOM to create a data set
of input forces and output variables such as velocities, strains or other vari-
ables of interest. Machine learning regression models are then trained to
map the input variables onto the output variables. Artificial neural networks
are commonly employed for this purpose as they are effective in mapping
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Figure 4.3: Gear contact forces of a 5 MW helical high-speed gear stage
calculated with a full-order MBS model (SIMPACK) and a ROM (20sim)[1]

complex, non-linear relationships. The potential of data-driven surrogate
for modelling main shaft and main bearing dynamics is demonstrated by
Azzam et al. [46], Loriemi et al. [47] and Mehlan et al. [4].

4.3 Model updating techniques

The DT paradigm states that the DT is a virtual copy of the physical asset
and mirrors its behaviour at all times. Thus, the states and the model prop-
erties of the DT must be updated at regular time intervals to ensure the
convergence of DT and physical asset. This is facilitated through state es-
timation and system identification methods, presented by Mehlan et al. [4]
and elaborated in the following sections on the example of a two DOF tor-
sional drivetrain ROM. This fidelity level is commonly used for DT models,
since the available SCADA shaft encoder measurements allow the observa-
tion of torsional drivetrain dynamics.

4.3.1 State estimation

Consider a drivetrain model expressed by the following linear, stochastic,
time-variant system with the state variable x(t), the input variable u(t), the
output variable y(t), the process noise v(t), the measurement noise w(t)
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Figure 4.4: The joint input and state estimation problem in drivetrain DTs
with a two DOF torsional model and SCADA data input.

and the system matrices A(t),B(t),C(t),

ẋ = A(t)x(t) +B(t)u(t) + v(t),

y = C(t)x(t) +w(t).
(4.1)

Classical, disconnected models for design or R&D are used for forward sim-
ulation, where the input variables are known and numerical time integration
solvers are used to calculate the unknown states and output variables. A
common objective is to simulate the dynamic system response to a set of
defined environmental conditions or design load cases (DLCs [48]). In DT
models, on the other hand, the objective is the convergence with the phys-
ical asset. Here the output variables are known, while the state and input
variables are the unknowns, which is considered an inverse problem or more
specifically a joint input and state estimation problem.
For the use case of a two DOF torsional drivetrain model, the state variables
x(t) comprise angular displacements and velocities of the main and gener-
ator shaft and are considered unknown (Fig. 4.4). The input variables are
external forces at the system boundaries and are split into known and un-
known variables. The generator torque at the high-speed shaft is measured
by SCADA systems and considered a known variable uk(t), while the rotor
torque at the main shaft is considered an unknown input variable uu(t).
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The output variables y are measurements of the main and generator shaft
speeds obtained from encoders of the SCADA system. The system matrices
A(t),B(t),C(t) contain the drivetrain inertia JRot, JGen, stiffness kDT and
damping cDT parameters, and are time-variant due to long-term physical
changes to the drivetrain such as material fatigue.
Kalman filters are typically employed to solve joint input and state estima-
tion problems. The linear Kalman filter is a two step algorithms that yields
state estimates on the basis of uncertain model predictions and noisy mea-
surements. It is applicable for stochastic, linear, time-invariant systems with
white Gaussian process and measurement noise. While the system matrices
of drivetrain DT models are considered time-variant, they can be assumed
constant for short time sections, since their rate of change is significantly
smaller than the gradients of the state variables. Furthermore, numerical
studies show that the modelling errors of ROMs that predominantly con-
tribute to the process noise can be described well by Gaussian distributions.
For this use case in drivetrain DT, a Kalman filter variation, the augmented
Kalman filter (AKF) is employed, where the state vector is augmented with
unknown input variables to facilitate simultaneous state and input estima-
tion. The augmented state vector then becomes xa = [x uu]

T. The AKF
was first investigated for drivetrain DT by Perisic et al. [49] and later
adopted by Branlard et al. [45] and Mehlan et al. [6].
Various non-linear variations are found in literature such as the extended
Kalman filter (EKF) or the unscented Kalman filter (UKF) that accept
non-linear time-invariant systems and thus reduce model linearization er-
rors. Non-linearities in drivetrain models occur for example in the gear
contact model, as presented in [1]. Non-linear Kalman filters would be nec-
essary to mirror gear meshing and similar non-linear dynamics in the DT,
however, approach has not yet been investigated. Linearized models are
typically used for drivetrain DTs.

4.3.2 System identification

A further complication lies in obtaining the system matrices A(t),B(t),C(t).
The initial system properties at the time of the wind turbine commissioning
may not be available to wind farm operators due to the confidentiality of
drivetrain designs. In addition, many model parameters are time-variant
across the wind turbine’s lifespan due to physical changes in the system
properties. The rotor inertia may increase due to accretion of ice, dirt or
moisture, as well as decrease as a result of abrasive fault mechanisms such
as leading edge erosion [5]. Stiffness and damping parameters of drivetrain
components may be affected by material fatigue or local faults such as tooth
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root cracks or spalling [50]. Thus, it is necessary to continuously estimate
the system properties and update the model parameters accordingly.
Operational modal analysis (OMA) techniques are proposed by various au-
thors for this objective. OMA refers to the estimation of a system’s modal
properties through analysis of data collected under normal operational con-
ditions. Contrary to experimental modal analysis (EMA), the system is
not subjected to artificial excitations as in ”hammer tests“, but rather only
subjected to natural excitations such as stochastic wind loads. Due to lim-
itations in the available SCADA and CMS signals, the presented OMA
techniques are restricted to the parameter estimation of two DOF torsional
drivetrain models. This problem falls into the category of grey box model
identification, since the overall model structure is fixed and auxiliary param-
eters such as the gearbox ratio iDT are known. The unknown parameters
include the rotor inertia JRot, generator inertia JGen, drivetrain torsional
stiffness and damping value kDT , cDT and the known measurement signals
are the main shaft speed ϕ̇Rot, generator shaft speed ϕ̇Gen and the generator
torque TGen. Through integration of the shaft speeds it is furthermore possi-
ble to obtain the angular positions ϕRot, ϕGen, where the sensor drift due to
the integration of measurement noise must be mitigated through regulariza-
tion methods. With this information the generator side equations of motion
are fully determined and the model parameters θ = [JGen, cDT , kDT , α0] with
exception of the rotor inertia may be estimated with parameter optimization
methods.

θ̂ = argmin
θ

||JGenϕ̈Gen − cDT /iDT (ϕ̇Rot − ϕ̇Gen/iDT )

− kDT /iDT ((ϕRot − ϕGen/iDT )− α0) + TGen||22
(4.2)

Unfortunately, the same approach cannot be employed to obtain the re-
maining parameter, the rotor inertia JRot, since the rotor torque is typically
not measured by SCADA systems, which leaves the rotor side equations
of motion undetermined. Instead, frequency domain OMA techniques may
be applied that leverage the relationship of the rotor inertia and the first
torsional natural frequency. The first torsional natural frequency f̂N is es-
timated through peak finding algorithms in the frequency spectrum of the
shaft speed signals. One may then solve for the unknown rotor inertia as
follows

Ĵeq =
k̂DT

(2πf̂N )2
,

ĴRot = (1/Ĵeq − 1/ĴGen/iDT )
−1.

(4.3)
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This approach may also be extended to higher-order torsional drivetrain
models, as demonstrated by Moghadam et al. [51], where additional tor-
sional DOFs in the intermediate speed gear shafts and the planets are
considered. The caveat is that this fidelity level requires additional an-
gular velocity measurements of the intermediate speed shafts, which are
non-customary in SCADA systems. It also remains questionable whether
a higher fidelity level necessary yield a more accurate representation of the
drivetrain dynamics, since the introduction of more DOF also increases the
amount of unknown parameters, each with associated estimation uncer-
tainty. The uncertainty of system identification methods for drivetrain DTs
is further discussed in Sec. 6.

4.4 Case studies

DT models are investigated in a variety of case studies, most notably the
U.S. Department of Energy (DOE) 1.5 MW research turbine [52], the Na-
tional Renewable Energy Laboratory (NREL) 5 MW reference turbine [53]
and the Technical University of Denmark (DTU) 10 MW reference tur-
bine [54]. The former case study is a commercial General Electric onshore
wind turbine of type GE 1.5 SLE located at the NREL campus in Arvada,
Colorado that has been customized for research activities. In addition to
industrial SCADA and CM systems, the DOE 1.5 MW turbine is equipped
with a custom load sensor system comprising strain gauges at the tower
base, tower top, blade roots, main shaft and high-speed shaft, which facili-
tate the measurement of multi-axial loads. Several long-term measurement
campaigns were conducted that provide a unique opportunity to validate
DT models. Mehlan et al. [4] used a data set recorded in the time frame
of Oct. 31 to Dec. 05, 2018 totalling to 138.3 h at a sampling frequency
of 50 Hz to validate the load calculation of DT models at the main and
high-speed bearings. Limitations of this case study are present in the de-
velopment of dynamic drivetrain models due to the confidentiality of cer-
tain gearbox specifications. The installed gearbox is a commercial Winergy
PEAB 4410.4 high-speed gearbox, for which validated high-fidelity dynamic
models are not available. Instead, an ”analytical“ drivetrain model that as-
sumes rigid torque transmission [55][56] is employed by Mehlan et al. [4].
The latter two case studies, the NREL 5 MW and DTU 10 MW turbine, are
reference turbines that have been developed to provide researchers with a
standardized baseline to conduct research. The reference turbines are fully
designed according to the IEC 61400 series [59], however, they have not
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Figure 4.5: High-fidelity MBS models used for numerical case studies: (a)
the NREL 5 MW model [57], (b) the DTU 10 MW model [58].

been manufactured and exist only as a concept. Simulation models of the
reference turbines have been used in numerous numerical experiments and
are invaluable to researchers despite not being validated against a physi-
cal wind turbine. Numerical experiments are drastically less expensive than
testbench or field experiments and are favourable for testing novel technolo-
gies in early development stages, often to demonstrate the proof-of-concept.
Global models of the reference turbines have been developed in aeroelas-
tic simulation tools OpenFAST and HAWC2 at NREL and DTU and are
kindly provided as open source models. Dynamic drivetrain models have
been developed at the Department of Marine Technology (IMT) at the Nor-
wegian University of Science and Technology (NTNU) by Shuaishuai Wang
[58] and Amir R. Nejad [57] (Fig. 4.5). The drivetrain models are developed
as high-fidelity MBS models in the software SIMPACK according to best
practice and model fidelity guidelines, presented in Sec. 4.2.2, and are ca-
pable of simulating high-frequency internal drivetrain dynamics, calculating
local gear and bearing loads and synthesizing CMS vibration data. Differ-
ent modelling approaches are employed for the bedplate, which is considered
flexible in the DTU 10 MW model and rigid in the NREL 5 MW model.
According to a numerical study by Wang et al. [60] the bedplate flexibility
has a considerable impact on fatigue loads of gearbox bearings and should
be modelled with at least 15 nodes.
All three case studies share similarities in the drivetrain design compris-
ing a three stage gearbox with two planetary and one parallel, helical gear
stage. Notable differences, enlisted in Tab. 4.2, are first and foremost the
power rating and size, but also other design characteristics. The DOE 1.5
MW turbine is located at an onshore site, while the NREL 5 MW and the
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DTU 10 MW turbines are designed as offshore wind turbines. The DOE 1.5
MW turbine’s main shaft support also differs; it is designed as a three-point
suspension rather than a four-point suspension, which subjects the gearbox
to higher non-torque loads. In a four-point suspension, the pair of main
bearings are designed to support all non-torque loads. Furthermore, while
the turbines share the same gearbox topology, the DTU 10 MW turbine’s
drivetrain is classified as medium-speed with a transmission ratio of only
1:50.039, while the other turbines fall into the category of high-speed wind
turbines. This design choice promises higher reliability, since many prema-
ture gearbox faults occur at the high-speed gear stage.
The NREL 5 MW model is used in studies by Mehlan et al. to evaluate DTs
for load monitoring at the high-speed gear stage [2, 3] and to develop ROMs
for efficient simulation of gear meshing [1]. The DTU 10 MW model is used
to evaluate a novel diagnostic method for rotor imbalance [5]. All three
case studies are considered by Mehlan et al. in a study on the uncertainty
assessment of DT models [6].
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Table 4.2: Case studies for the evaluation of DT models and methods.
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Chapter 5

Digital Twin Decision
Support

One of the key principles of DT according to DNV [18] is to provide value-
adding services with the purpose of improving the business outcome, a capa-
bility referred to as decision support. The decision support is the delineating
criteria to standalone models and Digital Shadows, since it represents the
information flow back to the physical asset [19]. The importance of the deci-
sion support is reflected in the conceptualized DT architectures of different
authors. The DT framework by Tao et al. foresees this capability with the
functional element called ”Services (Ss)“ [20], while in Johansen et al. [24]
it is referenced as ”RUL and Fault prediction“. Lastly, in Mehlan et al. [3]
a decision support component is proposed for the purpose of fatigue damage
monitoring and RUL prediction.
The type of services ultimately define the DT’s usefulness and autonomy,
referred to as the capability level in DNVGL-RP-A204 [18], ranging from
level 0 to level 5 (Fig. 5.1). Level 0 refers to disconnected standalone models
such as CAD drawings that are by definition not considered DTs. At level
1 the DT is able to describe the current state of the asset, which may refer
to the operational state, the health condition, the environmental conditions
or the kinematic state of the asset. Classical descriptive capabilities include
condition monitoring, fault detection and operational control. The capabil-
ity level 2 is reached when the DT is able to perform diagnostic tasks such
as the classification and localization of faults. Level 3 refers to predictive
capabilities such as the forecast of fault progression and RUL estimation.
At the prescriptive capability, level 4, the DT is able to recommend actions
to mitigate future adverse conditions, for instance, order maintenance tasks
to prevent severe failures. The highest capability level describes fully au-
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Figure 5.1: The DNV capability level of DT decision support services in
comparison to SCADA and CM systems [18].

tonomous DTs. At this level, all operational and maintenance tasks are
conducted autonomously without any human interference.
Commercial applications of decision support services are found in SCADA
and CM systems. SCADA systems are utilized for supervisory and con-
trol tasks, which falls into the descriptive capability (level 1). CM systems
may be classified as level 3, as they are used for descriptive, diagnostic and
predictive tasks including health monitoring, fault detection, fault diagno-
sis and RUL estimation. Recent research into DT is not only motivated
by the potential of extending the capability level towards fully autonomous
systems, but also by the objective of improving the services at lower levels.
The DT presented by Mehlan et al. [3] reaches the capability level 3 and
provides advanced health monitoring and RUL estimation through the use
of virtual load measurements.
A brief overview of the state-of-the-art and recent developments into de-
cision support services is given. The referenced DTs in this chapter are
summarized in Tab. 5.1 according to their capability level.
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Figure 5.2: Remaining useful life estimation through trend analysis of vi-
bration features.

5.1 State-of-the-art: SCADA and CM systems

SCADA systems are essential equipment for the remote operation of wind
turbines and are utilized for tasks such as control, performance monitoring,
error alerts and logging maintenance reports. This is realized through the
acquisition and analysis of meteorological data, operational data, and main-
tenance data on component faults, repair and replacements. The capability
of commercial SCADA systems can be classified as level 1 (descriptive),
however many research activities are devoted to developing higher level de-
cision support services (Sec. 5.4.1). Data mining of large SCADA databases
and machine learning models are commonly investigated tools for fault di-
agnosis and prognosis.
CM systems are installed in most offshore wind turbines and have proven to
be crucial to maintain high levels of availability and reliability and to reduce
the O&M expenditures. CMS provide services including health monitoring,
early fault detection and RUL prediction, and can thus be classified as a
level 3 decision support. Vibration analysis emerged as the most effective
approach to drivetrain condition monitoring, however, other solutions using
oil particle, acoustic, electric or temperature sensors are commercially avail-
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able. The primary advantage of vibration measurements lies in early fault
detection. Increased vibrations are often the first indicator of drivetrain
faults and are typically observable several months before the fault develops
into a failure, while oil particles, temperatures and acoustic emissions tend
to be affected at later stages. The second advantage lies in the fault-specific
vibration responses that allow the distinction of different fault types. For
instance, gear faults such as tooth root cracks or surface spalls have charac-
teristic fault signatures at the gear meshing frequency, which are identifiable
through frequency-domain methods.
The installation of vibration sensors for CMS is described in ISO 10816-2
[30]. The standard recommends the placement of piezo-resistive or capaci-
tive accelerometers on the housing of the main bearings, the gearbox and the
generator, in both radial and axial direction. The vibration signals shall be
analysed in the frequency band of 10 Hz to 5 kHz and characterized through
the root-mean-square. Four evaluation zones (A-D) are defined that allow
the qualitative evaluation of the drivetrain condition and the recommen-
dation of any actions that need to be taken. Zone A describes the lowest
vibration levels that occur in newly commissioned wind turbines, while zone
D indicate vibrations that are potentially damaging to the drivetrain. How-
ever, normative evaluation boundaries are not defined at this point in time,
since the available data are not sufficiently representative.
Industrial practice involves more advanced tools such as trend analysis to
facilitate fault prognosis, as reviewed by Randall [32]. Trend analysis is
based on the premise that vibration amplitudes increase progressively with
the fault development, and that the drivetrain’s health condition may be
correlated with vibration features (Fig. 5.2). The first step lies in the iden-
tification of suitable features, referred to as health indicators, that possess a
high trendability and sensitivity to drivetrain faults. Commonly used health
indicators are time-domain statistical features such as the RMS, mean, stan-
dard deviation, skewness and kurtosis. Additional features may be obtained
through Fast Fourier transform, Wavelet transforms or Cepstrum analysis.
The second step is the definition of thresholds at which the fault devel-
ops into a failure. In absence of normative values by ISO 10816-2 [30],
the definition of appropriate failure thresholds is very challenging and re-
lies on the operator’s expertise and domain knowledge. In the third step,
the time until failure or the RUL is estimated through extrapolation of the
current trajectory to the failure threshold. The extrapolation is commonly
conducted through linear or polynomial regression, while more complex re-
gression models such as artificial neural networks or other machine learning
models are the subject of recent research (Sec. 5.4.1).
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5.2 Descriptive capability

Potential applications of DT at the descriptive capability level are envi-
sioned in the virtual asset inspection. With improved digital models and
sensor technologies, the asset inspection may be performed fully remotely,
saving on labour and logistical costs [24]. DT may also be used to extend
the monitoring capabilities of current SCADA and CMS systems, specif-
ically the observation of the dynamic state characterised by the environ-
mental loads, the dynamic system response and local component forces or
stresses. This information may be utilized for value-adding services such as
load-based condition monitoring methods, predictive maintenance strate-
gies based on the consumed fatigue life or advanced control algorithms for
load minimization. However, direct load or strain measurements in wind
turbine drivetrains are impractical due to geometrical restrictions on sen-
sor placements inside the gearbox, the poor reliability and lifespan of load
sensors and prohibitive costs of sensor installation and calibration. Indirect
measurement techniques, also referred to as virtual sensor, soft sensor or
modelled data techniques, are pursued by different authors for load moni-
toring purposes. These techniques apply the DT paradigm of fusing data
and models, as they take advantage of physics-based or data-driven models
to expand the set of physical sensors with a set of virtual sensors to mea-
sure the desired quantities. For example, the physical sensor signal of the
SCADA generator torque TGen may be combined with a drivetrain model
in the form of Ft = TGen/rb to obtain the virtual measurement of the gear
force Ft.
The research into virtual sensing of drivetrain loads may be categorized into
the distinct challenges of main bearing (Sec. 5.2.1) and internal drivetrain
load estimation (Sec. 5.2.2).

5.2.1 Main bearing load estimation

The main bearings are designed to support the rotor weight and trans-
fer aerodynamic loads into the bedplate, which are highly stochastic and
non-stationary due to the volatility of the environmental conditions. The
aerodynamics are most energetic at lower frequencies (< 1 Hz) with charac-
teristic excitations at the rotor and the blade pass frequency due to imbal-
ance, tower shadow and other effects. The loading at the main bearings is
determined by the six rotor load components, torque, thrust, yaw moment,
pitch moment, shear force and vertical force, where the non-torque loads are
particularly challenging to estimate with current methods. Various studies
address this challenge with methodologies that differ in the type of models
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Figure 5.3: 10 min mean and standard deviation of rotor loads measured at
the DOE 1.5 MW turbine [4].

(data-driven or physics-based) and the physical sensor input (SCADA, CMS
or custom displacement/strain sensors).
One of the first studies on virtual sensing of main shaft loads was conducted
by Perisic et al. [49], where a physics-based approach was employed to esti-
mate the rotor torque. The premise is that with knowledge of the torsional
response measured with shaft encoders and knowledge of the generator side
torque measured with electrical sensors, one can ”solve“ for the unknown
rotor torque. A two DOF torsional drivetrain model is constructed and
parameterized through system identification methods. The rotor torque is
then estimated using the augmented Kalman filter and SCADA data of the
generator torque and rotor and generator shaft speeds.
Branlard et al. [61, 45] build on previous works by Perisic et al. and extend
the capability to estimating both rotor torque and thrust. The physical
model is derived from linearization of an aeroelastic OpenFAST model and
considers also the first tower fore-aft bending mode in addition to the first
drivetrain mode. A further novelty is the inclusion of tower top acceleration
measurements to better estimate the thrust loads.
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Similar studies with a physics-based approach are presented by Bosmans
et al. [62], who investigate a virtual torque sensor on the basis of strain
gauges mounted on the gearbox housing. The relationship between torque
and strain measurements is derived from a FE housing model and validated
on a testbench.
The aforementioned studies report a good agreement in the estimated torque
and thrust, but are faced with limitations when it comes to physical mod-
elling of the remaining load responses. While the dynamic responses to
torque and thrust loads can be approximated reasonably well with the first
drivetrain torsional mode and the first tower fore-aft mode, the dynamics
of yaw and pitch bending moments are much more complex. These involve
various edge- and flap-wise blade bending modes, main shaft bending modes
and local drivetrain bending modes, which are more difficult to model and
incorporate in a ROM.
To overcome the limitations of physical modelling and to extend the ca-
pability to non-torque load estimation, a data-driven approach is pursued,
among others, by Azzam et al. [46], Loriemi et al. [47], and Mehlan et al.
[4]. Azzam et al. [46] conducted a numerical case study via simulation of
a Vestas V52 MBS model, where feedforward neural networks were trained
to predict the six DOF main shaft loads based on SCADA signals and the
six lateral and angular torque arm displacements. Loriemi et al. present a
similar numerical study with a MBS model of a 2.3 MW low speed wind
turbine, however, the predictor variables were limited to exclusively dis-
placement signals. Feedforward and LSTM neural networks were selected
as regression models. Both studies report coefficients of determination R2 of
higher than 0.95 for all main shaft and main bearing loads, which suggests
that the ANNs are suitable regression models to capture the non-linear rela-
tionship between displacements and loads. However, these numerical studies
fail to address the limitations of displacement measurements. These sources
of uncertainty were investigated in a field study of the DOE 1.5 MW tur-
bine located at NREL by Mehlan et al. [4]. A similar data-driven approach
using linear regression models, support vector machines and tree ensembles
was applied to predict the main shaft loads. Field measurements of SCADA
and CMS sensors were postprocessed to extract 10 min statistical features
and used as predictor variables. Contrary to the aforementioned numeri-
cal studies, only torque arm acceleration measurements in radial and axial
direction were used, which are the customary sensors in drivetrain CMS.
Compared to displacement measurements, acceleration measurements are
particularly vulnerable to measurement noise at the main shaft due to the
low signal frequency and signal power. The regression models produced
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(a) SCADA (b) SCADA and CMS

Figure 5.4: Virtual load sensing at the high-speed bearing using only SCADA
data (a) and combined SCADA and CMS vibration data (b) [3]

estimates of reasonable accuracy, but are ultimately limited by the quality
and the resolution of the measurement input. The estimation of the mean
and standard deviation of the rotor torque is accurate, since it exhibits a
high correlation (R > 0.99) with the measured generator torque. Similarly,
the thrust estimates are accurate due to clear, albeit non-linear trends with
respect to SCADA signals, for example the thrust-wind speed curve shown
in Fig. 5.3, which may be captured by regression models. The estimation
of the mean yaw and pitch bending moments, on the other hand, remains
challenging due to the low sensitivity of SCADA and CMS signals, which
was statistically insignificant (R < 0.5) for the investigated sensor signals.

5.2.2 Internal drivetrain load estimation

Virtual sensing of the downwind bearing and gear loads poses a different
challenge, since in addition to the aerodynamics and structural dynamics
the complex internal drivetrain dynamics are of importance. The inter-
nal drivetrain dynamics are characterized by non-linear and discontinuous
multi-body interaction of different drivetrain components including shafts,
gears and bearings. The contacts in the gear teeth and the roller bearings
induce mechanical excitations at the gear meshing and ball passing frequen-
cies, which are typically at a much higher frequency range (10 − 1000 Hz)
than aerodynamic excitations. The inclusion of high-frequency internal driv-
etrain dynamics into a virtual load sensor would require a much lower step
size, which places higher demands on the resolution of the physical sensor
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measurements and increases the computational burden of the DT model.
For this reason, the earliest publications on this topic employed a simplified
approach, where the drivetrain dynamics are reduced to a small number of
torsional modes. Moghadam et al. [51] present a methodology for virtual
sensing of drivetrain gear loads using a torsional ROM and angular velocity
measurements. Additional shaft encoders at the intermediate speed shafts,
which are not typically part of SCADA systems, are proposed for improved
measurement of the torsional dynamics. The ROM considers 14 torsional
DOF and reduces the gear and bearing contacts to one-dimensional, linear
elastic contacts.
Later works by Mehlan et al. [3] were motivated by the objective of im-
proving the drivetrain load estimates in the higher frequency range. The
proposed strategy to capture high-frequency internal dynamics is to lever-
age CMS vibration data, which by design have a sufficient resolution and
sensitivity to observe gear meshing and bearing excitations. A numerical
case study with the NREL 5 MW reference turbine is conducted to evalu-
ate different virtual sensing approaches using only SCADA data or SCADA
and CMS data as input. The former approach (QS-method) assumes quasi-
static, rigid transmission of torque throughout the drivetrain, in which case
the radial bearing loads are proportional and only a function of the SCADA
generator torque. The latter approach (KF-method) employs a Kalman fil-
ter to fuse generator torque and CMS vibration data with a linear elastic
drivetrain model. The results show significant improvements in the high-
frequency range of HSS bearing load estimates using CMS data, although
some frequency peaks related to excitations of the intermediate gear stage
were not captured (Fig 5.4). Nonetheless, questions on the feasibility of this
approach remain, as this numerical study represents an idealized scenario.
Measurement noise and the damping due to the transfer of the vibration
signal through the gearbox housing are not considered here. Furthermore
it should be evaluated for each application if the consideration of high-
frequency internal dynamics is necessary. For the use case of bearing fatigue
damage monitoring the gained benefit appears to be small. The numerical
results suggest that the bearing fatigue damage is driven by low-frequency
aerodynamics and only marginally impacted by high-frequency drivetrain
dynamics.

5.3 Diagnostic capability

DT opens up new areas of research in drivetrain fault diagnosis with the
potential to improve upon existing methods. The potential of DT is envi-
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Figure 5.5: Diagnostic method for rotor imbalance faults enabled by the
integration of CMS and SCADA data [5].

sioned in the virtual inspection and increased accuracy of the diagnosis and
the fault progression forecast [14]. The complete, virtual representation of
the physical wind turbine in all its aspects that is pursued in DTs would
facilitate virtual inspections and fault diagnosis in the virtual model. While
the technology for virtual inspections is currently still at its infancy, there is
ongoing research into the use of virtual measurements in the areas of model-
based fault diagnosis and fault-tolerant control [63]. Virtual measurements
represent a new source of information that can provide a deeper insight and
a more accurate observation of developing faults.
Further advances can also be achieved through more efficient utilization of
existing SCADA and CMS data. Many publications address fault diagno-
sis exclusively based on SCADA data using machine learning approaches,
or fault diagnosis solely based on CMS data using vibration analysis tech-
niques. The intelligent integration of SCADA and CMS data is proposed
by Mehlan et al. [5] to advance fault diagnosis methods. This study inves-
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tigates the question whether the information in CMS vibration data may
be leveraged for tasks outside its original purpose of drivetrain condition
monitoring. A use case is identified in the diagnosis of faults that lead to
an aerodynamic or inertial imbalance of the rotor such as pitch misalign-
ment, yaw misalignment and mass imbalance. Rotor imbalance faults are
relatively common and contribute to higher loads and fatigue damage in
the blades and tower, but may also be damaging to drivetrain components.
Recent field studies report that 38% of wind turbines operate with pitch
misalignment of > 0.3◦ that are considered unacceptable according to GL
standards [64]. Yaw misalignment is present in most operating turbines due
to the inaccuracy of wind direction measurements using nacelle-mounted
wind vanes and mass imbalance can occur as a result of manufacturing er-
rors or uneven accumulation of ice, moisture or dirt.
The conventional approach to imbalance detection is based on monitoring
the amplitudes at the rotor frequency 1P in tower-top acceleration signals,
since rotor imbalance faults are known to excite tower side-side bending
modes at this frequency. The classification of different imbalance fault
types is more challenging, since each rotor imbalance fault induces simi-
lar dynamic wind turbine responses that make it difficult to define effective
diagnostic criteria. Kusnick et al. [65] propose the reduction of the electri-
cal power output as a criterion to distinguish pitch misalignment from mass
imbalance, however, this signal is very sensitive to changes in wind speed.
Other methods rely on physical modelling of the wind turbine structure,
which may not be feasible for wind farm operators [66].
An effective alternative is identified in CMS vibration amplitudes. Nu-
merical studies with the DTU 10 MW reference turbine reveal that pitch
misalignment induces characteristic yaw and pitch moments that excite lo-
cal drivetrain bending modes and are observable in the vibration response
throughout the drivetrain [5]. Yaw misalignment and mass imbalance, on
the other hand, primarily result in higher torque loads and shear forces that
do not induce such drivetrain vibration responses.
These findings are used to develop a diagnostic method formulated by three
binary decision rules to classify healthy conditions, yaw misalignment, pitch
misalignment and mass imbalance (Fig. 5.5). In the first step, a fault is
declared if an increase in the nacelle side-side acceleration amplitudes is de-
tected. In the second step, pitch misalignment is isolated from the remaining
fault types in case of increased vibration amplitudes on the gearbox housing.
Lastly, mass imbalance is distinguished from yaw misalignment by observ-
ing the rotor speed amplitudes.
The evaluation of the proposed method under different environmental and
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fault conditions yields promising results. While the detection and identifi-
cation of mass imbalance remains challenging, all pitch misalignment cases
ranging from 1◦ to 3◦ are correctly detected and classified using CMS vi-
bration data. This illustrates one occasion where DTs may provide more
accurate and more robust diagnostic services through intelligent integration
and utilization of SCADA and CMS data.

5.4 Predictive capability

The predictive capability refers to the DT’s ability to forecast various wind
turbine’s states ranging from meteorological variables such as incoming wave
heights, performance variables such as the power production to the health
condition of turbine components. The majority of research activities is fo-
cused on predicting the health condition, specifically the RUL, as a step to-
wards predictive maintenance strategies [15]. Predictive maintenance is one
of the most investigated research topics related to Industry 4.0. Predictive
maintenance is based on the principle of predicting failures and scheduling
timely repairs to mitigate more severe damages to the system and to utilize
maintenance resources such as labour and material more cost effectively.
DT is seen by many authors as the key enabling technology to advance
predictive maintenance strategies. The approaches to RUL estimation for
predictive maintenance can be categorized into data-driven (Sec. 5.4.1) and
physics-based methods (Sec. 5.4.2).

5.4.1 Data-driven trend analysis for RUL estimation

The research into data-driven methods for RUL estimation in wind turbine
drivetrains follows an approach similar to the vibration trend analysis in
conventional CM systems (Sec. 5.1). Various areas are investigated such as
alternative sensor signals, data processing algorithms and machine learning
models in hopes of improving the RUL prediction accuracy.
Machine learning models are explored by several authors as a tool to regress
and predict failure trends [67, 68, 69]. The strengths of machine learning
models lie in their ability to capture complex, non-linear relationships and
in their multiple input multiple output (MIMO) capability. Artificial neural
networks (ANNs) are a popular choice and reportedly yield higher accuracy
than comparable machine learning models. In a study by Carrol et al. [67],
feedforward ANNs outperformed support vector machines and logistic re-
gression models in predicting gear and bearing failures. Similarly, Elasha et
al. [68] compare feedforward ANNs to polynomial and exponential regres-
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Figure 5.6: RUL estimates of main and high-speed bearing based on direct
strain gauge measurements and indirect virtual sensor techniques[4].

sion in a study on bearing RUL estimation and report significantly lower
errors for the ANNs. ANNs are also employed by Yucesan et al. [69] to
predict the lubricant condition in wind turbine main bearings.
Many authors investigate SCADA signals as additional or alternative signals
to CMS vibrations. In different studies it is demonstrated that the prog-
nosis of drivetrain faults several weeks in advance solely based on SCADA
data is feasible [70]. Bearing temperature signals are deemed particularly
beneficial for fault prognosis, since for many gear and bearing failure modes
the temperature tends to rise as result of added friction. In practice, how-
ever, temperature signals are less suited for trend analysis due to the large
influence of environmental and operational conditions. In a case study on
two gear and bearing faults by Carrol et al. [67] none of the SCADA tem-
perature signals exhibited any identifiable trends. Carrol et al. conclude
that direct trend analysis of temperature signals is not fruitful and suggest
conditioning the temperature on the electrical power or wind speed, or using
machine learning models to capture these relationships.

5.4.2 Physics-based virtual sensing for RUL estimation

While data-driven methods for RUL estimation receive much attention in
recent scientific publications, physics-based methods remain an underex-
plored topic. Physical modelling of drivetrain failures by first principles is
inherently challenging, since the failure mechanics are often not sufficiently
understood, and empirical models perform poorly outside of controlled lab-



50 50

oratory environments. This has led the scientific community to gravitate
towards purely data-driven solutions, however, there are still many use cases
in fault prognosis, where physical modelling can provide tangible benefits.
Hybrid approaches that combine data-driven with physics-based models are
a promising strategy to achieve the best of both worlds. Hereby, the physics
that are well understood such as the drivetrain mechanics are represented
by physics-based models, while the poorly understood physics of fault ini-
tiation and development are captured with data-driven methods.
The hybrid approach is pursued by Desai et al. [71] and Guo et al. [39]
for the prognosis of axial bearing crack failures. Axial bearing cracks com-
monly occur at the high-speed bearings and can cause premature failures
within the first six years of operation. The best physical understanding of
the root causes is excessive friction, which occurs in transient events such as
emergency stops and induces rapid plastic deformation of the raceway. For
this reason, the frictional energy in the roller-raceway contacts is proposed
as a metric to predict axial bearing crack failures. Desai et al. and Guo
et al. use a physics-based bearing model, presented in [72], to calculate
the frictional energy in real-time as a function of SCADA signals. While
the authors refer to the frictional energy as ”modelled data“, it can also
be considered a virtual sensor measurement in the context of DT. Guo et
al. [39] employ reliability methods to calculate the probability of failure
at any given time as a function of the accumulated frictional energy and
failure thresholds determined from wind turbine failure records. Desai et
al. [71] train various machine learning models including logistic regression,
tree ensembles and artificial neural networks on both SCADA and virtual
sensor data. The results show significantly improved accuracy in the RUL
estimation using virtual sensor data and underline the benefit of physical
modelling for fault prognosis.
A second use case for physics-based models is the prognosis of fatigue fail-
ures, presented by Mehlan et al. [3, 4]. CM systems typically focus on the
detection of premature faults that occur early in the wind turbine’s lifecycle
rather than material fatigue that marks the end of the 20 year nominal life.
Nonetheless, there are clear benefits in monitoring the accumulated fatigue
damage and estimating the RUL based on the remaining fatigue damage
reserves. Material fatigue driven failures may occur earlier in the lifecycle
due to uncertainty in the design procedure. For instance, the actual en-
vironmental conditions may be more severe than the assumed design load
cases (DLCs [48]). In this case, the operator may benefit from early failure
alerts to schedule timely part replacements. RUL estimates are also of great
importance in lifetime extension decisions, where they can provide a time
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estimate for the continued safe operation beyond the service life [73].
Fatigue assessment of drivetrain gears and bearings is standardized by the
codes ISO 6336 [74] and ISO 281 [75], respectively. The fatigue lifetime is
expressed as a number of permissible stress cycles and related to the loading
conditions through S-N curves. The raw load time signal must be converted
to a stress cycle histogram using stress cycle counting algorithms. For rotat-
ing machine equipment such as gears and bearings that experience cyclical
loading each shaft rotation by entering and exiting the load zone, the load
duration distribution (LDD) method is applicable [44].
While fatigue assessment is standard procedure in the design of wind turbine
drivetrains, continuous monitoring of fatigue damage in operating systems
is not practiced. The limiting factor is the measurement of local gear and
bearing loads, which are not available in commercial wind turbines due to
economical, geometrical and reliability constrains of load sensors. DT can
bridge this gap through virtual sensing techniques (Sec. 5.2) and thus facil-
itate continuous monitoring of fatigue damage and RUL estimation. This
approach is demonstrated by Mehlan et al. in a field study with the 1.5 MW
DOE research turbine that is equipped with SCADA and CMS sensors, as
well as a custom strain gauge setup that allows the validation of virtual load
measurements [4]. The RUL estimates of the main and high-speed bearing
based on virtual sensing techniques shows a good agreement with direct
strain gauge measurements (Fig. 5.6). Larger errors are observed at the
main bearing due to the uncertainty in the yaw and pitch bending moment
estimates (Sec. 5.2.1), whereas the high-speed bearing fatigue is predomi-
nantly torque driven. The results showcase the potential of physics-based
models for RUL estimation, however, they also highlight the limitations of
such models. Physics-based models are unable to capture all physics due to
unknown process parameters, unknown input variables, or because compu-
tational constrains dictate the usage of reduced order models. In this case
study, it was necessary to resort to a rigid reduced order drivetrain model
due to limited knowledge of drivetrain specifications and thus neglecting the
influence of all internal drivetrain dynamics on bearing fatigue damage. The
modelling uncertainty of physics-based models should be carefully consid-
ered in RUL applications. Further discussion on the uncertainty assessment
of this approach is presented in Sec. 6.

5.5 Prescriptive capability

The prescriptive capability refers to the DT’s ability to not only predict
failures but also recommend mitigating actions such as maintenance tasks
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or control strategies. Prescriptive maintenance strategies have been concep-
tualized for a long time, but the technology readiness level of such strategies
in wind turbine drivetrains remains low and publications on this topic are
sparse. However, one may refer to studies in relatable fields such as Momber
et al. who present a methodology for prescriptive maintenance of protec-
tive coating of wind turbine structures [76]. The prescriptive capability is
realized through a ”maintenance model“ that recommends maintenance ac-
tions ranging from ”No measures required“, ”Inspection required“, ”Repair
planning“ to ”Repair required“ as a function of the deterioration degree
and the component criticality. Strack et al. [77] present a similar mainte-
nance model for a GE onshore wind turbine. The maintenance tasks are
determined based on interviews with domain experts and collected in a
structured measure catalog. Each component specific failure mode is linked
to a maintenance task through a so called function tree. The development
of maintenance models for wind turbine drivetrains, however, is more chal-
lenging due to the multitude of drivetrain components, unique failure modes
and their effects. More research into this this area is needed to develop pre-
scriptive DTs.
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Table 5.1: Digital Twins in offshore wind turbine drivetrains and related
fields.
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Chapter 6

Uncertainty assessment

The continued digitization and automation of wind turbines through DTs
poses significant risks, since wind turbines are high-value assets and an
important part of the energy infrastructure. Malfunctions or erroneous de-
cisions made by DTs could potentially have severe consequences. False
negatives such as missed fault detections could develop to a system level
failure, long down times and expensive repairs, while false positives could
lead to frequent and unnecessary maintenance activities. Therefore, it be-
comes imperative to assess the uncertainty in the decision process of DTs
and conduct a risk analysis before implementing higher levels of autonomy.
The uncertainty in DT can be divided to two categories [80]:

r Aleatory uncertainty refers to the natural uncertainty in physical phe-
nomena that is inevitable and irreducible with additional informa-
tion. Typical sources of aleatory uncertainty in wind turbines are the
stochastic wind and wave loads or the variability of material parame-
ters.

r Epistemic uncertainty is caused by the lack of knowledge or model
limitations and may be reduced by collecting more information. The
predominant source of epistemic uncertainty in wind turbines are as-
sumptions or simplifications in modelling physical phenomena.

Recent studies on the uncertainty assessment of wind turbine models are
focused on the aleatory uncertainty of the environmental conditions. In the
design of wind turbine drivetrains the uncertainty of environmental param-
eters such as the wind distribution, turbulence intensity and wave spectra
are significant factors due to limitations of the site assessment. Reliability-
based design methods are investigated to explicitly address the aleatory
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Figure 6.1: Sources of uncertainty (red) in the proposed DT framework for
RUL estimation [6].

uncertainty in the design process. Li et al. present a study on reliability-
based design optimization of gear profiles and consider the uncertainty of the
wind conditions with a joint probability density function of the wind speed
and turbulence intensity [81]. In DTs, however, the challenge shifts from
aleatory to epistemic uncertainty, since the unknown environmental condi-
tions are continuously measured using state estimation techniques. These
state estimation techniques, along with other DT models and algorithms,
introduce additional epistemic uncertainty. A systematic assessment of the
uncertainty in DTs for fatigue damage monitoring in wind turbine drivetrain
is presented by Mehlan et al. [6]. Numerical case studies with the NREL 5
MW and DTU 10 MW reference turbine, as well as field case studies with
the DOE 1.5 MW research turbine are investigated. The uncertainty is de-
fined as the ratio of the true and estimated signal and is assessed for each
of the DT components: the measurement input, the state estimation meth-
ods, the system identification methods, the drivetrain ROM and the fatigue
damage model, as illustrated in Fig 6.1. For the uncertainty quantification,
log-normal distributions are used, defined as X = exp(µ+ σZ), where Z is
a standard normal variable. Note that the parameters µ and σ differ from
the distribution’s mean and standard deviation. The findings of this study
are summarized in table 6 and discussed in the following sections.

6.1 Measurement uncertainty

Measurement uncertainty is present in the DT’s data input due to measure-
ment noise, sensor malfunctions or the limited sensor resolution of SCADA
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Table 6.1: Summary of the uncertainty quantification in DTs.

Uncertainty distribution µ-parameter σ-parameter

Measurement χmeas log-normal 0 0.02...0.75
State estimation χSE log-normal 0 0.03...0.07
System identification χSI log-normal −0.86..0.38 0.01...0.55
Model χmodel log-normal −0.45...0.28 0.01...0.17

systems that typically store data as 10 min averages. Studies by Gonzalez
[28] suggest that a 10 min resolution is ill-suited for load monitoring appli-
cations. The generator torque signal, which is foundational for monitoring
drivetrain loads, reportedly has the fastest decaying autocorrelation out of
all SCADA signals, thus the loss of information is significant when using
time averaged signals. Further evidence is reported by Mehlan et al. [4],
where the load dynamics and consequently the accumulated fatigue dam-
age in the main and high-speed bearings are underestimated with 10 min
SCADA data (Fig. 5.6). 10 min averages are insufficient to observe load
dynamics due to the volatile wind speed or characteristic excitations at the
rotor or blade passing frequency (1P, 3P,...). For this reason, higher fre-
quency SCADA systems that operate with a sampling frequency of 1 Hz
are increasingly adopted by the industry, however, even at this resolution a
relevant loss of information is to be expected. The first torsional natural fre-
quency and internal excitation frequencies such as gear meshing frequencies
lie well above the Nyquist frequency of 0.5 Hz and thus cannot be observed
with 1 Hz signals. The effects of 1 Hz and 10 min averaging of the SCADA
generator torque is illustrated in Fig. 6.2. The measurement uncertainty of
10 min data is particularly high in the operational regime below rated wind
speed, where the drivetrain torque is highly volatile. With a 1 Hz resolution
the measurement uncertainty is significantly reduced and it is apparent that
torsional dynamics are captured to a higher degree.

6.2 State estimation uncertainty

The second source of epistemic uncertainty is the lack of knowledge on the
aerodynamic loads and the resultant main shaft loads. These are typically
not measured directly in commercial wind turbines, but are necessary to de-
fine the DT model’s boundary conditions. Indirect measurement techniques
such as the augmented Kalman filter (AKF) presented in Sec. 4.3.1 can be
employed. The AKF fuses uncertain information from model predictions
and noisy measurements to produce state estimates of the unknown rotor
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Figure 6.2: σ-parameter of fitted log-normal distributions for measurement
uncertainty as a function of wind speed [6]

torque. The uncertainty in the estimated rotor torque is illustrated in Fig.
6.3. The low-frequency (< 1 Hz) torsional dynamics induced by aerody-
namic excitations are captured well, whereas higher errors are observed at
the high-frequency internal drivetrain dynamics. In the 5 MW numerical
case study it is apparent that the first torsional mode at ∼ 2 Hz is underpre-
dicted. This has the effect that the load amplitudes and the fatigue damage
in drivetrain gears and bearings is underestimated.

6.3 System identification uncertainty

Aleatory uncertainty is present in the system properties including inertia,
stiffness and damping values that are required to parameterize the DT
model. Not only do the system properties deviate from its design specifica-
tions due to the stochastic nature of material properties and manufacturing
tolerances, but they also vary across the drivetrain’s life cycle as a result
of material degradation, component faults, repairs and replacements or en-
vironmental factors such as ice accretion. System identification methods,
as described in Sec. 4.3.2, are utilized in DTs to continuously estimate the
system properties and update the DT model accordingly. The limitations of
such system identification methods represent an additional source of epis-
temic uncertainty in drivetrain DTs. The uncertainty in the parameters
generator inertia, rotor inertia, drivetrain stiffness and drivetrain damping
is shown in Fig. 6.4. Local maxima in the bias and variance are observed
near cut-in (5 m/s) and near rated wind speeds (11-13 m/s), while the min-
imum is located at cut-out wind speed (25 m/s). It appears that the quasi-
stationary conditions in the operational regime above rated wind speeds are
conducive to accurate parameter estimation, while the transient dynamics
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Figure 6.3: True and estimated rotor torque Trot, T̂rot using joint state-input
estimation methods [6].

at rated wind speeds due to activation and deactivation of the pitch con-
troller introduce higher estimation errors. The second finding is that the
damping parameter estimates have a significantly higher uncertainty than
the inertia or stiffness estimates. The damping parameter has under the
considered operational conditions, outside of resonance areas, a small influ-
ence on the dynamic response. Hence, system identification methods that
are based on the measured torsional drivetrain response are more inaccurate
in the damping parameter estimation.

6.4 Model uncertainty

The model uncertainty χmodel characterizes the uncertainty in the calcu-
lated bearing and gear loads due to modelling errors and the complexity
reduction of ROMs. ROMs are favourable as DT models due to constrains
on the computational costs and on the observability of the model’s dynamic
states, as discussed in Sec. 4.2.3. Torsional ROMs with one and two DOFs,
respectively, are considered in the study by Mehlan et al. [6] and compared
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identification uncertainty as a function of wind speed [6].

to high-fidelity MBS drivetrain models. The discussion of the model uncer-
tainty is divided into a frequency domain analysis (Sec. 6.4.1), the analysis
of the model bias (Sec. 6.4.2) and the analysis of the dynamic model error
(Sec. 6.4.3).

6.4.1 Characterization of drivetrain dynamics

To identify the sources of model uncertainty one must first understand the
complex dynamics of wind turbine drivetrains. The drivetrain dynamics can
be generally characterized as dynamic responses to a variety of both inter-
nal and external excitations. These excitations can be further differentiated
into torque and non-torque loads, i.e lateral forces and bending moments
(Tab. 6.2).
External excitations are mainly the result of aerodynamics and are prevalent
at low frequencies. Aerodynamic imbalance is present in healthy conditions
due to turbulence, wind shear, the vertical wind profile and the rotor axis
tilt, or caused by faulty yaw and pitch misalignment. This results in peri-
odic load variations in the rotor torque, thrust and bending moments at the
rotor frequency 1P [5]. The tower shadow is also known to induce similar
torque and non-torque excitations at the blade passing frequency 3P.
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Table 6.2: Type of excitations and characteristic frequencies in wind turbine
drivetrains.

Torque Non-Torque

External Aerodynamic imbalance (f1P ) Aerodynamic imbalance (f1P )
Tower shadow (f3P ) Tower shadow (f3P )
Blade edgewise modes (fN ) -
- Blade flapwise modes (fN )
- Tower bending modes (fN )

Internal Planet carriers (fplc) Planet carriers (fplc)
Gear meshing (fgm) Gear meshing (fgm)
- Bearings (fbpf )

The system boundaries of the drivetrain models cut through the rotor hub
and the yaw bearing, hence, all structural dynamics of the blades and the
tower are considered as external excitations. These are simulated with the
global aeroelastic models and the resulting main shaft loads and tower mo-
tions are applied as boundary conditions in the drivetrain models. The de-
formation of the blades with edgewise bending modes translates to torque
excitations at the main shaft, while flapwise bending modes cause primar-
ily non-torque excitations. Similarly, fore-aft and side-side tower bending
introduces excitations in the thrust and bending moments.
Internal excitations are caused by periodic changes of component stiffnesses
and occur generally at much higher frequencies. Gear mesh excitations are
a result of the changing number of tooth contacts during one meshing cy-
cle. Gear meshing primarily results in periodic variation of the transmitted
torque, but may also have non-torque components in helical gear stages.
Bearing excitations are caused by roller elements passing the load zone and
result in non-torque excitations at the ball passing frequencies. Further in-
ternal excitations are observed at the planet carrier rotational frequencies.
Shaft misalignment, mass imbalance or non-torque loading may result in
bending of the flexible planet carrier and in skewing of the load distribution
between planets, such that each planet bearing experiences periodic load
changes during one planet carrier revolution.
The characteristic excitations are observable in the power spectral densi-

ties (PSD) of the bearing loads (Fig 6.5). Shown are the simulated bearing
loads at each gear stage for EC8 (17 m/s) using the FOM and the rigid
and flexible ROM. The rigid ROM exhibits a good agreement in the low-
est frequency range (< 1 Hz) governed by wind and wave load excitations,
but generally underestimates higher frequency dynamics, as it is only con-
sidering rigid body modes. The flexible ROM achieves more accurate load
estimates by inclusion of the first torsional drivetrain mode. It is able to
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Figure 6.5: Power spectral densities of bearing radial loads simulated with
the 5 MW FOM, rigid ROM and flexible ROM [6]

match the peaks of external excitations such as the first collective edgewise
blade bending mode (fN1) and higher order modes. The internal dynamics
are captured reasonably well with a good agreement in the second stage
gear meshing frequency (fgm2). However, some discrepancies remain in the
first stage gear meshing frequency peak (fgm1) and in the planet carrier
excitations (fplc1, fplc2) visible at the first and second stage planet bear-
ings (PL-A, IMS-PL-A). These suggest the presence of non-torque loads at
the planet carriers. The investigated 5 and 10 MW drivetrain models are
designed with a four-point main bearing suspension, where it is generally
assumed that all non-torque loads of the rotor are fully compensated by the
main bearings, but it appears that this is not the case and that non-torque
loads partially propagate further downwind into the drivetrain. The results
showcase the limitations of torsional ROMs and suggest that a significant
source of uncertainty originates from neglecting planetary carrier bending
modes.
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6.4.2 Model bias

Model biases in drivetrain ROMs can arise due to the model complexity
reduction and result in persistent under- or overestimation of the drivetrain
loads and fatigue damage that is largely independent of the environmen-
tal or operational conditions. The model bias is quantified in a statistical
analysis by the µ-parameter of the model uncertainty’s fitted log-normal
distributions. As shown in Fig. 6.6, the loads at the upwind HSS-A and
IMS-A bearings are consistently underestimated, while the loads at the
downwind HSS-B and IMS-B bearings are overestimated. One reason for
these discrepancies could lie in the physical simplifications of the ROMs,
which reduces the gear contact force to a singular vector along the line of
action. The load distribution along the gear flank is not considered and thus
the bending moments resulting from inhomogeneous load distributions are
neglected. Other authors introduce a ”twist stiffness” perpendicular to the
circumferential gear meshing stiffness to account for the load distribution
[82]. However, in this approach the solution requires knowledge of gear and
bearing stiffness parameters, which are difficult to determine and validate
in practice. Another factor could be the assumption of open-ended shafts
that do not allow the transfer of non-torque loads. In the FOMs this is not
the case, since the generator coupling at the HSS and the sun-planet gear
contact at the IMS allow the transfer of shear forces. These could skew the
HSS and IMS bearing loads and further contribute to the model bias.

6.4.3 Dynamic error

The σ-parameter of the of the fitted uncertainty distributions indicates how
well the ROMs capture drivetrain dynamics compared the FOM. As de-
picted in Fig. 6.7, the σ-parameter is positive for all considered cases,
which suggests that the ROMs generally underestimate the load dynam-
ics. The uncertainty distributions show similar trends across all bearing
and gear types. The highest values are observed near cut-in wind speeds
(5 m/s), followed by a steep decline to the global minimum at 9 m/s and a
gradual progressive trend towards cut-out wind speeds (25 m/s). Similarly
to the high model bias, the high uncertainty at cut-in wind speeds can be
attributed to start-up and shut-down effects. The progressive trend can
be attributed to aerodynamic non-torque loads transferred from the rotor
into the drivetrain. While the torque is controlled to rated conditions above
rated wind speed, the non-torque loads, in particular pitch and yaw bending
moments, continue to increase with higher wind speeds [4]. These can excite
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Figure 6.6: µ-parameter of fitted log-normal distributions for model uncer-
tainty as a function of wind speed [6]

non-torsional modes of the drivetrain, in particular planet carrier bending
modes (see Sec. 6.4.1), which the purely torsional ROMs do not account
for.
The flexible ROM appears to capture the drivetrain dynamics to a much
higher degree than the rigid ROM resulting in lower uncertainty values
across all bearing and gear locations. The largest differences are observed
above rated wind speed, where the excitation of the first drivetrain tor-
sional mode becomes increasingly more energetic. Below rated wind speed
the relative improvement is much lower, since in this operational regime the
drivetrain dynamics are governed by rigid-body modes.
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Figure 6.7: σ-parameter of fitted log-normal distributions for model uncer-
tainty as a function of wind speed [6]

6.5 Fatigue damage uncertainty

The use case of long-term fatigue damage monitoring is considered to as-
sess the impact of the uncertainties in the DT framework. Three scenarios
are hereby considered with increasing resolution of SCADA measurements,
ranging from 10 min, 1 Hz to 200 Hz. The resolution of 10 min and 1 Hz
limits the DT model to the rigid torsional ROM, since the first torsional
natural frequency lies above the Nyquist-frequency, while the case of 200
Hz measurements allows the application of the flexible ROM.
The relative error in long-term fatigue damage for each of the scenarios is
shown in Fig. 6.8. The long-term fatigue damage is generally underesti-
mated by the DTs due to underestimation of the load amplitudes. It should
be noted that the error in the bearing and gear load estimates is amplified
by exponentiation with the S-N curve exponent of 10/3 and 6.225, respec-
tively. Hence, the gear fatigue damage error tends to be larger due to the
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larger exponent.
The first scenario with 10 min SCADA data results in relative errors of
up to -44.4% in the gear fatigue damage and up to -15.9% in the bearing
fatigue damage due to the high measurement uncertainty χmeas. The reso-
lution is insufficient to capture neither the low-frequency aerodynamics nor
the high-frequency internal drivetrain dynamics. The second scenario with
1 Hz data yields significantly smaller relative errors limited to -11.2% and
-6.6% in the gear and bearing fatigue damage, respectively. In this case, the
rigid ROM is able to represent low frequency load variations due to wind
and wave excitations, but is limited with respect to higher frequency inter-
nal dynamics dynamics. The third scenario with 200 Hz measurements and
the two DOF flexible ROM results in only marginally lower fatigue damage
errors of -9.7% and -5.5%, which showcase the trade-off of increasing the
model fidelity. While the addition of a torsional DOF in the flexible ROM
significantly reduces the modelling errors and the model uncertainty χmodel,
it introduces one unknown variable in the rotor torque and four unknown
parameters in the rotor inertia, generator inertia, drivetrain stiffness and
damping. The estimation of the rotor torque and the parameters by inverse
methods cause additional uncertainty χSE , χSI , which partially diminish
the benefit of the lower model uncertainty.



Chapter 7

Conclusions

This chapter presents the original contributions of the six appended papers
(Sec. 7.1), concluding remarks on each area of the proposed DT framework
(Sec. 7.1) and recommendations for future works (Sec. 7.3).

7.1 Original contributions

Each of the six appended papers contribute to different areas of DT through
the development of novel methods, numerical and experimental verification
and the assessment of errors and uncertainty.

I: Paper 1

(a) A numerically efficient gear contact model was developed for the
purpose of real-time load monitoring and evaluated against a
state-of-the-art model.

II: Paper 2 and 3

(a) A DT framework was conceptualized and tailored for the appli-
cation of load monitoring and RUL estimation of offshore wind
turbine drivetrains.

(b) Different state estimation methods for virtual sensing of driv-
etrain loads including the Kalman filter, a least squares and a
quasi-static method were compared in a numerical case study.

(c) CMS vibration data were found to be beneficial to observe high-
frequency internal drivetrain dynamics.

67
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III: Paper 4

(a) The proposed DT framework was applied in a field study of the
DOE 1.5 MW research turbine.

(b) A data-driven approach using machine learning regression models
was presented to predict the main shaft loads from SCADA and
CMS data.

IV: Paper 5

(a) A novel diagnostic method for rotor imbalance faults, namely
pitch misalignment, yaw misalignment and mass imbalance was
developed and evaluated in a numerical case study.

(b) The diagnosis hinges on CMS vibration data that are found to
be particularly useful to identify pitch misalignment faults.

V: Paper 6

(a) A systematic uncertainty assessment of the proposed DT frame-
work was conducted with numerical and experimental data.

(b) The statistical distributions of the epistemic uncertainty in the
DT data input, state estimation methods, system identification
methods and drivetrain ROMs are analyzed.

(c) From a uncertainty perspective, the optimal model fidelity for
drivetrain DTs is reached with a two DOF torsional ROM.

7.2 Conclusions and discussions

Digital Twin is certainly a divisive topic: by proponents DT is perceived as
the key enabling technology that drives the Industry 4.0 and as revolution-
ary as the advent of AI, by critics DT is seen as a vapid hype, the latest
buzzword used by marketing departments. This disparity is rooted in the
ambiguity of the DT concept itself, which is not caused by a lack of under-
standing, but rather left intentionally vague to suit the needs of businesses
and researchers, who wish to label their particular approach as DT. In light
of the multitude of diverging and sometimes contradicting definitions of DT
it is inherently challenging to formulate a concise and objective description
of DT. What researchers can agree on is limited to a few characteristics:
DT is a virtual representation of a physical asset, it is enabled through the
integration of data, simulation models and algorithms, it is developed for
the purpose of proving decision support to the user, and it evolves over the
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physical asset’s entire life cycle. Applying these ideas to the use case of off-
shore wind turbine drivetrains there remain many questions on how exactly
a drivetrain DT would look like in practice. The first question is concerned
with the desired functionality of the DT. A qualitative cost benefit analysis
showed that the RUL estimation of drivetrain components is both techno-
logically attainable and able to provide tangible economic benefits in terms
of reduced O&M expenditures. To facilitate the RUL estimation, a general
DT framework was formulated that comprises the three functional elements
DT Data, DT Model and DT Decision support.

7.2.1 Digital Twin Data

The first functional element is DT Data, which is a collective term for data
that are acquired both in the physical realm through sensor measurements
and in the virtual realm through data processing algorithms and simulation
models. Real-time data streams from physical sensors are instrumental to
inform the DT on the current state of the physical asset. The primary data
source for drivetrain DTs are SCADA and CM systems that part of the
standard equipment of modern offshore wind turbines. Essential SCADA
sensors for drivetrain DTs are the encoders at the main and the generator
shaft that measure the respective shaft speeds. The main shaft and gen-
erator shaft speed signals contain information on the torsional drivetrain
dynamics and through frequency domain methods enable the observation of
torsional modes. The SCADA signal of the generator torque is critical for
the calculation of local gear and bearing loads, which can be approximated
under stationary conditions as torque-proportional. The major limitation
of SCADA data is their low temporal resolution, which is typically set to
10 min by industry guidelines and is insufficient to implement dynamic DT
models. Studies in paper 4 [4] and paper 6 [6] have shown that the fatigue
damage is significantly underestimated using 10 min average SCADA data
due to disregarding dynamic load effects.
This motivates the integration of CMS vibration data to inform dynamic
drivetrain DTs. CMS accelerometers typically operate with a sampling
frequency in the kHz range, which is sufficient to observe high-frequency
drivetrain dynamics. Numerical studies in paper 5 [5] also suggest that
CMS signals, unlike SCADA signals, can be used to observe non-torsional
drivetrain dynamics such as bending modes excited by pitch misalignment
faults. However, the integration of CMS data in physics-based DTs remains
challenging due the low signal energy at lower frequencies and the complex
vibration transfer path through the gearbox housing.
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7.2.2 Digital Twin Models

The second functional element is the DT Model that contains multiple sub-
models to describe the physics at different scales, at the wind turbine level,
the drivetrain level, the component level and the material level. For the
development of DT models, one can draw from a wealth of experience in
different modelling approaches such as aeroelastic, FE and MBS methods,
however, the direct transfer of current modelling practices is not fruitful due
to the unique development challenges of DT. Current state-of-the-art mod-
els are developed for early life cycle stages such as design or R&D and as
such are ”static“ and disconnected models, while DT models for the O&M
are ”live“ models connected to the physical wind turbine. Two additional
model requirements arise from these circumstances: the real-time capability
to simulate states of the operating turbine and the model maintainability to
ensure the convergence of the simulated and the real behaviour.
The real-time capability requirement sets a limit on the model complex-
ity. The best practice in dynamic drivetrain simulation using high-fidelity
MBS models remains below real-time speeds with typical desktop comput-
ers, hence, more efficient ROMs are needed for DT. Particularly resource in-
tensive is the simulation of gear meshing dynamics, since the high-frequency
state changes in the tooth contacts require a very small numerical step size.
The first paper [1] examines this topic and presents a ROM with a simplified
gear contact model. In comparison to a state-of-the-art MBS model, the
ROM reproduces the spatial load distribution over the gear flank and the
temporal load variations to a high accuracy, while increasing the compu-
tational speed by about 27%. Despite the improvements in computational
efficiency, the simulation of gear meshing dynamics remains below real-time
speeds. Therefore, it is likely not feasible to include gear meshing in DT
models and thus in the later works it is not considered. In papers 2 and
3 [2, 3] a ROM is developed by linearization of a high-fidelity MBS model,
which reduces the complex gear contact function to a linear, elastic connec-
tion. In paper 4 [4] a drivetrain ROM is used that assumes rigid transmission
of torque and by this assumption neglects all internal drivetrain dynamics.
Paper 6 [6] investigates the model uncertainty of the two most likely sce-
narios: a fully rigid ROM and a flexible ROM with two torsional DOFs.
Numerical experiments with a benchmark MBS model demonstrate that
the rigid ROM is only able to capture low-frequency rigid body modes that
are excited by wind and wave loads. The flexible ROM, on the other hand,
is able to represent higher-frequency internal drivetrain dynamics charac-
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terised by torsional modes. Remaining modelling errors are identified in the
non-torsional drivetrain dynamics such as planet carrier bending modes,
however, it appears that these are much less energetic than torsional modes
and only contribute marginally to the model uncertainty. The results sug-
gest that two DOF flexible ROMs are a suitable candidate for drivetrain
DTs.
The second unique development challenge of DT models, the maintainability
requirement, states that the DT must be updated continuously to synchro-
nize its behaviour with the physical wind turbine. The model updating
contains two separate tasks, the state estimation for synchronizing system
states such as kinematic states, forces or stresses and the system identifi-
cation for adjusting model properties such as inertia, stiffness or damping
parameters.
Different state estimation methods for drivetrain DTs including a quasi-
static method, a least-squares method and the linear Kalman filter are in-
vestigated in papers 2 and 3 [2, 3] in a numerical case study. The linear
Kalman filter yielded the highest accuracy due to its ability to optimally
fuse information from noisy sensor measurements and uncertain model pre-
dictions. However, there remained estimation errors by assuming unknown
input forces such as the rotor torque as white Gaussian noise. This appears
to be an invalid assumption and thus it becomes necessary to employ the
augmented Kalman filter variation, as described in paper 6, where the kine-
matic states and the unknown input forces are estimated simultaneously.
Secondly, it is of importance to continuously update the DT model param-
eters, since the physical system properties may change over time due to
environmental influences, material degradation, faults, part replacements
or repairs. Paper 6 presents a system identification approach based on op-
erational modal analysis of SCADA data to estimate the parameters rotor
inertia, generator inertia, drivetrain torsional stiffness and damping. The
approach could be verified in numerical experiments, however, high levels
of uncertainty were observed near cut-in and near rated wind speeds as a
result of the transient operational conditions. Hereby, the estimation of the
damping parameter was the most inaccurate, as its effect on the drivetrain
dynamics outside of resonance areas is minimal.
In addition to computational efficiency considerations, the model maintain-
ability also constrains the fidelity of DT models. With higher model com-
plexity the number of unknown kinematic states and model parameters rises
and with it the model uncertainty. In paper 6 an effect of diminishing re-
turns was already observed, when increasing the model fidelity from a rigid
one DOF model to a flexible two DOF model. From a perspective of model
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uncertainty the optimal model fidelity for drivetrain DTs appears to reached
with two DOF torsional models.

7.2.3 Digital Twin Decision Support

DTs are developed for the purpose of improving business outcomes by as-
sisting stakeholders in making key decisions. This functionality is realized
with the DT Decision support, which provides a range of services and acts
as the human-machine interface. According to DNVGL-RP-A204 [18], the
decision support can be categorized into five capability levels: descriptive,
diagnostic, predictive, prescriptive and autonomous. While SCADA and
CM systems already provide such decision support of up to level 3 (predic-
tive), DTs have the potential of elevating the capability level by developing
methods with higher autonomy. Fully autonomous DTs are not viable at the
current state of technology, nonetheless, DTs can add value by improving
upon existing methods at the descriptive, diagnostic and predictive level.
The key technology that DTs bring to the table is virtual sensing, enabled
by the fusion of physical sensor measurements with model predictions. Vir-
tual sensing allows the measurement of local gear and bearing loads, which
are difficult to measure directly due geometrical constrains and low lifespans
of load sensors. Measuring drivetrain loads is not only useful for condition
monitoring purposes, but also for intelligent controllers, improved fault di-
agnosis or RUL estimation. In this thesis, the RUL estimation based on the
measured accumulated fatigue damage and load history is pursued, which
corresponds to a capability level of 3 (predictive). Two distinct challenges
in virtual load sensing are investigated, the estimation of main bearing loads
and the estimation of gearbox loads.
The main bearings are designed to transfer aerodynamic rotor loads into
the bedplate and thus it becomes imperative to determine the six load com-
ponents torque, yaw moment, pitch moment, thrust, shear force and veer
force. In paper 4 [4] a data-driven approach is proposed, where SCADA and
CMS data features are mapped onto the six rotor load components using
machine learning regression models. The results showed a good agreement
in the estimated torque and thrust, however, the estimation of the bending
moments remains challenging. Unlike torque and thrust, the bending mo-
ments do not exhibit a characteristic trend with respect to the wind speed
or other SCADA signals, but show a large scatter due to turbulence or yaw
misalignment effects. Furthermore, the sensitivity with respect to CMS vi-
bration signals is rather small due to the low signal energy in the frequency
range of aerodynamic excitations.
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The downwind gears and bearings are governed by the torque and are less af-
fected by non-torque rotor loads, which are mostly compensated by the main
bearings. For this reason and due to limitations of the available drivetrain
model, the gearbox bearing loads were assumed to be torque-proportional
in paper 4 [4]. This approach yields a good first approximation, but disre-
gards many aspects of the drivetrain dynamics such as planet load sharing
and excitations from gear meshing and roller bearing contacts. Capturing
such high-frequency internal drivetrain dynamics is investigated in papers 2
and 3 [2, 3]. This is realized through the integration of CMS vibration data
using Kalman filter or least squares methods and results in a much higher
accuracy in the load estimates compared to torque-proportional methods.
The main challenge with this approach lies in formulating the physical re-
lationship between vibrations and drivetrain loads, which is difficult based
on first principles due to the complex vibration transfer path through the
flexible gearbox housing. The assumption of a rigid gearbox housing was
taken in these studies, however, the validity of this assumption has not yet
been tested in an experimental setting.
Virtual load sensing enables a novel approach to the RUL estimation of
drivetrain components. Contrary to current data-driven methods of CM
systems that employ a data-driven trend analysis on vibration features to
predict the RUL, the proposed method is physics-based and utilizes estab-
lished fatigue damage models comprising stress-cycle counting algorithms
and S-N curves. Calculating the fatigue damage reserves could prove to be
beneficial for predictive maintenance strategies or lifetime extension consid-
erations. It should be noted, however, that many gear and bearing failures
are not driven by material fatigue and occur prematurely before the end of
the designed fatigue lifetime. Therefore, the physics-based RUL estimation
method should be considered as an addition rather than a replacement to
existing data-driven methods.

7.3 Recommendations for future works

This thesis is among the first studies exploring the DT concept on the case
study of offshore wind turbine drivetrains and there remain several research
areas beyond the scope of this thesis. Extensive testing and validation of
DT methods in experimental and field settings is recommended to elevate
the technology readiness level and work towards commercial adoption. Part
of the developed DT methods including the augmented Kalman filter for
rotor torque estimation and the system identification methods for model
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parameter estimation were only tested and verified in numerical experi-
ments. Limitations in the available dataset of the DOE 1.5 MW research
turbine prohibited the experimental validation of such DT methods and
thus it remains a research objective for future works.
Further optimization is possible in several areas of the proposed DT frame-
work that could improve the accuracy and robustness of the RUL estimates.
Continued research into the integration of CMS vibration data is recom-
mended, which contain valuable information on the high-frequency internal
drivetrain dynamics, but are currently underutilized. Accurate models of
the relationship between vibration signals and drivetrain loads are needed,
either through physics-based modelling of the flexible gearbox housing, or
through data-driven approaches.
Reduced order modelling remains a relevant research topic for DT. Research
into the efficient modelling of the complex drivetrain dynamics, in particu-
lar, non-torsional modes could greatly advance the capability of DT models.
Lastly, the RUL estimation could also benefit from more accurate damage
models. The presented RUL estimation method was limited to the predic-
tion of fatigue driven failures and could be extended to other failure modes
such as slip-induced or overload damages.
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(NTNU), Trondheim, Norway
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Abstract. In this paper a wind turbine high-speed gear stage model is developed for the
purpose of real-time virtual sensing of gear and bearing loads in a Digital Twin framework.
The model requirements are: accurate representation of gear meshing and shaft dynamics,
high computational efficiency and compatibility with other Digital Twin components, such as
physical sensors signals and virtual sensing methods. State equations are derived analytically
using the Bond Graph method and implemented in the software 20sim for simulation. As
opposed to standard multi-body simulation (MBS) software, 20sim allows for higher flexibility
in implementing interfaces to other Digital Twin components. The model fidelity is close to
state-of-the-art MBS models considering 6 DOF body motion, however a simplified gear contact
formulation is used, which assumes ideal kinematic meshing. Nonetheless, the Bond Graph
model is able to accurately reproduce the inhomogeneous load distribution over the tooth flank,
as well as the cyclic compression and decompression for each meshing period. The results suggest
that the presented model is capable of monitoring fatigue loads in gear contacts and bearings
in a Digital Twin framework.

1. Introduction
Digital Twin (DT) is an emerging technology fueled by advances in information and
communication technologies with many proposed applications in prognostics and health
management (PHM). Especially the offshore wind industry could benefit from DT solutions to
increase reliability and availability, and reduce unscheduled, expensive down times [1]. DT can
be defined as a ’virtual representation of a physical asset enabled through data and simulators
for real-time prediction, optimization, monitoring, controlling, and improved decision making’
[2]. We envision a DT framework loosely based on the model of Tao et al. [3] to facilitate
predictive maintenance (PdM) strategies in wind turbine drivetrains. The central components
of the DT framework are the Virtual model, Data and Decision support (Fig. 1).
Data that can be leveraged in wind turbines include process, operational or organizational
data, e.g. sensor measurements of the drivetrain condition monitoring system (CMS) and the
Supervisory Control and Data Acquisition (SCADA) system. The virtual model is a virtual
representation, that experiences the same environment as its physical counterpart and evolves
over its life cycle. To ensure that the virtual and physical wind turbines are synchronized at all
times, the virtual model is supplied with real-time, physical measurements and updated using
system identification [4] and state estimation techniques [5]. Decision support is a collective term
for services that the DT provides to assist in the operator’s maintenance or control decisions.
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Figure 1. Digital Twin framework for predictive maintenance of wind turbine drivetrains.

Focus of our research is online monitoring of gear and bearing loads through virtual sensors and
subsequent estimation of the remaining useful life (RUL) using fatigue damage models.
This study is concerned with developing a dynamic simulation model of a wind turbine high-
speed gear stage to fit such a DT framework. The most essential model requirements are
formulated based on Moyne et al. [6]:

• Accuracy in the representation of gear meshing and shaft dynamics

• Computational efficiency to enable real-time simulation

• Interoperability to interact with other DT-components, such as physical sensor signals and
virtual sensing methods

• Maintainability to update model properties and match physical changes, such as material
degradation

The task of balancing model accuracy and computational speed involves finding the optimal
fidelity. Guidelines on modelling of wind turbine drivetrains are reported by Guo et al. [7],
where recommendations on the degrees of freedom (DoF) for each moving drivetrain component,
consideration of body flexibility and the fidelity of gear contact and bearing formulations are
given, which concludes to a relatively high model fidelity. Hence, state-of-the-art multi-body
simulation (MBS) models of wind turbine drivetrains including virtual test benches [8] and
academic reference models [9, 10] are generally not capable of real-time simulation. Developing
efficient Reduced Order Models (ROM) is identified as one of the major challenges in Predictive
Maintenance and Condition Monitoring [11]. ROM are constructed either as data-driven
surrogate models [12] or by physical simplification. In this study a simplified gear contact
formulation is developed.
Secondly, to satisfy the requirements of interoperability with other DT-components, appropriate
interfaces must be implemented. For instance, the virtual load sensor in the decision support
component must be supplied with a mathematical description of the virtual model, which is
elaborated further in Sec. 2.4. However, commercial MBS software including SIMPACK [13]
and ADAMS only support the export of linearized models (state-space representation), which
is insufficient to represent the highly non-linear dynamics of drivetrains [5].
Similar shortcomings of MBS software are identified concerning the model’s maintainability. The
DT paradigm requires the virtual model to evolve along its physical counterpart and be updated
to match physical changes, such as material fatigue or component faults. While parametric
updating is possible in MBS software, it is challenging to model gear and bearing faults due to
restricted access to the respective component subroutines.
In this study a wind turbine gear stage model is developed with respect to the above mentioned
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Figure 2. Gear stage model topology

DT requirements. The Bond Graph (BG) method, a graphical, energy-based modelling language
[14], is employed to construct the model and derive state equations.

2. Methodology
2.1. Bond graph theory
BG is an energy-based, graphical modelling language that bridges the gap between purely
equation-based modelling approaches and diagram techniques such as electrical circuit
diagrams[14]. The universal currency of BG are the multi-physical effort e(t) and flow f(t)
variables, which multiply to the instantaneous power P (t). In the mechanical domain, for
example, the energy variables are force and velocity, but the BG method also extends to other
physical domains. The system is divided into components according to their capability of
energy storage, dissipation or transmission. Kinetic and potential energy storage is represented
by I- an C-elements, energy dissipation by R-elements and lossless energy transformation by
TF-elements. The components are interconnected with power bonds representing the energy
exchange. Power bonds are denoted with half arrows and define both the sign of the power by
the arrow orientation and the causality of effort and flow variables with an orthogonal stroke.
Causality determines whether variables are considered as input or output in the respective BG
elements. The BG method is selected as modelling approach for the following reasons: First,
it provides a systematic approach to deriving state equations for numerical simulation, while
maintaining the physical structure of the system. Second, BG is not limited to any physical
domain. Hence, other wind turbines components, for instance generator and converter, could
be developed and integrated in the same framework. Third, the causality of state variables is
visible in the BG structure, which eases the identification and prevention of algebraic loops that
are detrimental to computational speed.

2.2. Reference model
The BG model in this study is based on a reference model of the NREL 5MW baseline wind
turbine and respective gearbox [9] in terms of parameterization and topology. The reference
model implemented in MBS software SIMPACK satisfies general guidelines on model fidelity [7]
and is the basis for validation of the BG model’s dynamics (Sec. 3). Parameter values of both
models are listed in Tabs. 1 and 2, and the overall topology is shown in Fig. 2. The scope
is limited to the high-speed stage, a helical gear stage with the bodies of intermediate speed
shaft (IMS), high-speed shaft (HSS), gear wheel and pinion. Both gear shafts are considered
rigid bodies with six degrees of freedom (DOF). Each shaft is supported by one cylindrical roller
bearing (-A) and two tapered roller bearings (-B,-C), which are modelled as spring-damper
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Figure 3. Bond graph structure of high-speed gear stage model

connections to the static gearbox housing. Gear wheel and pinion are rigidly connected to their
respective shafts (0 DOF). The elasticity of gear bodies and teeth is lumped into a spring-
damper element with time-variant mesh stiffness connecting pinion and gear wheel. External
loads Tin are applied on the IMS, while a PI-controller sets the desired speed of the HSS with
the counter-acting generator torque TGen.
The key difference between BG and reference model lies in the gear contact formulation, which
in SIMPACK is realized with the built-in force subroutine 225. The subroutine incorporates
an algorithm to find the 3D contact points and respective surface normal vectors of gear tooth
pairings. The contact forces are then determined as a function of relative contact displacement.
Hence, the SIMPACK subroutine is able to capture non-linear effects of backlash, micro geometry
(profile modifications) and misalignment of shaft axes. Contact stiffness is load-dependent and
accounts for gear wheel body deformation stiffnesses, tooth bending and shear stiffnesses, and
Hertzian contact stiffness using the ’Weber/ Banaschek’ approach. In comparison, the BG model
employs a simplified contact formulation, which assumes ideal, kinematic meshing, as presented
in Sec. 2.3.4.

2.3. Bond graph model
In the following sections the BG model of a wind turbine high-speed gear stage is presented
consisting of submodels of the shafts (Sec. 2.3.2), bearings (Sec. 2.3.3) and helical gear
contact (Sec. 2.3.4). The underlying model equations of each submodel given and the graphical
representation as BG structure is shown in Fig. 3.

2.3.1. Coordinate systems and transformations The BG model relies on different coordinate
systems in the body fixed and inertial frame. The formulation of shaft inertia is most convenient
with body-fixed velocities vx ∈ R6×1 comprising of lateral and angular velocities (Eq. 1), while
the boundary conditions align with the inertial frame

vx = [v1,v2]
T = [vx, vy, vz, ωx, ωy, ωz]

T . (1)

Transformation from body-fixed vx to inertial velocities vX is realized by three consecutive
rotations around the Euler angles ψ (yaw), θ (pitch), ϕ (roll) [15]

vX = mψθϕ · vx, mψθϕ =

[
RψRθRϕ 0

0 RψRθRϕ.

]
, (2)
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Table 1. Geometric parameters.

Variable Symbol Unit Value
IMS HSS

Mass m [kg] 5059.26 350.89
Moments of inertia Jxx/Jyy/Jzz [kg ·m2] 994.1 / 723.7 / 723.7 4.6 / 11.1 / 11.1
Number of teeth z [-] 95 24
Normal modul mn [mm] 14
Axis distance a [mm] 861
Gear tooth width b [mm] 360
Operating pitch radius rw [mm] 687.4 173.6
Base radius rb [mm] 633.4 160.0
Tip radius ra [mm] 697.7 190.3
Pressure angle α [deg] 20
Helix angle β [deg] 10
Operating pressure angle αw [deg] 22.86
Transversal operating pressure angle αwt [deg] 22.54
Number of gear tooth slices N [-] 11
Gear contact stiffness kG [N/m] 4.69 · 108
Slope of gear contact stiffness function ∂K/∂ϕi [N/m/deg] 116
Gear damping to stiffness ratio ξ [s] 10−3

with the individual rotational matrices

Rψ =



cosψ −sinψ 0
sinψ cosψ 0
0 0 1


 , Rθ =




cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ


 , Rϕ =



1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ


 . (3)

The time-variant Euler angles are found by integration of body-fixed angular velocities

θ̇ = cos(ϕ)ωy − sin(ϕ)ωz,

ψ̇ =
sin(ϕ)

cos(θ)
ωy +

cos(ϕ)

cos(θ)
ωz,

ϕ̇ = ωx + sin(ϕ)tan(θ)ωy + cos(ϕ)tan(θ)ωz

(4)

In addition to rotational Euler transformations, lateral transformations are necessary, for
instance to relate velocities at bearings with center of mass velocities. The lateral change of
coordinate systems from a point A to B is expressed as

vB = mA→B · vA, mA→B =

[
I −[δA→B]×
0 I

]
. (5)

The notation [·]× is used for compact matrix representation of the cross product between two
vectors ([a]×b = a × b). The rotational and lateral transformation matrices mψθϕ, mA→B

are orthogonal and thus power-conserving, which are represented in bond graph terminology
by transformer elements (TF). In the case of Euler transformation, the transformation matrix
is time-variant and a function of the continuously changing Euler angles. Hence, a modulated
transformer element (MTF) is used here (Fig 3).
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Table 2. Bearing parameters.

Variable Symbol Unit Value
IMS-A IMS-B IMS-C HSS-A HSS-B HSS-C

Bearing stiffness Kxx [N ·m−1] 0 7.41 · 107 7.87 · 107 1.26 · 108 6.70 · 107 7.93 · 107
Kyy [N ·m−1] 6.12 · 107 5.17 · 108 7.37 · 108 8.21 · 108 8.09 · 108 1.04 · 109
Kzz [N ·m−1] 1.16 · 109 4.84 · 108 3.26 · 108 8.21 · 108 1.33 · 108 7.29 · 107

Bearing damping Dxx [N ·m−1 · s] 4.53 · 104
Dyy [N ·m−1 · s] 4.20 · 104
Dyy [N ·m−1 · s] 3.06 · 104

Axial position xB [mm] -230 230 260 -230 230 260

2.3.2. Shaft model Each gear shaft is considered a rigid body in six DOF. The equations of
motion (EOM) governing rigid bodies are derived with the Langrange-Hamiltonian method,
which yields second order differential equations for each shaft [15]

Mv̇ +C(v)v = τ, (6)

where M ∈ R6×6 denotes the mass matrix, C(v) ∈ R6×6 the coriolis matrix, v ∈ R6×1 the
velocity vector and τ ∈ R6×1 the vector of external forces. It is convenient to align the coordinate
system with the body-fixed, principal axes at the center of mass (v = vx,COM) to eliminate off-
diagonal elements in the mass matrix, which then becomes

M =

[
mI 0
0 J

]
, J =



Jxx 0 0
0 Jyy 0
0 0 Jzz


 , (7)

where m represents the body mass, J the moments of inertia and I ∈ R3×3 denotes the identity
matrix. The coriolis matrix can then be expressed with Eq. 1 as

C =

[
0 −m[v1]×

−m[v1]× −[Jv2]×

]
. (8)

The coupled, second order EOM (Eq. 6) can be reformulated as a set of first order differential
equations (Lagrange-Hamiltonian form) with the unknowns of generalized displacements q and
momenta p

q̇ = M−1p

ṗ = −C(q̇)q̇+ τ
(9)

This relationship is represented with an IC-field in the BG model, highlighted in blue in Fig. 3.
Velocities q̇ are determined according to the constitutive laws of a classical I-field (Eq. 9, line
1). Then, gyroscopic forces e′ = ṗ are computed as a function of given velocities in the fashion
of a C-field (Eq. 9, line 2) [16].

2.3.3. Bearing model The gear shafts are connected with bearings to the gearbox housing,
which is considered static in the inertial frame (v0 = 0). Supporting bearing forces are
determined by relative velocities ∆vX,B given by local shaft velocities vX,B at the respective
bearing seats

∆vX,B = vX,B − v0 = vX,B (10)
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The local, inertial shaft velocities vX,B are related to body-fixed velocities vx,COM at the center
of mass through consecutive Euler and lateral transformations

vX,B = mψθϕmCOM→B · vx,COM, δCOM→B =



xB
0
0


 . (11)

Bearings are considered parallel spring-dampers with diagonal stiffness matrices KB and
damping matrices DB. The elastic force component fB,K is proportional to the relative
displacement, which is obtained by integration of relative velocities

fB,K = KB

∫
∆vX,B dt, KB =



Kxx 0 0
0 Kyy 0
0 0 Kzz


 . (12)

The damping force component fB,D is expressed as follows

fB,D = DB ·∆vX,B , DB =



Dxx 0 0
0 Dyy 0
0 0 Dzz


 . (13)

Bearings are represented with a combination of C- and R-elements for their energy storing
(elastic) and the dissipative (damping) capabilities, as shown in green in Fig. 3.

2.3.4. Helical gear contact model The helical gear contact is modelled with a parallel spring-
damper connection with a time-variant contact stiffness. The tooth flanks are evenly discretized
in N slices with superscript i to account for the uneven load distribution. The contact forces
are calculated for each slice separately and are a function of relative, normal velocities ∆viX,CPn
in the teeth contact points CP

∆viX,CPn = (viX,CPn)HSS − (viX,CPn)IMS. (14)

To obtain the velocity component normal to the tooth’s surface, the assumption of ideal,
kinematic meshing is taken. Under kinematic meshing the normal surface vector and thus the
contact force vector is aligned with the line of action at all times. The line of action connects
the base circles of gear and pinion and can be expressed in terms of the operating pressure angle
αw and the helix angle β. The normal velocity component viX,CPn is then given by

viX,CPn = mCPn vi
X,CP,

mCPn =
[
−sin(β) sin(αw)cos(β) cos(αw)cos(β) 0 0 0

]
.

(15)

The inertial velocities in the contact points vi
X,CP are related to body-fixed, COM velocities

vx,COM through lateral and Euler transformations

vi
X,CP = mψθϕm

i
COM→CP · vx,COM. (16)

The contact points are defined in the center of each tooth slice with radial distance of
rw (operating pitch radius) to the COM. The relative distance δiCOM→CP for the lateral
transformation can be expressed as follows

δiCOM→CP =



xiCP
yCP
zCP


 =



(i− N+1

2 ) bN
−cos(ϕ)rw
sin(ϕ)rw


 . (17)
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Figure 4. Gear contact stiffness as a
function of gear slice angular position ϕi

and periodical for each meshing period
2π/z1.

Figure 5. Geometric relations defining the
angular position ϕe, ϕd of the IMS when
tooth pairings engage and disengage.

The elastic gear contact forces f iG,K are a function of the relative contact displacements obtained
by integration and time-variant contact stiffness

f iG,K = Ki
G(ϕ

i)

∫
∆viX,CPn dt. (18)

Additionally, stiffness proportional damping is considered in the gear contacts. The damping
forces f iG,D are a function of relative contact velocities, where the damping coefficient is Di

G(ϕ
i)

is assumed proportional to the contact stiffness

f iG,D = Di
G(ϕ

i)∆viX,CPn

Di
G(ϕ

i) = ξKi
G(ϕ

i).
(19)

The formulation of the contact stiffness takes the periodical change in the number of actively
engaging teeth into account. For this model with a transverse contact ratio of 1.48 either one or
two teeth are in contact simultaneously. As depicted in Fig. 4 the contact stiffness is formulated
as a piece-wise linear function of the gear angle ϕi switching from a value of kG, when one tooth
is in contact, to 2kG, when two teeth are in contact. For improved numerical properties the
discrete step in contact stiffness is smoothed with a linear function. The gear angles ϕi of each
slice are shifted relative to the shaft Euler angle ϕ1 due to the helical shaping of gear teeth

ϕi =

(
ϕ1 −

xiCP
rw

tan(β)

)
mod

2π

z1
. (20)

The gear angles ϕe, ϕd, at which the contact stiffness function changes values are defined by the
engaging and disengaging contact points E and P , as shown in Fig. 5. Under the assumption
of ideal, kinematic meshing, E and P are positioned in the intersections of tip radii and the line
of action. Using geometric relations, ϕe, ϕd can be derived as a function of only time-invariant,
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geometric parameters

ϕe,d = tan(γe,d + αw)− αw − αb,

αb =
π

2z1
+ tan(αw)− αw,

sin(γe) = −
cos(αw)

√
r2a,1 − r2b,1 − sin(αw)rw,1

ra,1
,

sin(γd) =
cos(αw)

√
r2a,2 − r2b,2 − sin(αw)rw,2

ra,1
.

(21)

where γe,d are auxiliary parameters, αw denotes the operating pressure angle, αb the half angle
of tooth thickness on the base circle, z1 the tooth number and ra, rb, rw the tip, base and pitch
radii respectively.
Analogously to the bearing model, the gear contact model comprises of an energy storing C-
element and dissipative R-element representing stiffness and damping forces, as indicated in red
in Fig. 3.

2.3.5. Boundary conditions The gear stage is under load from external sources such as
aerodynamic excitations. In this model all external loads are applied at the IMS’s center of
mass, while a PI-controller provides the counter-acting generator torque to reach the desired
HSS speed. External loads and generator torque constitute force boundary condition and
are represented by effort source elements (Se) in the bond graph structure (Fig. 3, yellow).
Furthermore, the model assumption of a static gearbox housing sets a zero velocity boundary
condition, which is represented with flow source elements (Sf).

2.4. Model Integration in Digital Twin Framework
This section provides an outlook on the integration of the presented BG model in the envisioned
DT framework, shown in Fig. 1. State estimation methods such as the Extended Kalman Filter
(EKF) are employed to synchronize the virtual model with the physical turbine on the basis of
physical sensor measurements. These require a mathematical description of the virtual model
in the form of state-transition function f(x,u), and measurement function g(x,u)

ẋ = f(x,u),

y = g(x,u).
(22)

The independent state variables x can be identified from the BG structure (Fig. 1) as the
momenta p1,p2 of each shaft, displacements of bearings qB and gear slices qG and euler angles
[ψ, θ, ϕ]T1,2

x = [p1,p2,qB,qG, ψ1, θ1, ϕ1, ψ2, θ2, ϕ2, ]
T . (23)

The measurement variables y include the HSS rotational speed ωgen and the generator torque
Tgen from SCADA data, as well as bearing accelerations ẍB from CMS vibration data. In the
virtual model the interface to these physical measurements is represented with effort (e) and
flow (f) sensors (Fig. 1)

y = [ωgen, Tgen, ẍB]
T . (24)

The state equations (Eq. 22) can be derived analytically using the systematic procedure of the
BG method or automatically generated with the BG software 20sim [17]. 20sim supports the
export as executable MATLAB functions, which can be referenced by an EKF implemented in
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Figure 6. Run-up spectrogram of angular
velocity ωX of IMS. l.: reference model
(SIMPACK), r.: bond graph model (20sim)
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Figure 7. Slice of run-up spectrogram
(Fig. 6) at 400 rpm.

MATLAB. The EKF is extended to incorporate virtual sensors for estimation of gear and bearing
loads by augmenting the state vector similar to the approach of Branlard et al. [18]. Preliminary
studies show compatibility of the BG model with the proposed virtual sensing method, however
analysis and verification is part of future work.

3. Results and Discussion
3.1. Model validation
Validation of the BG model is conducted with the reference model implemented in SIMPACK
(Sec. 2.2) under two basic load cases: run-up from standstill to rated speed ngen = 1165.94 rpm
and a stationary load case at rated speed. Under each load case the gear stage is loaded with
rated torque of Tin = 162.1 kNm at the IMS.
The torsional system dynamics are evaluated in the run-up load case using the angular velocity
ωX of the IMS. As evident from the spectogram depicted in Fig. 6, the bond graph model
displays dynamic behaviour similar to the reference model. The bright line indicates excitation
from gear meshing at the mesh frequency fmesh = ngen/60 · zHSS , while the darker lines show
higher harmonics (2×fmesh, 3×fmesh). The decreasing line segments can be attributed to aliasing
effects, since the higher harmonics exceed the Nyquist frequency of 500 Hz here. Resonance can
be observed at particular shaft speeds where the gear meshing frequency coincides with the
system’s natural frequencies. As shown in Tab. 3 the natural frequencies of both models match
with a relative error of less than 2%. A slice through the spectrogram at a shaft speed of 400
rpm also shows a good agreement in the amplitudes of ωX .
The stationary load case allows a closer look at time series of gear contact forces and bearing
forces. Shown in Fig. 8 are gear contact forces at the left edge slice 1, center slice 6 and right
edge slice 11. The bond graph model is able to accurately reproduce the inhomogeneous load
distribution over the tooth flank, as well as the cyclic compression and decompression for each
meshing period. The mean values of gear forces agree well across all slices with a maximum
error of 5.6%, while the amplitudes appear to be overestimated by up to 22.0% at the left edge
slice.
Axial and radial forces of bearing HSS-A are selected as representatives for bearing behaviour
(Fig. 9). Bearing forces have a large stationary component due to supporting a stationary gear
stage torque and an oscillatory component induced by gear meshing. The error in mean value of
forces is below 2.0% for all gear stage bearings, however force amplitudes differ by up to 37.1%.
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Table 3. First five non-trivial eigen frequency pairs of bond graph model (20sim) and reference
model (SIMPACK).

fi [Hz] f4/5 f6/7 f8/9 f10/11 f12/13 f14/15

SIMPACK 5.98 19.14 27.56 67.05 98.93 105.5
20sim 6.06 19.13 27.66 67.16 98.74 106.5
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Figure 8. Gear contact forces at rated
speed and torque for bond graph model
(20sim) and reference model (SIMPACK).
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Figure 9. Axial and radial bearing forces
at HSS-A at rated speed and torque for
bond graph model (20sim) and reference
model (SIMPACK).

3.2. Computational speed
Since the BG model is intended for real-time simulation in DT, it is important to consider
the computational efficiency. A real-time factor of tCPU/treal = 3.0 is measured with the
BG model and tCPU/treal = 4.1 with the reference model in SIMPACK, when simulating
the stationary load case on a desktop computer. The explicit solver Runge-Kutta 4 is used
for simulation of the BG model, while for the reference model the default SIMPACK solver
SODASRT2, an implicit backward differential solver is used. Admittedly, real-time capability
is not reached with the BG model, however an improvement in computational speed can be
observed. Further investigations on optimizing the computational performance are planned.
One numerically advantageous property of the BG model is the absence of any algebraic loops.
Algebraic loops are circular dependencies of state variables and result in constraint equations
of the form 0 = h(x,u), which have to be solved iteratively for each time step adding to the
computational cost. In the BG model algebraic loops are avoided by modelling gear contact
forces explicitly as a function of body velocities (Eq. 18). The gear contact model in SIMPACK
on the other hand is formulated implicitly, as the position of tooth contacts and the resultant
force vector orientation are calculated iteratively

4. Conclusion
In this paper a wind turbine high-speed gear stage model for the purpose of for real-time
virtual sensing of gear and bearing loads in a DT framework was presented. The model
was developed with the energy-based BG method and implemented in the software 20sim
for numerical integration. The BG method provides a systematic approach to derive state
equations, which are required for the state estimating methods employed in virtual sensors. The
model fidelity is close to state-of-the-art MBS models considering 6 DOF rigid body motion,
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however a simplified gear contact formulation with the assumption of ideal, kinematic meshing is
used. Nonetheless, comparative simulations with a with a reference model implemented in MBS
software SIMPACK show good agreement in gear contact and bearing loads in a stationary and
a run-up load case. Errors in mean value are below 5.6% and 2.0% for gear and bearing forces
respectively. Force amplitudes are overestimated by the BG model with maximum errors of
22.0% and 37.1%. The BG model shows favourable computational performance with a real-time
factor of 3.0 as opposed to 4.1. This is likely a result of the explicit gear contact formulation,
which avoids computationally expensive iterations to find contact displacements. The results
suggest that the developed model is capable and suitable for the proposed virtual load sensing
approach. Further investigations are planned on the analysis and verification of this approach.
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ABSTRACT
In this article a novel approach for the estimation of wind

turbine gearbox loads with the purpose of online fatigue damage
monitoring is presented. The proposed method employs a Digi-
tal Twin framework and aims at continuous estimation of the dy-
namic states based on CMS vibration data and generator torque
measurements from SCADA data. With knowledge of the dynamic
states local loads at gearbox bearings are easily determined and
fatigue models are be applied to track the accumulation of fa-
tigue damage. A case study using simulation measurements from
a high-fidelity gearbox model is conducted to evaluate the pro-
posed method. Estimated loads at the considered IMS and HSS
bearings show moderate to high correlation (R = 0.50− 0.96)
to measurements, as lower frequency internal dynamics are not
fully captured. The estimated fatigue damage differs by 5−15 %
from measurements.

INTRODUCTION
Recent trends show an increased shift towards offshore wind

turbine installations due to the higher energy yield and fewer is-
sues with land displacement and noise [1]. However, offshore
sites face additional reliability challenges. Replacement or repair
of components is expensive and time-consuming due to difficul-
ties accessing the site and dependency on good weather condi-
tions. Thus, unscheduled down times as a result of component

∗Address all correspondence to this author.

failure can lead to high operational and maintenance expendi-
tures (O&M). For offshore wind turbines the O&M expenditures
can reach 34 % of the levelised cost of energy (LCOE) [2]. A
major contributor to the O&M expenditures is the gearbox with
a failure rate of 0.1 - 0.15/year and average downtimes of 6 days
per failure [3, 4]. Early detection of gearbox faults is realized by
fault prognosis methods based on sensor input from Supervisory
Control and Data Analysis (SCADA) and Condition Monitoring
Systems (CMS). Commercial fault prognosis systems analyse
trends of health indicators extracted from sensor data, that cor-
relate with the damage progression [5]. This purely data-driven
approach has its strengths in detecting patterns indicating faulty
behaviour from large, complex data sets without the need of
modelling the system’s behaviour. The drawbacks of data-driven
methods often lie in the limited availability of historical failure
data or expert knowledge for training, low generalizability across
assets and lack of insight into of possible failure causes. A hy-
brid approach tries to circumvent some of these limitations by in-
corporating physics-based models in the fault prognosis process,
see for example [6,7]. For the hybrid approach knowledge of the
load history at critical locations in the gearbox (bearings, gear
contacts) is essential as it allows the application of physical dam-
age progression models such as fatigue [8], crack propagation [9]
or frictional energy models [6]. In research local gearbox loads
are generally calculated with computationally expensive simu-
lations using aero-hydro-servo-elastic code in conjunction with
multi-body simulation gearbox models, however this approach is
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FIGURE 1: PROPOSED ONLINE FATIGUE MONITORING
METHOD

not viable for real-time condition monitoring or fault prognosis.
A more direct approach would be the reconstruction of gearbox
loads from sensory data using inverse methods. Inverse methods
have been developed to find solutions to the Inverse Problem,
that is identifying excitation forces for a known dynamic state
of a system [10]. A multitude of deterministic and probabilistic
solutions are available, which have been reviewed by Sanchez
et al. [11]. The most prominent applied methods in literature
are Kalman filtering and least sqares estimators. Recent research
has focused primarily on the identification of wind or wave loads
on structural elements including aircraft [12], bridges [13], tall
buildings [14–16] and wind turbine towers [17, 18]. A few stud-
ies also worked on machine elements with multi-body dynamics
such as railway vehicles [19, 20], mining trucks [21] and diesel
engines [22]. These results suggest, that this approach could also
be applied to wind turbine drivetrains.
The detailed methodology is described in the following section.
The proposed method is evaluated in a case study using a refer-
ence gearbox model and a reference load case. Estimated loads
and loads from simulation measurements are compared using
metrics in the time and frequency domain. Additionally, the rela-
tive error in fatigue damage based on estimated loads is analysed.
Lastly, some concluding remarks are given.

METHODOLOGY
In this article a novel approach for the estimation of wind

turbine gearbox loads with the purpose of online fatigue damage
monitoring is presented (Fig. 1). The proposed method employs
a Digital Twin framework and aims at continuous estimation of
the dynamic states based on CMS vibration data and generator
torque measurements from SCADA data. A case study is con-
ducted to evaluate the proposed method using simulation mea-
surements from high-fidelity drivetrain model, outlined in Sec. 2.
The underlying linear physical model or Digital Twin for the load

FIGURE 2: HIGH-FIDELITY PHYSICAL MODELS FOR
VALIDATION OF THE PROPOSED METHOD

estimation method is developed in Sec. 3. Three state estimators
with different levels of fidelity and requirements to sensory in-
put are studied: Kalman Filter, Least Squares and a quasi-static
approach (Sec. 4). With knowledge of the dynamic states local
loads at gearbox bearings are easily determined and fatigue mod-
els, outlined in Sec. 5, are applied to track the accumulation of
fatigue damage.

1 High-fidelity physical models
A reference gearbox based on the NREL offshore 5 MW

baseline wind turbine and mounted on the floating OC3 Hy-
wind spar structure is considered in this study [23, 24]. The ref-
erence gearbox was developed by Nejad et al. with reference
to minimal weight and following offshore wind turbine design
codes [25]. The gearbox comprises of two planetary and one
parallel gear stage totalling to a gear ratio of 1:96.354. The
main shaft support is a 4-point design with two main bearings
to minimize non-torque loads entering the gearbox. A decou-
pled approach is employed, as shown in Fig. 2. The global re-
sponse to a set of environmental conditions is determined with
the global model, which is implemented in the aero-hydro-servo-
elastic code SIMO-Riflex-AeroDyn. The internal dynamics are
then simulated with a high-fidelity gearbox model implemented
in the multi-body simulation environment SIMPACK. External
loads (torque and non-torque) are applied on the main shaft, the
nacelle movements are applied on the bed plate and the generator
torque is applied on the HSS to control the generator speed.

2 Simulation measurements
Due to the lack of field measurements, simulation measure-

ments from high-fidelity models are used in this study to evaluate
the proposed load estimation method. A reference load case at
rated wind speed of 12 m/s (load case EC4, spar in [26]) is sim-
ulated. The duration of the simulation is 3800 s, where the first
200 s are cut off to avoid simulation start-up effects. The sim-
ulation time step is 1 ms. From the simulation results the gen-
erator torque, shaft vibration and bearing loads are of interest.
The generator torque and the shaft vibration are used to generate
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synthetic SCADA and CM data as input for the load estimation
method. Vibration signals are measured by virtual acceleration
sensors mounted on the intermediate (IMS) and high-speed shaft
(HSS) with a sampling frequency of 1 kHz. To capture yaw and
pitch movements each shaft is equipped with two virtual sensors
measuring axial and radial acceleration. White gaussian mea-
surement noise v ∼ N (0,R) is added to all acceleration mea-
surements in postprocessing, where the covariance R is chosen,
so that the signal-to-noise-ratio (SNR) is equal to 10 for all mea-
surement signals. Additionally, the radial and axial loads at the
IMS and HSS-bearings are extracted from simulation measure-
ments for comparison with the estimated loads.

3 Linearized physical model
In the following section the high-fidelity drivetrain model is

linearized and brought into state-space form, which is required
for the state estimation algorithm discussed in Sec. 4. This study
focuses on the bearing loads at the parallel gear stage. Hence,
the system boundaries are set around the gear stage as depicted
in Fig. 3. The system contains two moving rigid bodies, namely
the shafts IMS and HSS with its rigidly connected gearwheels,
and can be characterised as open-ended, meaning it is controlled
by forces crossing the system boundaries. These are connection
forces at the interfaces to the generator and the upwind planetary
gear stage and are only partially known in this study. The forces
on the generator side are fully defined with the generator torque,
which is available through measurements. The loads on the IMS
comprise of the known counteracting torque TIMS and unknown
disturbance forces fdis from either internal dynamic excitations
of upwind gear components, such as gear meshing of the plan-
etary stages, or from external, non-torque, aerodynamic loads
entering the gearbox. The model linearization is conducted with
SIMPACKs built in linearization solvers, which compute the sys-
tem matrices A,B,C,D of the linear state-space representation.
The general formulation of the linear state-space model is given
by

ẋ = Ax+Bu+w, (1)
y = Cx+Du+v, (2)

Eq. 1 is the state transition model, also referred to as the physical
model in this paper, since it is derived from the equations of mo-
tion. Eq. 2 is the observation model and describes the relation of
the system output to the states. In this case the state vector x is a
stack of positions and velocities of the IMS and HSS relative to
the gearbox housing. The input variable u is defined as the gen-
erator torque. The unknown disturbance forces fdis are regarded
as process noise with covariance Q.The output variables y are
measurements from virtual acceleration sensors on the IMS and
HSS. The ouput is corrupted with measurement noise v, which

FIGURE 3: SYSTEM BOUNDARIES AND VARIABLE DEFI-
NITION OF LINEARIZED MODEL

is modeled as white gaussian noise with covariance R. In this
case study measurement noise is added to the (exact) simulation
measurements in postprocessing

x := [x̃ ˙̃x]T,

x̃ := x̃IMS,HSS− x̃housing = [x y z α β γ]T

u := TGen,

y := [yrad yax]
T
1−4,

w := fdis = [Fx Fy Fz Mx My Mz]
T ∼N (0,Q),

v∼N (0,R),

f := [Fx Fy Fz ]
T
IMS/HSS−A,B,C.

(3)

In order to obtain the bearing loads f the general state-space
model is augmented with an algebraic equation, which relates
bearing loads to system states with the stiffness and damping
matrix K. Since the bearings are considered as spring-damper
elements in the drivetrain model, this relationship is linear. The
matrix K reflects the bearing stiffness and damping properties,
as well as the transformation from body-fixed shaft coordinates
to local bearing coordinates

f = Kx. (4)

The continuous state-space model is discretized in time, where n
indicates the time step

xn+1 = Adxn +Bdun +wn, (5)
yn = Cxn +Dun +vn, (6)
fn = Kxn. (7)
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The matrices C,D,K of the discrete model remain unchanged,
as they only appear in algebraic equations, whereas Ad,Bd are
expressed as follows

Ad = exp(A∆t), (8)

Bd = A−1(Ad− I)B. (9)

4 Bearing load estimation
The load estimation is intended to be used for online moni-

toring applications and is thus conducted in the time domain for
each time step n. Three different state estimators with differ-
ent levels of fidelity and requirements to measurement inputs are
studied, Kalman Filter, Least Squares and Quasi-static. In each
case, the system states x̂n are estimated first. Subsequently, the
bearing loads are determined, as these are linear dependent on
the system states

f̂n = Kx̂n. (10)

4.1 Kalman Filter
The first load estimation method is based on Kalman filter-

ing, which has been widely studied [13, 15–18, 21]. The Kalman
Filter produces state estimates x̂ of a system, that is governed by
stochastic, linear state equations as formulated in Eq. 5, 6 [27].
The optimal state estimates are determined by minimizing the es-
timate covariance, given by P̂ = cov(x− x̂), which is a measure
of the estimation accuracy. The algorithm involves a two-step
process for each time step. In the prediction step the a priori
state estimates x̂n|n−1 are predicted with the physical model tak-
ing into account state estimates of the previous time step x̂n−1|n−1
and known input variables un = TGen. The disturbance forces
and moments fdis on the system are not included in the predic-
tion step, as they are regarded as process noise. The a priori es-
timated covariance P̂n−1|n−1 is also predicted based on previous
knowledge and the known process noise covariance Q

x̂n|n−1 = Adx̂n−1|n−1 +Bdun−1, (11)

P̂n|n−1 = Adx̂n−1|n−1AT
d +Q. (12)

In the second step the a priori state estimates are updated with
measurements yn resulting in the a posteriori state estimates xn|n

Mn = P̂n|n−1CT(CP̂n|n−1CT +R)−1, (13)

x̂n|n = x̂n|n−1 +Mn(yn−Cx̂n|n−1−Dun), (14)

P̂n|n = (I−MnC)P̂n|n−1. (15)

The measurement update is weighted with the Kalman gain Mn,
which relates the confidence in state predictions of the physi-
cal model to the confidence in the measurement. With a high
confidence in the physical model (P̂n|n−1→ 0) the Kalman gain
approaches zero, hence, the measurements update is given a low
weight. On the other hand, with a high confidence in the mea-
surements (R→ 0) the Kalman gain approaches C−1. In this
case the measurements have a higher significance compared to
state predictions.

4.2 Quasi-static approach
The quasi-static (QS) method employs a low-fidelity ap-

proach, where the bearing loads are considered stationary, re-
actionary forces proportional to the drivetrain torque. This ap-
proach is used in a similar fashion for the calculation of gear
contact forces in [8]. Contrary to the Kalman Filter, the QS
state estimates are solely based on the physical model (Eq. 5)
and do not take into account vibration measurements (Eq. 6).
Additionally, the assumption is made, that the drivetrain is in
quasi-static equilibrium and that internal dynamics are negligi-
ble. In the case quasi-static of equilibrium, where xn+1−xn = 0,
the physical model (Eq. 5) reduces to

0 = (Ad− I)xn +Bdun +wn. (16)

Consequently, the state estimates can directly be determined
from the input variable (generator torque) by disregarding the
process noise

x̂stat,n =−(Ad− I)−1Bdun. (17)

4.3 Least squares approach
A least squares approach to inverse state and load estimation

is applied in [14, 19, 20]. This approach can be thought of as an
asymptotic version of the Kalman Filter with high confidence in
the measurements and low confidence in the physical model. In
this case only the observation model (Eq. 6) of the state-space
model is considered

yn = Cxn +Dun +vn. (18)

The state estimates are found by minimizing the least squares
error function

x̂LS,n = arg min
xn

(yn−Cxn−Dun)
T(yn−Cxn−Dun). (19)

The solution of the least-squares problem in closed form is given
with the the Moore-Penrose pseudoinverse C+

x̂LS,n = C+(yn−Dun). (20)
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5 Fatigue damage
For evaluation of the proposed method the relative fatigue

damage error is calculated, where D̂ and D are the fatigue dam-
age based on estimated and measured bearing loads respectively

e =
D̂−D

D̂
. (21)

The Palmgren-Miner linear damage hypothesis is assumed for
calculation of the fatigue damage, where ni denote the experi-
enced stress cycles, Ni the number of cycles until failure and i
indicates the stress range

D = ∑
i

ni

Ni
. (22)

For calculation of Ni the nominal bearing life equation with the
basic dynamic load rating C and the equivalent bearing load P is
used

Ni =

(
C
P

) 10
3
. (23)

P is a linear combination of the axial and radial load with the
factors X and Y, which are bearing specific values taken from
manufacturer’s data

P = X ·Fax +Y ·Frad . (24)

The stress cycles ni are counted with the load distribution method
according to IEC 61400-4 [28]. The LDD method is applicable
for rotating machinery components under slowly varying loads,
that experience cyclic loading due to entering and exiting the load
zone each rotation. One stress cycle is counted for each rotation
with a stress range equal to the current load.

DISCUSSION OF RESULTS
The inverse load estimation methods Kalman Filter (KF),

Least Square (LS) and Quasi-Static (QS) presented in Sec. 4 are
evaluated in a case study. The estimated radial loads at the IMS
and HSS bearings are compared to simulation measurements ob-
tained from the high-fidelity drivetrain model outlined in Sec.
2. First, the correlation of estimated and measured loads is ana-
lyzed in the time and frequency domain. Secondly, the error in
calculated fatigue damage is discussed.
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FIGURE 4: REPRESENTATIVE SECTION OF TIME SERIES
OF MEASURED AND ESTIMATED LOADS AT IMS-A
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FIGURE 5: REPRESENTATIVE SECTION OF TIME SERIES
OF MEASURED AND ESTIMATED LOADS AT HSS-A

6 Estimated loads
For a qualitative assessment a representative section of the

time series of measured and estimated radial loads in the IMS-A
and HSS-A bearings are shown in Fig. 4, 5. Notice the differ-
ent time scales of the figures. The measured loads f are highly
dynamic with components in both lower (< 10 Hz) and higher
frequencies (> 100 Hz) and are offset by a non-zero mean value.
The load estimates of the QS method f̂QS are quasi-static with os-
cillations of small amplitudes and do not reflect the dynamics of
measured loads. The mean value of measured loads is matched
quite well by the QS method, although at the HSS-A a slight
bias is observed. The LS method produces load estimates f̂LS
with high frequency oscillations of similar amplitudes to mea-
sured loads, however at the IMS-A there appear to be several
outliers, which significantly overestimate measured loads. In the
low-frequency range the LS method is not able to fully capture
the internal gearbox dynamics. This is especially noticeable at
the IMS-A, where the measured loads have a high-energy fre-
quency component of about 5 Hz. The KF load estimates f̂KF
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FIGURE 6: PSD OF MEASURED AND ESTIMATED RADIAL
AT IMS-A LOADS FOR FULL TIME SERIES (3600 s).

are smoother and do not suffer from extreme outliers. Similar
to the LS method high frequency oscillations are captured well,
while some lower frequency components are not reflected.
For analysis of the behaviour in the frequency domain the power
spectral densities (PSD) of measured and estimated bearing loads
are calculated, as shown in Fig. 6, 7. The measured load
spectrum shows several lower-frequency peaks (< 10 Hz) and
higher-frequency peaks at 80 Hz for IMS-A and at 464.2 Hz
for HSS-A. The higher frequency peaks coincide with the gear
meshing frequencies of the parallel and second planetary gear
stage respectively. The lower frequency peaks are not fully iden-
tified as of now.
The QS method matches the measured load spectrum of HSS-A
reasonably well with the exception of the high-frequency range
with the gear meshing peak, which is underestimated signifi-
cantly. In the low frequency range the peaks at 4.75 Hz, 9.47
Hz and 14.22 Hz are matched. These likely correspond to pure
torsional oscillations of the HSS, which directly translate to os-
cillations in the generator torque. The dynamics of the IMS are
not represented well with the QS method, as the QS load spec-
trum shows significantly lower energy in all frequencies.

In addition to the torsional oscillation peaks both the LS and
KF method are able to match the gear meshing peaks. In the
high-frequency range the LS method leads to a significant over-
estimation due to a high confidence in noisy measurements. The
KF load estimates achieve a higher correlation by weighing the
measurement update according to the measurement noise covari-
ance R and thus filtering outliers. In the lower frequency range
some peaks at 1.83 Hz, 2.91 Hz and 6.58 Hz, which are more
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FIGURE 7: PSD OF MEASURED AND ESTIMATED RADIAL
LOADS AT HSS-A FOR FULL TIME SERIES (3600 s).

pronounced at the IMS-A, are missed by both the LS and KF
method.
The missed lower-frequency peaks likely relate to radial distur-
bance forces fdis on the IMS, as the spectrum of measured dis-
turbance forces suggests. The measured disturbance forces are
extracted from the high-fidelity drive train simulations as con-
nection forces of the second planetary gear stage to the IMS
and show several low-frequency components of higher energy.
The load estimation methods are unable to take these into ac-
count via state predictions, since the disturbance forces are as-
sumed as white gaussian process noise in the underlying physical
model. Furthermore, it is challenging to consider low-frequency
disturbance force excitations via vibration measurements, be-
cause these cause relatively low acceleration responses with a
low signal-to-noise-ratio.
For a quantitative assessment of the load correlation the Pearson
correlation coefficient is calculated for the complete time series
of 3600 s, as shown in Tab. 1. The correlation of IMS loads
is quite poor, as the studied methods are unable to reproduce
aforementioned low frequency load components. The KF is the
best performing method, resulting in correlation values of 0.50
to 0.61. At the HSS the QS method is sufficient to estimate bear-
ing loads with high correlation (R > 0.8), as internal dynamics
have less significance here. The LS and KF method do not lead
to significant improvements at the HSS.
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TABLE 1: CORRELATION OF ESTIMATED LOADS

QS LS KF

IMS-A 0.36 0.48 0.50

IMS-B 0.43 0.37 0.58

IMS-C 0.42 0.35 0.61

HSS-A 0.96 0.95 0.96

HSS-B 0.82 0.83 0.85

HSS-C 0.84 0.84 0.83

TABLE 2: FATIGUE DAMAGE ERROR

QS [%] LS [%] KF [%]

IMS-A 11.8 11.6 12.3

IMS-B 5.7 0.8 3.8

IMS-C -9.4 -13.6 -11.1

HSS-A -5.2 -6.1 -5.9

HSS-B 10.7 8.3 8.5

HSS-C 15.2 11.2 11.4

7 Fatigue damage
Tab. 2 shows the relative fatigue damage error for the IMS

and HSS bearings. The QS method results in low errors of 5 -
15 % across all bearings in the considered load case. The results
of the higher fidelity methods LS and KF differ only marginally
from those of the QS method despite considering internal dy-
namics and providing load estimates of higher correlation. The
error can be slightly reduced at the bearings IMS-B and HSS-
B,C, however at the bearings IMS-C and HSS-A a slightly higher
error is calculated. These results suggest, that for the consid-
ered load case and drive train design the fatigue damage at the
IMS and HSS bearings is mainly dependent on the drive train
torque and effects of internal gearbox dynamics are negligible.
This becomes more clear, when looking at the bearing stress cy-
cles, which are not only a function of the load oscillations de-
picted in Fig. 4, but also of the rotational speed [8]. A rotat-
ing bearing experiences cyclic loading due to entering and exit-
ing the load zone. This is reflected in the use of the stress cy-
cle counting method LDD as opposed to the rainflow counting
(RFC) method, which is commonly used for structural elements.

The LDD method counts one stress cycle per revolution with a
stress range equal to the current radial load. Thus, the quasi-
static reactionary forces to the drive train torque cause major
stress ranges and contribute significantly to the bearing fatigue,
whereas the load variations from internal dynamics cause com-
paratively small stress ranges. In the studied load case at rated
wind speed under normal operational conditions the QS method
would be sufficient to monitor fatigue damage with high accu-
racy and computational speed. However, it is uncertain how the
QS method would perform in load cases with greater internal dy-
namics, such as an emergency stop or gear faults. Further studies
are planned to address this topic.

CONCLUSION
In this article a novel approach for the estimation of wind

turbine gearbox loads with the purpose of online fatigue dam-
age monitoring was presented. The proposed method employs
a Digital Twin framework and aims at continuous estimation of
the dynamic states based on CMS vibration data and generator
torque measurements from SCADA data. The proposed method
was evaluated in a load case at rated wind speed under normal
operational conditions. With a quasi-static approach, which as-
sumes proportionality to the drive train torque, the overall level
of bearing loads were estimated with high accuracy, however
the dynamic behaviour was not reflected well. The quasi-static
method was sufficient to estimate fatigue damage with an er-
ror of 5-15 % across all bearings. The Kalman Filter approach
produced the highest correlation of bearing loads ranging from
0.5-0.96 and was able to capture high-frequency dynamics accu-
rately, but missed several low-frequency components. These are
caused by disturbance forces on the IMS, which are not reflected
in the underlying physical model and are not available through
measurements. Despite considering internal dynamics, the KF
method did not result in significant improvements with reference
to fatigue damage. It appears, that in this load case the stress
cycles caused by internal dynamics are insignificant relative to
torque induced stress cycles. The Least-squares estimator per-
formed worse than the Kalman Filter, as it is more sensitive to
measurement noise. However, it has its advantages in computa-
tional speed, since it requires only one initial matrix inversion as
opposed to the Kalman Filter with one matrix inversion for each
time step. Further studies are planned to extend this work to dif-
ferent load cases or fault cases, assess the sensitivity to measure-
ment noise and model uncertainties and quantify computational
costs.
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In this article a virtual sensor for online load monitoring and subsequent remaining useful
life (RUL) assessment of wind turbine gearbox bearings is presented. Utilizing a Digital
Twin framework the virtual sensor combines data from readily available sensors of the con-
dition monitoring (CMS) and supervisory control and data acquisition (SCADA) system
with a physics-based gearbox model. Different state estimation methods including
Kalman filter, Least-square estimator, and a quasi-static approach are employed for
load estimation. For RUL assessment the accumulated fatigue damage is calculated with
the Palmgren–Miner model. A case study using simulation measurements from a high-fidel-
ity gearbox model is conducted to evaluate the proposed method. Estimated loads at the
considered intermediate and high-speed shaft bearings show moderate to high correlation
(R= 0.50− 0.96) to measurements, as lower frequency internal dynamics are not fully cap-
tured. The estimated fatigue damage differs by 5–15% from measurements.
[DOI: 10.1115/1.4055551]
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1 Introduction
Recent market trends show an increased shift toward offshore

wind turbine installations due to the higher energy yield and
fewer issues with land displacement and noise [1]. However, off-
shore sites face additional reliability challenges. Replacement or
repair of components is expensive and time consuming due to dif-
ficulties accessing the site and dependency on good weather condi-
tions. Thus, unscheduled down times as a result of component
failure can lead to high operational and maintenance expenditures
(O&M). For offshore wind turbines the O&M expenditures can
reach 34% of the levelized cost of energy (LCOE), twice as much
as for land-based turbines [2]. A major contributor to the O&M
expenditures is the gearbox with a failure rate of 0.1–0.15/year
and average downtimes of 6 days per failure [3,4].
Predictive maintenance strategies are proposed in the offshore

industry to increase reliability and availability, and decrease
O&M expenditures. As a subcategory of condition-based mainte-
nance (CBM) predictive maintenance depends on continuous mon-
itoring of the systems’ operational condition for the assessment of
the remaining useful life (RUL). Alerts are triggered in the case
of severe deviation of RUL to nominal life and the operator may
schedule immediate maintenance tasks in addition to regular, time-
based maintenance routines. Currently, the predictive capabilities of
condition monitoring systems (CMS) are limited. In practice, trends
of vibration-based statistical features are extrapolated to a prede-
fined failure threshold to predict the RUL, which suffers from a
high level of uncertainty [5].
Digital twin (DT) is identified as an emerging technology that

could facilitate predictive maintenance strategies [6]. DT can be
described as a virtual representation of a physical asset enabled
through real-time measurements and simulators for the purpose of

improved decision making [7]. The authors previously proposed a
Digital Twin framework, shown in Fig. 1, with the three compo-
nents Virtual model, Data, and Decision support to move toward
predictive maintenance [8].
Virtual models of wind turbines have matured in the past two

decades to a high level of fidelity. Generally a decoupled approach
is employed with aeroelastic models for global dynamics, multi-
body simulation (MBS) models for drivetrain dynamics, and
finite element (FE) models for component dynamics [9]. While
many authors associate DT with high-fidelity models, recent publi-
cations move toward reduced-order models (ROM) to meet require-
ments of computational speed for real-time monitoring tasks [8].
The DT model is updated with data such that it virtually experiences
the same environment as its physical counterpart.
Data that can be leveraged in wind turbines are sensor measure-

ments of the drivetrain CMS or the supervisory control and data
acquisition (SCADA) system. Typical signals include vibration
on the gearbox housing, electrical signatures of the generator and
shaft speeds.
Decision support is a collective term for services that the DT pro-

vides to assist the operators’ maintenance or control decisions.
Focus of this research are methods for online monitoring of loads
in drivetrain components (gears, bearings) and subsequent RUL
estimation. Direct measurements of component level loads are dif-
ficult and require custom solutions, such as bearings with integrated
strain gauges, which are generally not available for commercial
wind turbines. Hence, indirect (or inverse) methods of load estima-
tion that combine more accessible sensor measurements and a DT
model would provide a cost-effective alternative. This procedure
is often referred to as Virtual sensing, as it can be interpreted as
taking measurements in a fully synchronized virtual model. Syn-
chronization is achieved by continuously estimating the dynamic
states of the system. Different state estimation methods are
employed for this purpose, most prominently the Kalman filter
and its variations, as well as least-square estimators.
The DT and virtual sensing approach are often pursued for esti-

mating damage equivalent loads or stresses for structural health
monitoring (SHM), for example in wind turbine towers. Virtual
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sensing of tower loads based on a limited number accelerometers
and strain gauges has been demonstrated both in numerical and
experimental studies [10,11]. However, limited research has been
conducted for drivetrains with the exception of a study by
Bosmans et al., who present a virtual sensor for wind turbine plan-
etary gear loads based on strain gauge measurements and a FE
model [12]. The use case of drivetrains comes with unique chal-
lenges: The internal dynamics of drivetrains are much more
complex due to multi-body interactions and there are limitations
in the existing drivetrain sensors (SCADA, CMS) related to
signal resolution, sensor locations, and noise that make it difficult
to observe the current dynamic state.
The main contribution of this work is to apply a virtual sensing

approach that has proven to be effective in other areas to the use
case of wind turbine drivetrains and demonstrate the proof of
concept in a numerical case study. In addition, this article discusses
the challenges that are unique to drivetrains and provides some recom-
mendations on suitable sensor signals and state estimation methods.
The remainder of this paper is organized as follows. In Sec. 2, the

mathematical development of the virtual load sensor and its use case
in a wind turbine high-speed gear stage are outlined. Section 3 dis-
cusses the performance of the virtual sensor in a numerical case
study. Lastly, Sec. 4 provides some concluding remarks.

2 Methodology
The virtual load sensor is developed in a DT framework with the

three components of Data, Virtual model, and Decision support
(Fig. 1). Section 2.1 presents the high-fidelity model of a reference

wind turbine gearbox, which is linearized for integration with the
virtual sensor, as shown in Sec. 2.2. Synthetic CMS and SCADA
data are generated by means of simulation with high-fidelity
models (Sec. 2.3). Different state estimators including the Kalman
filter, Least-squares estimator, and a quasi-static approach are
used for virtual sensing of bearing loads (Sec. 2.4). Subsequently,
the accumulation of fatigue damage is tracked with the standard
Palmgren–Miner model and the bearing lifetime equation according
to ISO 281 (Sec. 2.5).

2.1 High-Fidelity Models. A reference gearbox based on the
NREL offshore 5 MW baseline wind turbine and mounted on the
floating OC3 Hywind spar structure is considered in this study
[13,14]. The reference gearbox was developed by Nejad et al.
with reference to minimal weight and following offshore wind
turbine design codes [15]. The gearbox comprises of two planetary
and one parallel gear stage totalling to a gear ratio of 1:96.354. The
main shaft support is a 4-point design with two main bearings to
minimize non-torque loads entering the gearbox. A decoupled
approach is employed, which is best practice for drivetrain simula-
tion [9]. The global response to a set of environmental conditions is
determined with the global model, which is implemented in the
aero-hydro-servo-elastic code SIMO-Riflex-AeroDyn. The internal
dynamics are then simulated with a high-fidelity gearbox model
implemented in the multi-body simulation environment
SIMPACK. External loads (torque and non-torque) are applied on
the main shaft, the nacelle movements are applied on the bed
plate and the generator torque is applied on the high-speed shaft
to control the generator speed.

Fig. 1 Digital twin framework with three components of Data, Virtual model, and Decision support used
in this study for online fatigue damage monitoring
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2.2 Linearized Model. In the following section the high-
fidelity drivetrain model is linearized and brought into state-space
form, which is required for the state estimation algorithm discussed
in Sec. 2.4. This study focuses on the bearing loads at the high-
speed gear stage. Hence, the system boundaries are set around the
gear stage as depicted in Fig. 2 containing two moving rigid
bodies, namely, the intermediate and the high-speed shaft (IMS,
HSS). The shafts are coupled with an elastic gear contact formula-
tion and connected to the gearbox housing with spring–dampers
representing roller bearings. The dynamics of such a gear stage
system can be expressed with the following equations of motion
[16] (Eq. (1)):

M ¨̃x + [Cm + Cb] ˙̃x + [Km +Kb]x̃ = fex (1)

Six degrees-of-freedom (DOF) are assumed for each gear shaft,
hence the state vector x̃ ∈ R12×1 contains a total of 12 lateral and
angular displacements. M denotes the diagonal mass matrix com-
prised of inertia terms. The stiffness and damping matrices
contain terms from the elastic couplings of bearings (Cb, Kb) and
gear meshing (Cm, Km). The detailed matrix composition is given
in Ref. [16]. External forces and moments crossing the system
boundary at the generator and rotor side shaft interfaces are repre-
sented by fex∈R12×1. The equations of motion are first linearized
and then transformed into a set of first-order differential equations,
the so-called state-space representation (Eq. (2)). In this step the
time-variant mesh stiffness is reduced to a constant value Cm,
hence the linearized model is unable to reproduce periodic excita-
tion at the gear meshing frequency.

ẋ = Ax + Bu + w (2)

The new state vector x of the state-space model is a stack of body-
fixed displacements and velocities (Eq. (3)), while the external
forces fex are split into known input variables u (Eq. (4)) and
unknown disturbance forces regarded as process noise w
(Eq. (5)). Of the 12 external force terms only the generator torque
is considered available from SCADA measurements and thus a
known input variable, while the remaining non-torque loads are
modeled as white gaussian noise with covariance Q. The system
matrix A (Eq. (6)) describes the dynamic state-transition and is

obtained by rearranging mass, stiffness, and damping matrices
[17]. The control matrix B (Eq. (7)) represents the influence of
input variables on the dynamic states.

x: = [x̃ ˙̃x]T ∈ R24×1 (3)

u = [0 0 · · · TGen · · · 0 0]T ∈ R12×1 (4)

w ∼ N (0, Q) ∈ R12×1 (5)

A = 012×12 I12×12

M−1[Cm + Cb] M−1[Km +Kb]

[ ]
∈ R24×24 (6)

B = 012×12 M−1
[ ]T∈ R24×12 (7)

The output variables y (Eq. (9)) are measurements of virtual accel-
erometers placed at the shaft bearings in axial and radial direction
(Fig. 2) that represent CMS vibration sensors. These are analo-
gously related to the state and input variables through a linear
model (Eq. (8)), where C denotes the observation matrix and D
the feedthrough matrix. The exact matrix composition cannot be
shown, as these are generated numerically by SIMPACK’s lineari-
zation solvers.

y = Cx + Du + v (8)

The output is corrupted with measurement noise v (Eq. (10)), which
is modeled as white gaussian noise with covariance R. In this case
study measurement noise is added to the (exact) simulation mea-
surements in postprocessing

y: = [y1 y2 y3 y4]T ∈ R8×1 (9)

v ∼ N (0, R) ∈ R8×1 (10)

In order to obtain the desired bearing loads f the general state-
space model is augmented with an algebraic equation, which
relates bearing loads to system states with the matrix K
(Eq. (11)). Since the bearings are considered as spring–damper ele-
ments in the drivetrain model, this relationship is linear. The matrix
K contains terms of bearing stiffness Kb and damping Cb and is
generated numerically by SIMPACK.

f =Kx (11)

The continuous state-space model is discretized in time, where n
indicates the time-step

xn+1 = Adxn + Bdun + wn (12)

yn = Cxn + Dun + vn (13)

fn =Kxn (14)

The matrices C, D, K of the discrete model remain unchanged, as
they only appear in algebraic equations, whereas Ad, Bd can be
derived as follows [17]:

Ad = exp(AΔt) (15)

Bd = A−1(Ad − I24×24)B (16)

The matricesA, B, C, D, K are calculated with SIMPACK’s built-in
linearization solvers and integrated in the virtual load sensor in
MATLAB.

2.3 Sensor Data. In this numerical study simulation measure-
ments from high-fidelity models are used to evaluate the proposed

Fig. 2 System boundaries and variable definition of linearized
model
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load estimation method. A reference load case at rated wind speed
of 12 m/s (load case EC4, spar in [9]) is selected, since conditions
near rated wind speeds are shown to induce the most severe drive-
train loads and have the highest contribution to long-term fatigue
damage [18]. Six simulations each with a duration of 3800 s are
conducted to comply with IEC 61400 guidelines [19]. The first
200 s are disregarded to avoid simulation start-up effects and the
simulation time-step is set to 1 ms to capture high-frequency gear
meshing dynamics. From the simulation results the generator
torque, shaft vibration, and bearing loads are of interest. The gener-
ator torque and the shaft vibration are used to generate synthetic
SCADA and CMS data as input for the load estimation method.
Vibration signals are measured by virtual acceleration sensors
mounted on the intermediate (IMS) and high-speed shaft (HSS)
with a sampling frequency of 1 kHz. To capture yaw and pitch
movements each shaft is equipped with two virtual sensors measur-
ing axial and radial acceleration. White gaussian measurement noise
v ∼ N (0, R) is added to all acceleration measurements in postpro-
cessing, where the covariance R is chosen, so that the
signal-to-noise-ratio (SNR) is equal to 10 for all measurement
signals. Additionally, the radial and axial loads at the IMS and
HSS-bearings are extracted from simulation measurements for com-
parison with the estimated loads (see Table 1).

2.4 Virtual Load Sensor. The load estimation is intended to
be used for online monitoring applications and is thus conducted
in the time domain for each time-step n. Three different state estima-
tors with different levels of fidelity and requirements to measure-
ment inputs are studied, Kalman filter, Least Squares, and
Quasi-static. In each case, the system states x̂n are estimated first.
Subsequently, the bearing loads are determined, as these are linearly
dependent on the system states

f̂n =Kx̂n (17)

2.4.1 Kalman Filter. The first load estimation method is based
on Kalman filtering, which has been widely studied [10,20–24]. The
Kalman filter produces state estimates x̂ of a system, which is gov-
erned by stochastic, linear state equations as formulated in Eqs. (12)
and (13) [25]. The optimal state estimates are determined by mini-
mizing the estimate covariance, given by P̂ = cov(x − x̂), which is a
measure of the estimation accuracy. The algorithm involves a
two-step process for each time-step. In the prediction step the a
prioristate estimates x̂n|n−1 are predicted with the physical model
taking into account state estimates of the previous time-step
x̂n−1|n−1 and known input variables un. The disturbance forces
and moments w on the system are not included in the prediction
step, as they are regarded as process noise. The a priori estimated
covariance P̂n−1|n−1 is also predicted based on previous knowledge
and the known process noise covariance Q

x̂n|n−1 = Adx̂n−1|n−1 + Bdun−1 (18)

P̂n|n−1 = Adx̂n−1|n−1AT
d +Q (19)

In the second step the a priori state estimates are updated with mea-
surements yn resulting in the a posteriori state estimates xn|n

Mn = P̂ n|n−1CT(CP̂n|n−1CT + R)−1 (20)

x̂ n|n = x̂ n|n−1 +Mn(yn − Cx̂n|n−1−Dun) (21)

P̂ n|n = (I −MnC)P̂ n|n−1 (22)

The measurement update is weighted with the Kalman gain Mn,
which relates the confidence in state predictions of the physical
model to the confidence in the measurement. With a high confidence
in the physical model (P̂ n|n−1 → 0) the Kalman gain approaches
zero; hence, the measurements update is given a low weight. On
the other hand, with a high confidence in the measurements (R→
0) the Kalman gain approaches C−1. In this case the measurements
have a higher significance compared to state predictions.

2.4.2 Quasi-Static Approach. The quasi-static (QS) method
employs a low-fidelity approach, where the bearing loads are con-
sidered stationary, reactionary forces proportional to the drivetrain
torque. This approach is used in a similar fashion for the calculation
of gear contact forces in [18]. Contrary to the Kalman filter, the QS
state estimates are solely based on the physical model (Eq. (12)) and
do not take into account vibration measurements (Eq. (13)). Addi-
tionally, the assumption is made that the drivetrain is in quasi-static
equilibrium and that internal dynamics are negligible. In the case
quasi-static of equilibrium, where xn+1 − xn = 0, the physical
model (Eq. (12)) reduces to

0 = (Ad − I)xn + Bdun + wn (23)

Consequently, the state estimates can directly be determined from
the input variable (generator torque) by disregarding the process
noise

x̂QS,n = −(Ad − I)−1Bdun (24)

2.4.3 Least-Squares Approach. A least-squares approach to
inverse state and load estimation is applied in [17,26,27]. This
approach can be thought of as an asymptotic version of the
Kalman filter with high confidence in the measurements and low
confidence in the physical model. In this case only the observation
model (Eq. (13)) of the state-space model is considered

yn = Cxn + Dun + vn (25)

The state estimates are found by minimizing the least-squares error
function

x̂ LS,n = argmin
xn

(yn − Cxn − Dun)T(yn − Cxn − Dun) (26)

The solution of the least-squares problem in closed form is given
with the Moore–Penrose pseudoinverse C+

x̂ LS,n = C+(yn − Dun) (27)

2.5 Fatigue Damage Model. The Palmgren–Miner linear
damage hypothesis [18] is assumed for the calculation of the
fatigue damage, where ni denotes the experienced stress cycles,
Ni the number of cycles until failure, and i indicates the stress range

D =
∑
i

ni
Ni

(28)

For calculation of Ni the nominal bearing life equation according to
ISO 281 [28] with the basic dynamic load rating C and the equiva-
lent bearing load P is used

Ni =
C

P

( )10
3 (29)

P is a linear combination of the axial and radial load with the factors
X and Y, which are bearing specific values taken from the

Table 1 Environmental conditions of numerical case study
adopted from Nejad et al. (EC4, spar) [9]

Wave height Hs (m) 5.0
Wave period Tp (s) 12.0
Wind speed U (m/s) 12.0
Turbulence intensity I (—) 0.15
Simulation seeds 6
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manufacturer’s data

P = X · Fax + Y · Frad (30)

The stress cycles ni are counted with the load duration distribution
(LDD) method according to IEC 61400-4 [19]. The LDD method is
applicable for rotating machinery components under slowly varying
loads that experience cyclic loading due to entering and exiting the
load zone each rotation. One stress cycle is counted for each rotation
with a stress range equal to the current load.
The remaining useful life can be estimated by monitoring the

accumulated fatigue damage D(t) over time and observing the
damage reserves. By definition, the end of the component’s
nominal design life tnom is reached at D= 1 [18]. Hence, the RUL
is retrieved as follows:

RUL(t) = [1 − D(t)]tnom (31)

3 Discussion
The virtual load sensor using the state estimators Kalman filter

(KF), Least-Square (LS), and Quasi-Static (QS) presented in
Sec. 2.4 are evaluated in a case study. Radial loads at the IMS and
HSS bearings estimated with the virtual sensor are compared to
simulation measurements obtained from the high-fidelity drivetrain
model outlined in Sec. 2.3. First, the correlation of estimated and
measured loads is analyzed in the time and frequency domain. Sec-
ondly, the error in calculated fatigue damage is discussed.

3.1 Estimated Loads. For a qualitative assessment the time
series of measured and estimated radial loads in the IMS-A and
HSS-A bearings is shown in Figs. 3 and 4. The measured loads f
can be characterized as highly dynamic with lower frequency
dynamic components (<10 Hz) as a result of slowly changing envi-
ronmental conditions, as well as higher frequency dynamics
(>100 Hz) induced by internal gearbox excitations such as gear

meshing. The load estimates of the QS method f̂ QS are sufficient
to capture the long-term trend of bearing loads, but unable to repro-
duce any high-frequency internal dynamics seen at a time scale of
1 s. However, a slight bias at the HSS-A is observed, which
could potentially be due to non-torque loads at the high-speed
gear stage, which the torque-proportional QS does not take into
account. The LS method produces load estimates f̂LS with high-
frequency oscillations of similar amplitudes to measured loads,
however at the IMS-A there appear to be several outliers, which sig-
nificantly overestimate measured loads. In the low-frequency range,
the LS method is not able to fully capture the internal gearbox
dynamics. This is especially noticeable at the IMS-A, where the
measured loads have a high-energy frequency component of
about 5 Hz. The KF load estimates f̂KF are smoother and do not
suffer from extreme outliers. Similar to the LS method high-
frequency oscillations are captured well, while some lower fre-
quency components are not reflected.
For the analysis of the behavior in the frequency domain the power

spectral densities (PSD) of measured and estimated bearing loads are
calculated, as shown in Figs. 5 and 6. The measured load spectrum
shows several lower-frequency peaks (<10 Hz) and higher-frequency
peaks at 80 Hz for IMS-A and at 464.2 Hz for HSS-A. The higher
frequency peaks coincide with the gear meshing frequencies of the
parallel and second planetary gear stage, respectively. The lower fre-
quency peaks are not fully identified as of now.
The QS method matches the measured load spectrum of HSS-A

reasonably well with the exception of the high-frequency range with
the gear meshing peak, which is underestimated significantly. In the
low frequency range the peaks at 4.75 Hz, 9.47 Hz, and 14.22 Hz
are matched. These likely correspond to pure torsional oscillations
of the HSS, which directly translate to oscillations in the generator
torque. The dynamics of the IMS are not represented well with the
QS method, as the QS load spectrum shows significantly lower
energy in all frequencies.
In addition to the torsional oscillation peaks both the LS and KF

method are able to match the gear meshing peaks. In the high-

Fig. 3 Long-term and short-term time series of measured loads f and estimated loads f̂ at IMS-A bearing
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Fig. 4 Long-term and short-term time series of measured loads f and estimated loads f̂ at HSS-A
bearing

Fig. 5 Frequency spectrum of measured and estimated radial loads at IMS-A bearing for full time series (3600 s)

060901-6 / Vol. 144, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/144/6/060901/6923491/om
ae_144_6_060901.pdf by N

TN
U

 U
niversitets Biblioteket user on 04 O

ctober 2022



frequency range the LS method leads to a significant overestimation
due to a high confidence in noisy measurements. The KF load esti-
mates achieve a higher correlation by weighing the measurement
update according to the measurement noise covariance R and thus
filtering outliers. In the lower frequency range some peaks at
1.83 Hz, 2.91 Hz, and 6.58 Hz, which are more pronounced at the
IMS-A, are missed by both the LS and KF methods.
The missed lower-frequency peaks likely relate to radial distur-

bance forces fdis on the IMS, as the spectrum of measured distur-
bance forces suggests. The measured disturbance forces are
extracted from the high-fidelity drive train simulations as connec-
tion forces of the second planetary gear stage to the IMS and
show several low-frequency components of higher energy. The
load estimation methods are unable to take these into account via
state predictions since the disturbance forces are assumed as
white gaussian process noise in the underlying physical model. Fur-
thermore, it is challenging to consider low-frequency disturbance
force excitations via vibration measurements, because these cause

relatively low acceleration responses with a low signal-to-noise
ratio.
For a quantitative assessment of the load correlation, the Pearson

correlation coefficient is calculated for the complete time series of
3600 s, as shown in Table 2. The correlation of IMS loads is
quite poor, as the studied methods are unable to reproduce afore-
mentioned low-frequency load components. The KF is the best per-
forming method, resulting in correlation values of 0.50–0.61. At the
HSS, the QS method is sufficient to estimate bearing loads with
high correlation (R > 0.8), as internal dynamics have less signifi-
cance here. The LS and KF method do not lead to significant
improvements at the HSS.

3.2 Fatigue Damage. Shown in Table 3 are the relative fatigue
damage errors (D̂ − D)/D̂ for the IMS and HSS bearings. The QS
method results in low errors of 5–15% across all bearings in the
considered load case. The results of the higher fidelity methods

Fig. 6 Frequency spectrum of measured and estimated radial loads at HSS-A bearing for full time series (3600 s)

Table 2 Correlation of estimated loads

QS LS KF

IMS-A 0.36 0.48 0.50
IMS-B 0.43 0.37 0.58
IMS-C 0.42 0.35 0.61
HSS-A 0.96 0.95 0.96
HSS-B 0.82 0.83 0.85
HSS-C 0.84 0.84 0.83

Table 3 Fatigue damage error

QS (%) LS (%) KF (%)

IMS-A 11.8 11.6 12.3
IMS-B 5.7 0.8 3.8
IMS-C −9.4 −13.6 −11.1
HSS-A −5.2 −6.1 −5.9
HSS-B 10.7 8.3 8.5
HSS-C 15.2 11.2 11.4
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LS and KF differ only marginally from those of the QS method
despite considering internal dynamics and providing load estimates
of higher correlation. The error can be slightly reduced at the bear-
ings IMS-B and HSS-B,C, however at the bearings IMS-C and
HSS-A a slightly higher error is calculated. These results suggest
that for the considered load case and drive train design, the
fatigue damage at the IMS and HSS bearings is mainly dependent
on the drive train torque and effects of internal gearbox dynamics
are negligible. This becomes more clear when looking at the
bearing stress cycles, which are not only a function of the load oscil-
lations depicted in Fig. 3 but also of the rotational speed [18]. A
rotating bearing experiences cyclic loading due to entering and
exiting its load zone. This is reflected in the use of the stress
cycle counting method LDD as opposed to the rainflow counting
(RFC) method, which is commonly used for structural elements.
The LDD method counts one stress cycle per revolution with a
stress range equal to the current radial load. Thus, the quasi-static
reactionary forces to the drive train torque cause major stress
ranges and contribute significantly to the bearing fatigue, whereas
the load variations from internal dynamics cause comparatively
small stress ranges. In the studied load case at rated wind speed
under normal operational conditions, the QS method would be suf-
ficient to monitor fatigue damage with high accuracy and computa-
tional speed. However, it is uncertain how the QS method would
perform in load cases with greater internal dynamics, such as an
emergency stop or gear faults. Further studies are planned to
address this topic.

4 Conclusion
In this article a novel approach for the estimation of wind turbine

gearbox loads with the purpose of online fatigue damage monitor-
ing was presented. The proposed method employs a Digital Twin
framework and aims at continuous estimation of the dynamic
states based on CMS vibration data and generator torque measure-
ments from the SCADA data. The proposed method was evaluated
in a load case at rated wind speed under normal operational condi-
tions. With a quasi-static approach, which assumes proportionality
to the drive train torque, the overall level of bearing loads was esti-
mated with high accuracy, however the dynamic behavior was not
reflected well. The quasi-static method was sufficient to estimate
fatigue damage with an error of 5–15% across all bearings. The
Kalman filter approach produced the highest correlation of
bearing loads ranging from 0.5 to 0.96 and was able to capture high-
frequency dynamics accurately, but missed several low-frequency
components. These are caused by disturbance forces on the IMS,
which are not reflected in the underlying physical model and are
not available through measurements. Despite considering internal
dynamics, the KF method did not result in significant improvements
with reference to fatigue damage. It appears that in this load case the
stress cycles caused by internal dynamics are insignificant relative
to torque induced stress cycles. The least-squares estimator per-
formed worse than the Kalman filter, as it is more sensitive to mea-
surement noise. Further studies are planned to extend this work to
different load cases or fault cases, assess the sensitivity to measure-
ment noise and model uncertainties and quantify computational
costs.
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Abstract
This paper presents a Digital Twin for virtual sensing of wind turbine aerodynamic hub loads, as well as monitoring the
accumulated fatigue damage and remaining useful life in drivetrain bearings based on measurements of the Supervisory
Control and Data Acquisition (SCADA) and the drivetrain condition monitoring system (CMS). The aerodynamic load
estimation is realized with data-driven regression models, while the estimation of local bearing loads and damage is
conducted with physics-based, analytical models. Field measurements of the DOE 1.5 research turbine are used for model
training and validation. The results show low errors of 6.4% and 1.1% in the predicted damage at the main and the generator
side high-speed bearing respectively.

Virtuelle Sensoren für die Messung von Hauptwellenlasten und Ermüdungsschäden im Antriebstrang
vonWindenergieanlagen

Zusammenfassung
In diesem Aufsatz wird ein digitaler Zwilling für Windenergieanlagen vorgestellt, welcher die virtuelle Erfassung der
Hauptwellenlasten und die Zustandsüberwachung von Ermüdungschäden und der verbleibende Nutzungsdauer der An-
triebsstranglager ermöglicht. Der digital Zwilling nutzt Messdaten des Supervisory Control and Data Acquisition (SCADA)
Systems und des Zustandsüberwachungssystems des Antriebsstranges (CMS). Die Berechnung der Hauptwellenlasten ist
mit datenbasierten Regressionsmodellen umgesetzt, während die Berechnung der Lagerkräfte und der Ermüdungsschaden
mit physikbasierten Modelle durchgeführt wird. Für die Modellentwicklung und -validierung werden Feldmessdaten der
DOE 1.5MW Turbine eingesetzt. Die Abweichungen in den Ermüdungsschäden am Hauptwellenlager und am Generator-
wellenlager betragen lediglich 6,4% beziehungsweise 1,1%.

1 Introduction

Offshore wind turbine installations are projected to acceler-
ate rapidly in the near future driven by better wind resources
and higher social acceptance rates compared to onshore
sites [24]. However, a major economic limitation of off-
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shore wind turbines are high operational and maintenance
expenditures (OPEX), which amount to about 34 % of the
levelized cost of energy (LCOE) [19]. These are caused by
lower reliability due to harsher environmental conditions
and time-consuming replacement or repair due to difficul-
ties accessing the site and dependency on good weather
conditions. A major contributor to OPEX is the geared driv-
etrain with frequent failures and long downtimes and is thus
the subject of current research [23].

Digital Twin (DT) is an emerging technology with
prospects of decreasing operational and maintenance ex-
penditures and improving the market competitiveness of
offshore wind farms. The wind turbine drivetrain DT
proposed by the authors in [readacted] would enable moni-
toring of fatigue loads at otherwise inaccessible locations
such as bearings and gear contacts using ’virtual sensors’
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Fig. 1 Digital Twin framework for continuous remaining useful life estimation in wind turbine drivetrain components

and thus support Remaining Useful Life (RUL) assess-
ment based on the true load history. A framework with
the three components Data, Virtual model and Decision
support is envisioned for this objective (Fig. 1). Data is
collected continuously by sensors of the Supervisory Con-
trol and Data Acquisition system (SCADA), the condition
monitoring system (CMS), and from other sources such
as metocean forecasts and maintenance logs. The Virtual
model comprises of decoupled simulation models to rep-
resent the physics at different scales. Aerodynamics and
structural dynamics of tower and blades are captured with
the aeroelastic model. The resulting hub loads and nacelle
motions are imposed as boundary conditions on the drive-
train model, which produces local bearing and gear forces.
These are used as input for the fatigue damage model
consisting of stress cycle counting algorithms and S-N
curves. The virtual model and its physical counterpart are
synchronized with real-time field measurements using state
estimators such as the Kalman Filter. The synchronization,
also referred to as data fusion or Digital Twinning, is es-
sential as it facilitates measurements of virtual sensors in
the synchronized model. The virtual sensor measurements
are converted to value adding information for the turbine
operator in the component called Decision support. In this
study the focus is on RUL assessment of drivetrain com-
ponents, which is necessary to move from corrective to
predictive maintenance strategies.

Preliminary investigations on the feasibility of the pro-
posed DT have been conducted in a numerical case study in
[redacted]. In this study the proposed DT is further validated
with with field measurements of the DOE 1.5 MW turbine
instrumented by NREL [18]. Main bearing loads estimated
with the proposed virtual sensing method are compared to
field measurements obtained from shaft strain gauges under
different operational conditions.

Other studies are found in literature, which are concerned
with estimating main shaft loads with a virtual sensing ap-
proach. Several works pursue an inverse approach for real-

time estimation of the rotor torque based on SCADA mea-
surements. By simplifying the drivetrain dynamics to a two
degrees of freedom (DOF) torsional system, the SCADA
signals generator torque along with the LSS and HSS speeds
contain enough information to predict the unknown ro-
tor torque [3, 12, 15, 17]. The drivetrain model may be
constructed without knowledge of manufacturer’s specifi-
cations using data-driven system identification techniques
such as least-squares estimators [15]. Data fusion is re-
alized with state estimators, for example Kalman Filters
(KF) [15], or regularization methods [17].

Several works are concerned with virtual sensing of rotor
thrust, but with the objective of structural health monitoring
of the tower rather than drivetrain components. A common
approach involves constructing a dynamic, flexible tower
model and use state estimation methods based on tower top
acceleration and/or strain gauge measurements [20].

Notable publications that fit the proposed Digital Twin
framework (Fig. 1) are presented by Branlard et al. and
Azzam et al. [2, 4]. Branlard et al. present a holistic wind
turbine DT capable of estimating both thrust and torque
based on SCADA measurements and a linearized aeroelas-
tic model [4]. Validation of the DT is conducted with both
simulation and field measurements, however the scope is
limited to structural dynamics of the tower and blades. Az-
zam et al. present a DT that also considers drivetrain dy-
namics [2]. The DT is constructed by regression on aeroe-
lastic and drivetrain multi-body simulations and serves the
purpose of estimating all six main shaft load components
based on SCADA measurements. Unfortunately, their work
is purely numerical and not supported by experimental or
field measurements.

The novel contributions of this paper in comparison to
existing research are summarized as follows.

� Validating the concept of virtual sensing of drivetrain
loads with field measurements rather than numerical
simulations

K
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Fig. 2 Overall methodology
for virtual sensing of drivetrain
loads and remaining useful life
estimation

� Monitoring fatigue damage in drivetrain components
rather than the tower or blades

� Leveraging high-frequency CMS vibration measure-
ments as opposed to using only SCADA measurements

The remainder of this paper is organized as follows. Sect. 2
presents the proposed methodology for virtual sensing of
drivetrain loads and remaining useful life estimation. It fol-
lows a discussion of the errors between field measurements
and predictions using the virtual sensors in Sect. 3. Con-
cluding remarks are given in Sect. 4.

Table 1 Field measurements of the DOE 1.5 turbine [18] used in this study

Category Signal Sensor type Symbol

SCADA Active Power Voltage P

LSS speed Encoder !LSS

HSS speed Encoder !HSS

Nacelle wind speed MET tower u

Acceleration tower top east-west Accelerometer aNac,EW

Acceleration tower top north-south Accelerometer aNac,NS

CMS Acceleration generator back Accelerometer aGen,B

Acceleration generator front Accelerometer aGen,F

Acceleration HSS generator side Accelerometer aHSS,GS

Acceleration HSS rotor side Accelerometer aHSS,RS

Acceleration Planetary Accelerometer aPL

Acceleration Torque arm 1 frame Accelerometer aTA1;F

Acceleration Torque arm 1 horizontal Accelerometer aTA1;H

Acceleration Torque arm 1 vertical Accelerometer aTA1;V

Acceleration Torque arm 2 horizontal Accelerometer aTA2;H

Acceleration Torque arm 2 vertical Accelerometer aTA2;V

Hub loads Torque Main shaft strain gauges Ma,x

Pitch moment Main shaft strain gauges Ma,y

Yaw moment Main shaft strain gauges Ma,z

Thrust Tower base strain gauges Fa,x

2 Methodology

The overall methodology is illustrated in Fig. 2. Several
SCADA and CMS signals, described in Sect. 2.1, are
filtered and postprocessed to extract statistical features
(Sect. 2.2). Data-driven regression models are then trained
to map the SCADA and CMS features onto measured aero-
dynamic hub loads (torque, yaw moment, pitch moment,
thrust), as detailed in Sect. 2.3. Local forces at the main
bearing and the high-speed shaft generator side (HSS-GS)
bearing are then calculated with a low-fidelity, physics-
based drivetrain model, presented in Sect. 2.4. The remain-
ing useful life (RUL) is estimated based on the fatigue
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damage model of ISO 281 (Sect. 2.5). Lastly, the RUL is
scaled with a safety factor to account for uncertainties in
the load estimation (Sect. 2.6).

2.1 Description of dataset

The dataset was acquired as part of a field measurement
campaign with the U.S. Department of Energy 1.5 MW
(DOE 1.5) turbine at the National Renewable Energy Lab-
oratory (NREL) [18]. The DOE 1.5 turbine is based on
a commercial GE 1.5 SLE turbine with a custom configu-
ration. In addition to a standard SCADA system and driv-
etrain CMS the turbine is equipped with strain gauges at
the tower base, tower top, blade roots and the main shaft to
fully monitor multiaxial aerodynamic loads.

The sensor signals used in this study are listed in Table 1.
The following SCADA signals are considered in this study,
which are reportedly sensitive to the main shaft loading:
Active power, HSS and LSS speed, Nacelle wind speed,
as well as tower top acceleration. The CMS sensors are
installed in a typical configuration and positioned on the
housing of the generator (Gen), the high-speed gear stage
(HSS), planetary gear stage (PL) and each of the torque
arms (TA). The aerodynamic loads at the rotor hub includ-
ing the torque, pitch moment, yaw moment and thrust are

Table 2 Statistical features calculated for SCADA and CMS signals

Feature Symbol Formula

Mean � E Œx�

Standard deviation �

r
E

h�
x−�

�

�2i

Skewness skew E
h�

x−�

�

�3i
Kurtosis kurt E

h�
x−�

�

�4i

Root mean square RMS
q

1
N

PN
n=1x

2
n

Maximum max maxnx

Minimum min minnx

Peak amplitude peak maxnx − minnx

1P-amplitude A1P k Sxx.f1P / k
2P-amplitude A2P k Sxx.f2P / k
3P-amplitude A3P k Sxx.f3P / k

Table 3 Statistical regression models for predicting hub loads based on SCADA and CMS measurements

Regression model Hyperparameters Training function

Linear regression (LR) – Least squares

Support vector machine KernelFunction Linear/quadratic Least squares

(SVM) BoxConstraint Default

KernelScale Default

Epsilon Default

Tree ensemble MinLeafSize 8 Least-squares boosting/

(Boosted Trees/Bagged Trees) NumLearningCycles 30 Bootstrap aggregation

LearnRate 0.1

measured with strain gauges at the main shaft downwind of
the main bearing and at the tower base. The calibration of
the strain gauges is described in [18].

The dataset used in this study comprises of a total of
830 measurements of 10min length recorded from 31. Oct
2018 to 05. Dec 2018. The sampling frequency is 50Hz for
all signals.

2.2 Data postprocessing

The dataset is filtered for normal power production, which
is identified by three criteria

� Main shaft speed > 10.5rpm
� Blade 1 pitch angle < 50ı
� Active power > 0kW

In addition, a moving average filter with window size of 1s
is applied on the recorded strain gauge signals.

Best practice in drivetrain condition monitoring is the ex-
traction of statistical features, which are indicative of faults
or damage [16]. The recorded SCADA and CMS measure-
ments are partitioned into 10min segments and the features
listed in Table 2 are calculated for each segment. These in-
clude a wide range of the most commonly used features in
the time domain (x) and frequency domain (Sxx). The fea-
tures that are eventually utilized as input for the regression
models are determined by a sensitivity analysis in Sect. 3.2.

2.3 Data-driven regressionmodels

Regression models are used in this study to map the pre-
dictors, the SCADA and CMS statistical features, onto the
targets, the aerodynamic hub loads. Several linear and non-
linear regression models are investigated for this purpose
including Linear Regression (LR), Support Vector Machine
(SVM) and Tree ensembles, as described in Table 3. For
a detailed description of each regression model type it is
referred to [6]. Implementation and training is realized with
MATLAB’s Statistics and Machine Learning Toolbox [9].
The dataset is partitioned 80/20 into training data and test
data, and the models are regressed onto the training data
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Fig. 3 Definition of forces and
moments

using least squares regression and five-fold cross valida-
tion. Hyperparameters are not optimized and are set to the
default values provided by MATLAB.

2.4 Physics-based drivetrainmodel

The DOE 1.5 MW turbine is instrumented with strain
gauges at the blade roots, the main shaft and the tower top
and base to monitor the multiaxial loading of the turbine.
The aerodynamic loads at the rotor hub, as well as loads at
the main bearing and HSS-GS bearing are calculated from
strain gauge measurements using an analytical model, pre-
sented in [1, 5]. The analytical model assumes steady state
operation and neglects any torsional or bending dynamics
of the main shaft and the tower. With this assumption it is
possible to determine bearing loads by moment balances.

First, the aerodynamic moments including torque Ma,x,
pitch moment Ma,y and yaw moment Ma,z are determined
from the measured main shaft moments Mms by moment
balance around the main bearing (Fig. 3) and expressed in
the fixed coordinate frame at the hub. The thrust Fa,x is
calculated from the tower base moment Mtb,y by moment
balance around the tower base (Fig. 3)

Ma,x = Mms,x (1)

Ma,y = Mms,y − Mms;y0 (2)

Ma,z = Mms,z (3)

Fa,x = −
Ma,y + Mtb,y − Mtb;y0

h cos.˛/ − d1 sin.˛/
(4)

where Mms;y0 and Mtb;y0 are gravitational moments due
to the rotor overhang expressed at the main bearing and
tower base respectively, h denotes the tower height, d1 the

distance from the hub to the tower top and ˛ the main shaft
tilt angle (Table 4)

The installed main bearing is a SKF 240/600 BC spher-
ical roller bearing in a 3-point configuration and thus con-
sidered to only support radial and axial forces. The torque
arms are also considered to only experience radial and ax-
ial forces and the stiffness of the generator coupling is ne-
glected. In steady state operation the main bearing forces
Fmb are then calculated as follows (Eqs. 5–7). The axial
force is governed by thrust, while the radial force is gov-
erned by the yaw and pitch moments.

Fmb,x = Fmb;x0 + Fa,x (5)

Fmb,y = −Ma,z=dGB (6)

Fmb,z = Fmb;z0 − Ma,y=dGB (7)

where Fmb;x0 and Fmb;z0 is the rotor, shaft and gearbox
weight projected onto the x an z axis respectively and dGB

is the distance from the main bearing to the torque arms
(Table 4).

The HSS-GS bearing is a SKF NU232 cylindrical roller
bearing and thus only supports radial forces. The radial
force is governed by the transmitted gear force at the high-
speed gear stage, which is calculated from the rotor torque
by neglecting all torsional dynamics

FHSS,rad =
Ma,x

iGBrb

dRS

dGS
(8)

FHSS,x = 0 (9)

where iGB denotes the gearbox ratio, rb the base radius of
the pinion and dRS, dGS the distance from the generator-
and rotor side HSS bearings to the pinion center (Table 4).
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Table 4 Parameters of analytical model for bearing load calculation according to [1, 5]

Parameter Symbol Unit Value

Gravity force projected on x-axis Fmb;x0 kN 43.0

Gravity force projected on z-axis Fmb;z0 kN 618.0

Gravity moment at main bearing Mms;y0 kNm −198.0

Gravity moment at tower base Mtb;y0 kNm −943.83

Tower height h m 80

Distance hub – tower top d1 m 3.65

Distance main bearing – torque arms dGB m 2.09

Distance HSS-GS bearing – pinion dGS mm 327.5

Distance HSS-RS bearing – pinion dRS mm 225.5

HSS pinion base radius rb mm 87.4

Main shaft tilt angle ˛ deg 5

Gearbox ratio iGB – 78.292

Main bearing axial load factor Y1 – 2.3

Main bearing axial load factor Y2 – 3.4

Main bearing limiting value e – 0.3

Main bearing basic dynamic load rating C kN 8502

HSS-GS bearing basic dynamic load rating C kN 585

Nominal design life tnom year 20

2.5 Fatigue damage and remaining useful life

The bearing fatigue damage and remaining useful life is
based on ISO 281 [7], which defines the equivalent dynamic
load P for cylindrical roller bearings (CRB) and tapered
roller bearings (TRB) as

for CRB: P = Frad (10)

for TRB: P =

�
Frad + Y1Fax; if Fax=Frad � e

0.67Frad + Y2Fax; otherwise
(11)

where Y1, Y2, e are bearing specific parameters (Table 4).
The equivalent dynamic load is calculated with 10min aver-
age load estimates denoted as P i . For each 10min section
indexed by i the permissible stress cycles Ni are then cal-
culated with the bearing lifetime equation

Ni = 106
�

C

P i

�m

(12)

where C is the basic dynamic load rating and m equals
10/3 for roller bearings. The experienced stress cycles ni

are determined using the load duration distribution (LDD)
method, which counts one stress cycle per shaft revolu-
tion due to entering and exiting the bearing load zone [13].
Using 10min average shaft speeds !i the LDD method
simplifies to

ni = !i �t; (13)

where �t equals 10min. It follows the dimensionless short-
term fatigue damage DST

i , which is defined as the ratio of
experienced to permissible stress cycles

DST
i = ni=Ni (14)

The long-term damage DLT.t/ is obtained with the Palm-
gren-Miner linear damage hypothesis by summation of all
previous short-term damage and is updated in 10min inter-
vals for real-time damage monitoring

DLT.t/ =
t=�tX
i=0

DST
i (15)

By definition, the bearing has consumed its damage reserves
and reached its end of life at DLT = 1. With a nominal
life tnom of 20 years the remaining useful life RUL is then
calculated as follows

RUL.t/ = tnom
�
1 − DLT.t/

�
(16)

2.6 Damage uncertainty model

Using 10min average load estimates for the damage cal-
culation reduces computational costs and enables real-time
monitoring, however it introduces uncertainties by neglect-
ing high-frequency load fluctuations, which may originate
in the aerodynamics or internal drivetrain dynamics. The
damage is generally underestimated with averaged loads,
since load peaks are disproportionally more damaging than
load minima due to the exponentiation with m (Eq. 12). The
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uncertainty �avg is expressed as the ratio of the true short-
term damage DST

50Hz measured at 50Hz and the short term
damage based on 10min average load estimates DST

10min-avg.
The fluctuations of the equivalent dynamic load within
a 10min period are modelled with a statistical variable
X � N.�; �/, which is normally distributed with mean
value � and standard deviation � . It is further assumed that
variations of the shaft speed are negligible, such that Eq. 13
remains valid. It follows for the uncertainty �avg

�avg W= DST
50Hz

DST
10min-avg

=
E.Xm/

ŒE.X/�m
(17)

where the expected values E are given by the law of the
unconscious statistician (LOTUS) [8] using the standard
normal statistical variable Z = X−�

�

E.Xm/ =
1p
2�

Z 1

−1
.� + �z/mexp.−z2=2/dz (18)

E.X/m = �m (19)

It is evident that the uncertainty �avg is only a function of
the 10min mean and standard deviation, which are both
estimated with data-driven regression models (Sect. 2.3).

Fig. 4 10min mean and standard
deviation of measured aerody-
namic loads in fixed frame of the
rotor hub

3 Results and Discussion

3.1 Measured hub loads and fatigue damage

Shown in Fig. 4 are the distributions of the measured hub
loads for verification of the results. The mean torque fol-
lows the analytical thrust curve and levels out at rated
torque, while the highest torque variance is observed at
about 10m/s slightly below rated wind speed of 14m/s.
This behaviour is similarly reported in other works [13]
and is likely due to effects of the pitch controller, which fre-
quently activates and deactivates in this region causing high
torque amplitudes. The aerodynamic pitch moment is pre-
dominantly a result of thrust differences between the upper
and lower rotor disk due to the vertical wind profile. Posi-
tive trends of the mean and variance with reference to wind
speed is observed. The yaw moment is similarly a result of
aerodynamic imbalance, predominantly yaw misalignment.
Contrary to the pitch moment, the yaw moment is centered
around zero mean and is independent of wind speed. The
measured thrust agrees well with simulated thrust curves,
as demonstrated in [5]. The highest variance in thrust is
measured at around 8m/s, which is slightly lower than the
peak of torque variance.

The calculated bearing damage based on the measured
hub loads are presented in Fig. 5. It is emphasized here
that rotating machine elements such as bearings and gears
experience stress cycles even at stationary environmental
loads due to the shaft rotation. For this reason the LDD
method [13] is used in this study for stress cycle counting

K



214 Forsch Ingenieurwes (2023) 87:207–218

Fig. 5 10min fatigue damage at
the main bearing and HSS-GS
bearing based on measured hub
loads

as opposed to the rainflow counting method commonly used
for (non-rotating) structural elements. The fatigue damage
at the main bearing comprises of two components, an axial
component Dax = XFax=P � D due to thrust and a radial
component Drad = Y Frad=P � D due to gravity and pitch
moments. The maximum in fatigue damage is observed at
11m/s and coincides with the thrust peak. In this operational
region the axial forces dominate and amount to about 66%
of the equivalent dynamic load P . At wind speeds above
16m/s the contribution of radial forces due to pitch mo-
ments becomes dominant and below 8m/s with relatively
low aerodynamic loads the contribution of gravity forces
becomes dominant.

The HSS-GS bearing experiences only radial forces,
which are considered to be proportional to the rotor torque
(Eq. 8). Thus, the fatigue damage is governed by the mean
rotor torque and reaches its maximum above rated wind
speeds.

Fig. 6 SCADA (blue) and CMS signals (red) ranked according to their correlation with mean and standard deviation of hub loads

3.2 Sensitivity analysis

A sensitivity analysis is conducted with the objective of di-
mensionality reduction of the predictor variables. The sen-
sor signals (Table 1) and statistical features (Table 2) are
selected, which are the best predictors of hub loads ac-
cording to the metric of the Neyman-Pearson correlation
coefficient. Presented in Fig. 6 are the ten best performing
signals SCADA signals (in blue) and CMS signals (in red)
for each hub load component.

The generator torque is as expected an excellent predic-
tor of both the mean and the standard deviation of rotor
torque with R > 0.99. Prediction of the absolute values of
the bending moments on the other hand is challenging, as
neither of the SCADA or CMS signals show statistically
significant correlation (R < 0.5). However, the moment
standard deviations show high correlation (R = 0.88) with
respect to the wind speed, as well as other SCADA signals.
The torque correlates well with all SCADA signals, as well
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Fig. 7 Normalized RMSE be-
tween measured and predicted
hub loads with different re-
gression models and different
SCADA/CMS input

as the CMS vibrations at the HSS, the generator and the
nacelle frame.

3.3 Hub load estimation

Several regression models, as described in Table 4, are used
to map sensor measurements onto the aerodynamic hub
loads. Two different scenarios of sensor input are consid-
ered: (1) only SCADA signals, (2) combined SCADA and
CMS signals. This serves the purpose of assessing the added
value of CMS vibration data and validating the novel ap-
proach of virtual sensing based on vibration measurements.
The metric for model performance is the root mean square
error (RMSE) between measured and predicted loads us-
ing 5-fold cross validation. Shown in Fig. 7 is the RMSE
normalized to the maximum value of each hub load.

It is evident that the estimation of the mean and stan-
dard deviation of the rotor torque is accurate with mini-
mum RMSE of 0.24% and 0.46% respectively. The best
performance is observed is observed with a simple linear

Fig. 8 Normalized RMSE be-
tween measured and predicted
bearing damage with different
regression models and different
SCADA/CMS input

regression model, due to the high linear correlation of the
rotor torque with the measured generator torque.

Concerning the bending moments, it appears that esti-
mating the mean value is much more challenging than es-
timating the standard deviation. A possible reason is that
the mean bending moments unlike torque and thrust do not
show a clear trend with respect to wind speed (Fig. 4). The
inclusion of CMS vibration data slightly improves the pre-
diction accuracy of bending moments in most cases. Non-
linear regression models are preferable, since the relation-
ship of bending moments and dynamic drivetrain responses
appear to be non-linear.

The mean thrust as well as the standard deviation is
estimated with relatively low RMSE of 8.0% and 6.0%. It
is clear that non-linear regression models are necessary to
capture the non-linear behaviour such as the thrust-wind
speed curve (Fig. 4). In this case CMS vibration data do
not appear to increase performance.
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Fig. 9 Measured and predicted
bearing RUL with the best
performing regression model
(quadratic SVM/LR)

3.4 Fatigue damage and remaining useful life

The measured and estimated hub loads discussed in the pre-
vious section are converted into short-term (10min) fatigue
damage in the main bearing and the HSS-GS bearing using
Eqs. 5–16. The RMSE of the fatigue damage normalized to
its maximum value is presented in Fig. 8.

The damage in the main bearing is estimated with high
accuracy (RMSE = 6.4%) despite high uncertainty in esti-
mating the bending moments. These results suggest that the
damage in the main bearing is governed by thrust, which
can be estimated more accurately. The best performance is
achieved by the quadratic SVM, which is able to capture
the non-linear behaviour best. For monitoring the damage
in the HSS-GS bearing a linear regression model suffices,
which results in RMSE of 1.1%.

It appears that the inclusion of high-frequency CMS vi-
bration measurements does not provide much value for mo-
nitoring bearing fatigue damage and that the considered
10min average SCADA measurements are sufficient to es-
timate the damage within a 6.4% error margin.

Fig. 9 presents the measured and predicted RUL with the
best performing regression model. During the recorded time
frame of 138.3h the measured RUL of the main and HSS-
GS bearing is reduced only by 20.8h and 17.5h respec-
tively. The discrepancy can be attributed to conservative
design, for example in the selection of design load cases
(DLC), which are more severe than the actual experienced
environmental conditions. Furthermore, the sample size is
relatively small and the time frame of the recordings of 31.
Oct to 05. Dec is not representative for seasonality effects.

The RUL is overestimated significantly despite high ac-
curacy in the predicted 10min average loads. This is caused
by high-frequency load dynamics for example from turbu-
lence or internal drivetrain dynamics, which are not ac-
counted for with 10min average load estimates. The dis-
crepancy is partially compensated with the damage uncer-

tainty model (Sect. 2.6). A good agreement with the mea-
sured RUL is observed at the HSS-GS bearing, while at
the main bearing there remains a larger error possibly due
to higher uncertainties in predicting bending moments and
thrust.

3.5 Method limitations and further work

While the presented Digital Twin exhibits high accuracy
in predicting aerodynamic loads and bearing damage, it is
crucial to discuss the method assumptions and associated
uncertainties, which limit the applicability of this method.

Field measurements: The data used in this study
(Sect. 2.1) are representative for commercial SCADA and
CMS measurements with the exception of the wind speed.
The wind speed data were acquired with a MET mast about
150 m downwind of the turbine. Commercial wind turbine
SCADA systems, however, mostly rely on nacelle mounted
anemometers, which suffer from greater inaccuracies due
to wake effects. The additional measurement uncertainty
can be estimated with a coefficient of variation (COV) of
1 − 3% according to Toft et al. [21].

Aeroelastic model: The presented regression model
(Sect. 2.3) relies on a training data set of aerodynamic
loads, in this case obtained by strain gauge measurements,
which are not available in commercial wind turbines. Alter-
natively, it is possible to emulate field measurements with
measurements from high-fidelity simulation models, simi-
lar to the approach of Azzam et al. [2]. Naturally, this shifts
the challenge to the model construction and validation and
introduces additional uncertainties due to modelling errors.
Such uncertainties can be approximated with a COV of
5% according to Nejad et al. [13], however it is difficult
to make generalized statements. In further studies it is
planned to compare the data-driven regression models with
an aeroelastic model of the DOE 1.5 turbine, which has
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been developed and validated by other authors [5], in order
to quantify modelling uncertainties.

Drivetrain model: State-of-the-art drivetrain models are
highly complex multibody simulation (MBS) models [14,
22], and are not suitable as Digital Twin models, as dis-
cussed in [11]. First, the high number of degrees of free-
dom (DOF) make them numerically expensive and not ca-
pable of real-time simulation, which is necessary for on-
line monitoring purposes. Secondly, wind turbine operators
do not have the means of developing and validating com-
plex models, since the drivetrain specifications are largely
confidential to the OEMs. For this reason, a relatively sim-
ple drivetrain model is used in this article, which assumes
a quasi-static transmission of torque and neglects all in-
ternal dynamics including effects of component flexibility,
multi-body interaction and excitations from gear meshing
or roller bearings (Sect. 2.4). The effects of internal dynam-
ics on bearing fatigue damage are expected to be relatively
small, as suggested by the results of a previous numerical
case study [10], where RMSE of 5–15% in the bearing fa-
tigue damage were observed. However, the scope of the nu-
merical case study was limited to the high-speed gear stage
bearings, normal power production at rated wind speed and
one drivetrain configuration. Further numerical investiga-
tions are scheduled better quantify the modelling errors of
such reduced order drivetain models.

4 Conclusion

This paper presents a Digital Twin for virtual sensing of
wind turbine hub loads based on SCADA and CMS mea-
surements, as well as monitoring the accumulated fatigue
damage and remaining useful life in the main and HSS-GS
bearing. The Digital Twin is constructed for the DOE 1.5 re-
search turbine [18] and evaluated with field measurements.
Several data-driven regression models including linear re-
gression models, support vector machines and tree ensem-
bles are trained on field measurements for the aerodynamic
hub load estimation. For calculation of local bearing loads
a low-fidelity physics-based model is constructed with the
assumption of steady-state operation. The remaining useful
life is calculated based on the consumed fatigue damage
reserves according to ISO 281 [7].

While the estimation of rotor torque and thrust is accu-
rate with RMSE of 0.24% and 6.0%, it proves to be much
more challenging to estimate the yaw and pitch bending
moments. The measured bending moments appear to be
highly stochastic and do not show statistically significant
correlation (R < 0.5) with any of the considered SCADA
and CMS measurements.

Nonetheless, relatively low RMSE of 6.4% in the 10min
fatigue damage are observed at the main bearing despite

the high uncertainty in the bending moment estimates. It
appears that the damage in the main bearing is governed by
thrust, which is estimated much more accurately than the
bending moments. The damage at the HSS-GS bearings is
assumed to only depend on the drivetrain torque and can
thus be estimated with high accuracy (RMSE=1.1%).

The main contribution of this article is the knowledge
transfer of the virtual sensing concept from wind turbine
structural elements to drivetrain components, and valida-
tion of the concept with field measurements. With regards to
the quality and availability of physical sensor measurements
the proposed virtual sensors are feasible. SCADA and CMS
data contain sufficient information for accurate monitoring
of bearing fatigue damage. Challenges are identified in the
multi-body drivetrain dynamics, which are much more com-
plex than the dynamics of the tower and blades. However,
developing and validating models to capture complex driv-
etrain dynamics is difficult based on the information that
is available to wind turbine operators. Low fidelity, quasi-
static models, which largely neglect internal drivetrain dy-
namics, are shown to produce low errors of bearing fatigue
damage, and are thus proposed for virtual sensing purposes.
Further investigations are planned to quantify the uncertain-
ties introduced by quasi-static drivetrain models.
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A B S T R A C T

This paper presents a novel approach for detection and diagnosis of the rotor imbalance types pitch misalign-
ment, yaw misalignment and mass imbalance by monitoring the drivetrain vibration response. Traditionally,
only SCADA signals including nacelle accelerations, rotor speed and electrical power are utilized for this
purpose, while drivetrain condition monitoring signals are mainly used for fault detection in gears and bearings.
A diagnostic method is proposed using statistical change detection methods for fault detection, phase angle
estimation for localizing the faulty blade, and physics-based decision criteria for fault classification. The
proposed method is tested in a numerical case study with aeroelastic and drivetrain multi-body models of
the 10 MW DTU reference wind turbine. The results suggest that drivetrain condition monitoring signals are
particularly beneficial for detecting and diagnosing pitch misalignment, since this fault type uniquely induces
periodic out-of-plane bending moments that excite drivetrain bending modes. Drivetrain signals improved the
detection rate of a 1◦ pitch error from 19% to near 100% and reduced the standard error in locating the
faulty blade from 71.5◦ to 11.2◦. In addition, by using drivetrain vibration amplitudes as a decision criterion,
all considered pitch error cases are correctly distinguished from other fault types.

1. Introduction

Recent market trends show an increase in offshore wind turbine in-
stallations driven by higher energy yields and fewer land displacement
and noise issues compared to onshore sites [1]. However, offshore wind
turbines are faced with additional reliability challenges. Replacement
and repair of components is expensive and time-consuming due to diffi-
culties accessing the site and dependency on good weather conditions.
Thus, unscheduled downtimes as a result of component failure can lead
to high operational and maintenance expenditures (O&M). For offshore
wind turbines the O&M expenditures can reach 34% of the levelised
cost of energy (LCOE) [2]. A major contributor to O&M expenditures is
the rotor system consisting of blades, hub, pitch actuators and bearings
with frequent failures and long downtimes [3]. Imbalances in the rotor
system are considerably harmful, as they not only reduce the electrical
power output [4,5], but also increase fatigue loads on the blades and
the tower [6].

The term imbalance refers in this article to physical disturbances
of the rotor system and is not to be confused with class imbalance,
which describes the uneven distribution of training data in data-driven
fault diagnosis methods. Rotor imbalances are generally categorized as
aerodynamic imbalances, which include pitch and yaw misalignment,
and mass imbalances. Pitch misalignment refers to the incorrect angular

∗ Corresponding author.
E-mail address: felix.c.mehlan@ntnu.no (F.C. Mehlan).

positioning of one or multiple blades and can be caused by manufactur-
ing errors, installation errors or failures of pitch sensors and actuators.
Certification guidelines (GL Standards, 2010, Sect. 4.3.4.1, pp. 4–20)
require relatively small pitch misalignment of ±0.3◦ [7]. Nonetheless,
a recent measurement campaign of 1100 turbines revealed that 38%
of operating turbines do not meet these requirements [8]. Yaw mis-
alignment, the misalignment of rotor axis and wind direction, occurs
to a degree in most operating wind turbines, since yaw control systems
activate only when the yaw angle exceeds a certain threshold in order
to reduce duty cycles [9]. In addition to operational yaw misalignment,
the inaccuracy of wind wanes due to wake turbulence, poor calibration
or errors on the control side can cause static or dynamic misalignment.
Residual mass imbalance can occur due to imperfect manufacturing and
installation of the blades, which is generally alleviated before commis-
sioning of the turbine, where the rotor is rebalanced by technicians
according to ISO 21940-11:2016 [10] by adding compensating masses.
During operation, however, accretion of dirt, moisture or ice can cause
additional mass imbalance [11].

Research on wind turbine faults generally falls into to the areas of
fault diagnosis, fault prognosis and resilient control. Fault diagnosis
refers to the detection and classification of different failure modes,
fault prognosis describes the prediction of the fault progression and
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remaining useful life, and resilient control is a technique to minimize
the effects of faulty components on the wind turbine operation [12].
This paper, like most publications on rotor imbalance, is exclusively
concerned with fault diagnosis.

Effective techniques for rotor imbalance detection are frequency-
domain methods, which monitor the once per revolution (1P) frequency
peak. This is based on the knowledge that in the case of rotor imbal-
ance faults the aerodynamic, gravitational or inertial forces are not in
balance, such that the turbine is excited with additional periodic loads
at the rotor frequency 1P. The SCADA signals rotor speed and side-
side nacelle accelerations are the state-of-the-art for rotor imbalance
detection according to Hyers et al. [13]. Studies have also demonstrated
the possibility of rotor imbalance detection with electrical signatures
of the generator [14,15] or by direct measurement of blade loads with
strain gauges [9,11].

While rotor imbalance detection is straightforward, more research
is required for diagnostics, which includes the classification of different
rotor imbalance types and the estimation of the fault severity, e.g the
pitch or yaw angle. Niebsch et al. [16] developed a method for simul-
taneous estimation of mass and aerodynamic imbalances, which entails
physical modelling of rotor imbalances and wind turbine dynamics,
and solving the inverse problem. Kusnick et al. [11] argue that pitch
misalignment decreases the power output contrary to mass imbalance
and advocate for the mean power as a simple diagnostic criterion. In-
vestigations concerned exclusively on detection and diagnosis of pitch
misalignment are found in [7,17,18]. Bertele et al. propose a method
for pitch misalignment detection and correction that linearly correlates
the error in pitch angle with the amplitude of nacelle accelerations at
1P [7]. Cacciola et al. as well as Cho et al. use neural networks to
quantify pitch misalignment severity and identify the faulty blade [17,
19]. Kusiak et al. apply data mining algorithms and predictive machine
learning models to diagnose pitch misalignment [18]. Many studies are
devoted to indirectly estimating the yaw angle and thus circumventing
the inaccuracy of wind vanes [9,20,21]. Botasso et al. estimate yaw
misalignment and wind shear by observation of blade root bending
moments [9]. Choi et al. apply machine learning methods to estimate
yaw misalignment from SCADA data [20]. Jing et al. estimate yaw
misalignment based on the reduction in electrical power output [21].

Diagnostic methods reported in literature can be broadly classi-
fied as physics-based [7,9,16], data-driven [15,17–21] and knowledge-
based approaches [11], each with their own limitations. Physics-based
methods require accurate aeroelastic models, which are challenging to
construct and validate without full knowledge on turbine specifications
and system parameters such as stiffness values. The added uncertainty
from model assumptions and simplifications invariably increases the
uncertainty in diagnosis. Data-driven methods on the other hand are
shown to perform with high accuracy, but the challenge lies in obtain-
ing sufficient training data of faulty conditions. Field measurements
of naturally occurring faults are generally sparse and may require
additional, expensive equipment such as LIDAR [20] to determine
the ground truth. Knowledge-based methods rely on theoretical and
practical expertise of fault causes and effects. The main difficulties lie
in the acquisition and management of domain knowledge. This paper
presents a knowledge-based approach to detection and diagnosis of
rotor imbalance faults, summarized as follows:

1. Knowledge-based expert system
2. Classification of pitch misalignment, yaw misalignment and
mass imbalances

3. Leveraging drivetrain CMS data
4. Stochastic approach that accounts for turbulence induced vari-
ance

A knowledge-based expert system is proposed, which is comprised
of heuristic ‘if-then’ decision rules. The expert system is developed
on the basis of domain knowledge acquired from literature review,
first principles reasoning and analysis of aeroelastic simulation results.

Neither physical modelling nor training data of faulty conditions are
required for the method implementation.

Secondly, the proposed diagnostic method aims at distinguishing
the three types of rotor imbalances pitch misalignment, yaw misalign-
ment and mass imbalance, while earlier works have mainly focused
on one fault type or the distinction of pitch misalignment and mass
imbalance.

Thirdly, the proposed method incorporates drivetrain condition
monitoring system (CMS) signals, while the state-of-the-art are SCADA
signals characterizing global turbine dynamics such as nacelle acceler-
ations and rotor speed. Drivetrain CMS vibration signals can provide
further insight into the dynamics of the closely coupled rotor and
drivetrain systems and the impact of rotor imbalances in a holistic
perspective. In addition, CMS sensors are cost-effective and available
in most modern offshore wind turbines.

Lastly, the proposed method explicitly accounts for the volatility
of environmental conditions and the measurement noise of sensors.
Statistical methods of change detection are employed here, which
are proven to be robust methods for fault detection under noise and
unknown disturbances and have found application in the detection of
main bearing faults in earlier works [22].

The remainder of this paper is organized as follows: Section 2
presents in detail the methodology of fault detection and diagnosis, as
well as the high-fidelity simulation models to evaluate the proposed
method. The following Section 3 discusses dynamic system responses
to rotor imbalances both qualitatively and with simulation results; and
assesses the detection and diagnostic performances against a bench-
mark machine learning classifier. Concluding remarks are provided in
Section 4.

2. Methodology

The proposed method for rotor imbalance diagnosis based on driv-
etrain condition monitoring is formalized in the following sections.
Simulations are conducted with high-fidelity models of the global wind
turbine and the drivetrain for different rotor imbalance cases and vary-
ing environmental conditions (Section 2.1). Several simulated signals
are selected to emulate SCADA and drivetrain CMS signals, and are
postprocessed to extract frequency- and time-domain statistical features
that are indicative of rotor imbalances (Section 2.2). Statistical methods
of change detection are then applied to derive test statistics for fault
detection (Section 2.3.1). Classification of the rotor imbalance type
uses domain knowledge formalized as an expert system (Section 2.3.2).
Identification of the faulty blade is based on maximum likelihood
estimates of the phase angle (Section 2.3.3). The detection and diag-
nostic performance of the proposed method is evaluated on simulated
sensor samples of different fault and environmental conditions against
a benchmark machine learning classifier (Section 2.4).

2.1. Simulation

High-fidelity dynamic simulation models based on the DTU 10 MW
reference wind turbine [23] mounted on the Nautilus semisubmersible
floating platform [24] are used in this study. Selected specifications
of the reference turbine are listed in Table 1. The decoupled analysis
approach is employed with two separate models for simulation of the
global wind turbine response and the drivetrain response, respectively.
The global model is implemented in the aero-servo-elastic simulation
tool OpenFAST [25]. Rotor imbalances of pitch misalignment, mass
imbalance and yaw misalignment are introduced in the global model.
The simulated rotor hub loads and nacelle motions in six degrees of
freedom obtained from the global model are imposed as boundary con-
ditions on the higher-fidelity drivetrain model. The drivetrain model
is implemented in the multi-body simulation software SIMPACK [26],
which allows for detailed analysis of internal drivetrain dynamics [27].
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Table 1
DTU 10MW reference turbine specifications [23].
Wind turbine type 3 blade, upwind horizontal axis
Controller type pitch regulated, variable speed
Drivetrain type 3 stage, medium speed
Cut-in wind speed [m/s] 4
Cut-out wind speed [m/s] 25
Rated wind speed [m/s] 11.4
Rated power [MW] 10
Rotor diameter [m] 178.3
Rotor mass [kg] 229000
Blade mass [kg] 41 000
Hub Height [m] 119.0
Gearbox ratio [–] 1:50.039
Minimum rotor speed [rpm] 6.0
Maximum rotor speed [rpm] 9.8

Table 2
Fault cases (FC). Mass imbalances are expressed in the quality grade G of ISO
21940-11:2016 [10]. Faults are constant over the entire simulation period of 4000 s.

h m1 m2 m3 p1 p2 p3 y1 y2 y3

Mass [–] 0 G32 G48 G64 0 0 0 0 0 0
Pitch [deg] 0 0 0 0 1 2 3 0 0 0
Yaw [deg] 0 0 0 0 0 0 0 5 10 15

Table 3
Environmental conditions (EC) with wave height 𝐻𝑠, wave period 𝑇𝑝, wind speed 𝑈
and turbulence intensity 𝐼 .
Source: Adopted from Nejad et al. [28].

EC1 EC2 EC3 EC4 EC5 EC6

𝐻𝑠 [m] 2.0 4.5 5.0 5.0 4.0 5.5
𝑇𝑝 [s] 8.0 12.0 14.0 12.0 10.0 14.0
𝑈 [m/s] 4.0 7.0 10.0 12.0 14.0 20.0
𝐼 [–] 0.26 0.19 0.16 0.15 0.14 0.12
# seeds 6 6 6 6 6 6

Several fault cases are simulated, as specified in Table 2. Three cases
of pitch misalignment (p1, p2, p3), mass imbalances (m1, m2, m3)
and yaw misalignment (y1, y2, y3), as well as one reference case of
healthy conditions (h) are considered. The selection of realistic pitch
misalignment values is based on the findings of Saathoff et al. [8],
who report that pitch misalignment of 0.6◦–2.0◦ occurred in 35.3% and
higher cases of > 2◦ occurred only in 2.6% of investigated operat-
ing wind turbines. Only positive misalignment (towards feather) and
only misalignment of a single blade is considered in this study. Pitch
misalignment is implemented by increasing the structural twist of one
blade in the aeroelastic model.

The mass imbalance cases are expressed in the imbalance quality
scale G of standard ISO 21940-11:2016 [10] in accordance to Kusnick
et al. [11]. The standard recommends permissible residual imbalance
levels 𝑈𝑝𝑒𝑟 for different applications, rotor speeds 𝑁 and weight 𝑊 ,
expressed by Eq. (1)

𝑈𝑝𝑒𝑟[g mm] = 9549⋅𝐺[−]
𝑊 [kg]
𝑁[rpm]

. (1)

Wind turbine rotors are generally rebalanced to a residual imbalance
of G16 before commissioning [11]. Guided from this classification,
the levels of G32, G48 and G64 are selected as low to severe mass
imbalances in operating turbines caused for example by ice accretion.
The mass imbalance faults are implemented in the global simulation
model by increasing the mass density of one blade by 0.58%, 0.88%
and 1.17% respectively. It should be noted that ice accretion in reality
also affect the aerodynamic properties of the blades, which may cause
aerodynamic imbalances and reduce the electrical power output. These
effects are not considered in this numerical study; the faults are rather
modelled as pure inertial imbalances. The yaw misalignment cases
of 5◦, 10◦ and 15◦ are selected based on comparable works on yaw
misalignment simulation [9,29].

The ten fault cases are simulated under six different environmental
conditions (EC) adopted from Nejad et al. [28], where EC1 to EC3
are below and EC4 to EC6 are above rated wind speed of 11.4 m/s
(Table 3). Each combination of FC and EC is simulated for a time
period of 4000 s for 6 seeds of turbulent wind fields complying with
IEC 61400-3. The numerical step size is 0.025 s for the aeroelastic
simulations and 0.005 s for the drivetrain simulations. The first 400
s of simulated time series are disregarded due to simulation start-up
transients and the remaining 3600 s are partitioned into 60 s sections
for further signal processing. This concludes to a total number of 360
data points for each FC and EC combination.

2.2. Signal and feature selection

Synthetic SCADA and drivetrain CMS signals are generated by sim-
ulation of the aeroelastic and the drivetrain model respectively. White
Gaussian noise (WGN) is added to each simulated signal to represent
measurement noise. The signal-to-noise-ratio (𝑆𝑁𝑅 = 𝜎2𝑠𝑖𝑔𝑛𝑎𝑙∕𝜎

2
𝑊𝐺𝑁 )

is set to a relatively conservative value of 10 based on data sheets
of commercial CMS vibration sensors and typical amplitudes under
normal operation. The following SCADA signals, which are tradition-
ally used for rotor imbalance detection, are included in the analysis:
rotor speed 𝜔𝑟𝑜𝑡, side-side nacelle accelerations 𝑎𝑁𝑎𝑐,𝑌 and electrical
power output 𝑃𝑒𝑙. Drivetrain CMS signals are selected based on ISO
10816-21 [30], which recommends the placement of piezo-resistive
or capacitive accelerometers on the housing of the main bearings, the
gearbox and the generator for condition monitoring. ISO 10816-21[30]
furthermore recommends the use of velocity signals by integration of
measured accelerations for monitoring faults with low characteristic
frequencies in the range of 0.1 to 10 Hz. The MBS drivetrain model
is capable of simulating gearbox housing velocities, but is limited
with regard to main bearing and generator housing vibrations, since
the respective housings are not specifically implemented but rather
considered part of the bedplate. The subsequent analysis focuses on
gearbox housing velocities, as these represent the most realistic CMS
vibration signals. The velocities are extracted in all three coordinate
directions (axial 𝑣𝑋 side-side 𝑣𝑌 , vertical 𝑣𝑍 ), since ISO 10816-21[30]
recommends both axial and radial measurements.

Statistical features or health indicators (HI) are generally extracted
for condition monitoring, which should ideally be sensitive to faults
and increase monotonically with fault progression to facilitate fault di-
agnosis by trend analysis [31]. According to ISO 10816-21[30], the rec-
ommended feature for general drivetrain CMS is the root mean square,
however other time-domain statistical variables including mean, kur-
tosis, skewness, peak value, crest factor are also applied [31]. In this
specific case, however, the once per revolution (1P) vibration ampli-
tude and phase are reported to be much more effective features to
detect rotor imbalance faults, and show a linear correlation with the
magnitude and the location of the fault under idealized conditions [7].
The 1P-amplitude and the 1P-phase of vibration signals describe the
dynamic turbine response to the imbalance loads, which are typically
sinusoidal with a frequency of 1P. Discrete Fourier transform (DFT)
can be applied to calculate these features, however, the variability
of the rotor speed must be taken into consideration, which leads to
smearing of the 1P-peak in the frequency spectrum and may intro-
duce errors in the amplitude estimates. For this reason, computed
order tracking (COT) is applied, which is commonly used in rotating
machinery to eliminate the influence of shaft speed variations when
extracting characteristic bearing and gear fault frequencies [32]. COT
is a resampling and interpolation technique that transforms a discrete
signal from the time domain to the angular domain using shaft speed
measurements. The signal 𝑥 measured at constant time intervals given
by the sampling frequency 𝑓𝑠 = 1∕𝛥𝑡 is resampled in the angular
domain with equidistant angular increments 𝛥𝛼

𝑥(𝑖𝛥𝑡) ↦ 𝑥∗(𝑛𝛥𝛼). (2)
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Fig. 1. Proposed knowledge-based expert system for diagnosis of rotor imbalance faults using SCADA and CMS measurements. 𝑎𝑁𝑎𝑐,𝑌 : Nacelle side-side acceleration amplitudes,
𝑣𝐺𝐵,𝑌 : CMS vibration amplitudes at the gearbox housing, 𝜔𝑅𝑜𝑡: Rotor speed amplitudes.

The 1P-amplitude 𝑥 and 1P-phase ∠𝑥 are then calculated in the angular
domain by DFT [33]

𝑥 =
√

�̂�21 + �̂�22,

∠𝑥 = arctan
(
−�̂�2
�̂�1

)
.

(3)

where

�̂�1 =
2
𝑁

𝑁∑
𝑛=0

𝑥∗(𝑛𝛥𝛼)⋅ cos(𝑛𝛥𝛼),

�̂�2 =
2
𝑁

𝑁∑
𝑛=0

𝑥∗(𝑛𝛥𝛼)⋅ sin(𝑛𝛥𝛼).

(4)

The 1P-amplitude and phase are selected as statistical feature for
all SCADA and CMS vibration signals that indicate the wind turbine
dynamic response. For the electrical power signals the mean value is
chosen, as it is reported that both pitch and yaw misalignment decrease
the power production [4,21].

2.3. Proposed fault diagnosis strategy

The proposed diagnostic method for rotor imbalances comprises
the three steps detection, classification and localization, as depicted in
Fig. 1. Fault detection is realized with methods of statistical change
detection from normal behaviour (Section 2.3.1). Classification of the
rotor imbalance type uses domain knowledge formalized as an expert
system (Section 2.3.2). Identification of the faulty blade is based on
maximum likelihood estimates of the phase angle (Section 2.3.3).

2.3.1. Fault detection by statistical change detection
Statistical change detection is a robust methodology for fault de-

tection under noise and unknown disturbances [22]. It provides a

framework to identify statistically significant changes to the normal
behaviour, which captures the naturally occurring variation of mea-
surements from turbulence, wakes and other environmental influences.
In statistical change detection the null-hypothesis 𝐻0 and the alterna-
tive hypothesis 𝐻1 are defined [33], representing in this case healthy
and faulty behaviour. A sequence of independent random variables
𝑥[𝑛], 𝑛 = 1, 2...𝑁 is sampled in order to test for each hypothesis. Under
healthy conditions 𝐻0 the samples 𝑥[𝑛] are assumed to be normally
distributed with mean 𝜇0 and standard deviation 𝜎0. Under faulty
conditions the dynamic response deviates from its normal behaviour,
which entails a change in the distribution parameters of 𝑥[𝑛]. The mean
value 𝜇1 under 𝐻1 is assumed to increase, while the standard deviation
𝜎1 is considered invariant. The assumptions of normal distributions
and constant standard deviation is supported by the simulation results
(Section 3.3). It is found that the signal variance is primarily a result of
wind turbulence and insensitive to the fault case. The problem at hand
is referred to as a binary hypothesis testing problem and expressed by
Eq. (5)

𝐻0 ∶ 𝑥[𝑛] ∼ 𝑁(𝜇0, 𝜎0),
𝐻1 ∶ 𝑥[𝑛] ∼ 𝑁(𝜇1, 𝜎1), 𝜇1 > 𝜇0, 𝜎1 = 𝜎0.

(5)

It is feasible that the operator has acquired knowledge of the distribu-
tion parameters under 𝐻0, known as the normal behaviour model, from
historical measurements. However, the behaviour under any rotor fault
given by 𝜇1, 𝜎1 is considered unknown. In this scenario the generalized
likelihood ratio test (GLRT) provides the optimal decision criterion or
test statistic. The GLRT decides for the hypothesis 𝐻1, if the likelihood
ratio 𝐿(𝑥), given by Eq. (6), exceeds a threshold 𝛾 [33]

𝐿(𝑥) =
𝑝(𝑥; �̂�1, 𝜎1,𝐻1)

𝑝(𝑥;𝐻0)
> 𝛾. (6)

The unknown mean 𝜇1 is replaced by its maximum likelihood estimate
(MLE) �̂�1 given by the sample mean �̄� (Eq. (7)), while the unknown
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variance 𝜎21 is assumed to be identical to the variance of healthy
conditions 𝜎20

�̂�1 = �̄� = 1
𝑁

𝑁−1∑
𝑛=0

𝑥[𝑛], �̂�1 = 𝜎0. (7)

By inserting the Gaussian probability density functions and substituting
the MLE (Eq. (7)) in the likelihood ratio (Eq. (6)), the test statistic 𝑇 (𝑥)
can be derived as the scaled square of the sample mean, as shown in
Eq. (8)

𝑇 (𝑥) = 𝑁�̄�2

𝜎20
> 𝛾 ′. (8)

Under the assumption of normally distributed variables 𝑥[𝑛] (Eq. (5)),
the test statistic follows a Chi-squared distribution with degrees of free-
dom 𝜈 and non-centrality parameter 𝜆. With this information, adequate
thresholds 𝛾 ′ can be set such that a maximum probability of false alarm
𝑃𝐹𝐴 is met, as shown in Eq. (9), where 𝐹−1 expresses the inverse
cumulative density function of the non-central Chi-squared distribution

𝛾 ′ = 𝐹−1(1 − 𝑃𝐹𝐴; 𝜈 = 1, 𝜆 =
𝑁𝜇2

0

𝜎20
). (9)

The probability of false alarm serves as a parameter to balance false
positive and false negative rates [33]. Frequent false positives are
disruptive to the wind turbine operation and detrimental to the pro-
ductivity, while the missed detection of a fault (false negative) is
potentially harmful and may lead to critical failures. The reported value
of 𝑃𝐹𝐴 in comparable publications on statistical fault detection in wind
turbines ranges widely from 10−2 to 10−12 [34,35]. In this study 𝑃𝐹𝐴
is set to 10−4.

2.3.2. Knowledge-based fault classification: Expert system
Wind turbine operators may not have sufficient training data to

construct data-driven models or quantitative domain knowledge to
formulate accurate aeroelastic models for model-based diagnosis, but
instead have acquired heuristic expertise in the form of qualitative
system behaviour, conditional statements or causal relations of faults
and effects. Knowledge-based methods exhibit high flexibility in data
representation and thus take full advantage of such heuristic domain
knowledge. In this paper, a knowledge-based expert system is proposed,
which is developed with qualitative knowledge of rotor imbalance
effects. For comparison, a classical data-driven approach is presented in
Section 2.4 using a Linear Discriminant Analysis (LDA) classifier, which
is constructed by regression on training data of faulty conditions.

Expert systems are knowledge-based methods that can find applica-
tion in drivetrain condition monitoring [36,37]. Kusnick et al. [11] also
presented an expert system for pitch misalignment and mass imbalance
diagnosis. Expert systems are predictive models that map observations
to fault types by recursive application of decision rules and thus mimic
and automate human reasoning in the process of problem solving [38].
The decision rules and hierarchical structure of expert systems are
formulated with the knowledge-base, a collection of domain-knowledge
maintained by experienced professionals. The main advantages of ex-
pert systems are the high transparency of the decision process, which
positively affects the trust of stakeholders in the diagnosis, and low
requirements of quantitative domain knowledge for implementation.
Limitations of expert systems are the high uncertainties in the thresh-
olds of decision rules, which are commonly addressed with fuzzy logic
or probabilistic methods.

The proposed expert system, depicted in Fig. 1, distinguishes be-
tween the four classes Healthy, Mass imbalance, Yaw misalignment and
Pitch misalignment with three binary decision rules. Statistical change
detection methodology is adopted to formulate the decision rules. Each
node is considered a binary hypothesis testing problem, specifically
a mean-shifted Gauss problem (Eq. (5)). The decision rules are then
given by the test statistic in Eq. (8) and respective thresholds, which

are a function of the normal behaviour model 𝜇0, 𝜎0 and the parameter
𝑃𝐹𝐴 (Eq. (9)). Since the normal behaviour is strongly influenced by
environmental conditions, measurements of current wind speed 𝑈𝑤𝑖𝑛𝑑
are necessary to set appropriate thresholds. The first node represents
fault detection by testing for increased side-side nacelle acceleration
amplitudes 𝑎𝑁𝑎𝑐,𝑌 caused by periodical shear forces. Both aeroelastic
simulations in this study (Section 3.3) and literature suggest that 𝑎𝑁𝑎𝑐,𝑌
is a universal indicator of any rotor imbalance type. In the second
node pitch misalignment is isolated by testing for increased lateral
gearbox housing vibrations at 1P (𝑣𝐺𝐵,𝑌 ), which indicate periodic
out-of-plane bending moments that are characteristic for pitch mis-
alignment (Section 3.3). Lastly, mass imbalance is distinguished from
yaw misalignment by its characteristic oscillation in rotor speed (𝜔𝑅𝑜𝑡)
induced by gravitational imbalances (Section 3.3). The probability of
false alarm is set to a relatively low value of 𝑃𝐹𝐴 = 10−4 in all three
nodes, which correspond to high detection thresholds 𝛾𝑖.

2.3.3. Fault localization by phase angle estimation
In addition to the classification of the rotor imbalance type, it is

necessary to localize the fault, i.e. identify the blade with deviating
mass or pitch angle, in order to perform corrective measures. The fault
location is defined as the angle 𝜃 in the rotor plane, where 𝜃 = 0 refers
to blade 1, 𝜃 = 2𝜋∕3 to blade 2 and 𝜃 = −2𝜋∕3 to blade 3. It can
be derived analytically that the phase of the 1P harmonic of nacelle
accelerations is directly related to the fault location in the rotor [7].
The fault location is obtained by correcting the 1P-phase estimate ∠𝑥
(Eq. (3) with the current rotor azimuth angle 𝜙. The rotor azimuth
angle is commonly measured with encoders on the main shaft and
logged in the SCADA system

�̂� = ∠𝑥 − 𝜙. (10)

Lastly, the estimated fault location �̂� is associated with the blade
number using the boundaries 𝜋∕3 and −𝜋∕3 (Fig. 1).

2.4. Reference fault diagnosis method: Linear discriminant analysis

A Linear Discriminant Analysis (LDA) classifier is selected as a
benchmark to evaluate the proposed diagnostic method. LDA is a
supervised machine learning method used for classification [39]. The
prerequisites for LDA are similar to those of the statistical change
detection method, in that (a) each class 𝑘 follows multivariate Gaussian
distributions and (b) shares a common covariance matrix �⃗�, which are
valid assumptions according to the simulation results (Section 3.3)

𝐻𝑘 ∶ �⃗� ∼ 𝑁(𝜇𝑘, �⃗�), �⃗�𝑘 = �⃗�∀𝑘. (11)

LDA distinguishes between classes 𝑘, in this context fault types, by
imposing a sample vector �⃗� of different predictors (here sensor signals)
on linear discriminant functions 𝛿𝑘. The class 𝐺 is predicted, whose
mean vector 𝜇𝑘 is most closely aligned with the sample vector �⃗� and
thus maximizes the respective linear discriminant function (Eq. (12))

𝐺(�⃗�) = argmax𝑘(𝛿𝑘)

= argmax𝑘
(
�⃗�𝑇 �⃗�−1𝜇𝑘 −

1
2
𝜇𝑇
𝑘 �⃗�

−1𝜇𝑘 + ln𝜋𝑘
)
,

(12)

where

𝜇𝑘 = 1
𝑁𝑘

𝑁𝑘∑
𝑘

�⃗�𝑘,

�⃗� = �⃗�1 =
1

𝑁𝑘 − 1

𝑁𝑘∑
𝑘
(�⃗�𝑘 − 𝜇1)(�⃗�𝑘 − 𝜇1)𝑇 .

(13)

The distribution parameters 𝜇𝑘, �⃗� and class priors 𝜋𝑘 are not known
beforehand and must be estimated with labelled training data. The class
priors of each class are identical, since an equal number of simulations
are conducted for each FC, and can thus be omitted in Eq. (12). The
mean vector and covariance matrix are determined by their maximum
likelihood estimate (Eq. (13)).
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Table 4
First principles analysis of rotor imbalances and induced drivetrain responses.
Fault type Mass imbalance Pitch misalignment Yaw misalignment

Imbalance forces 𝐹𝐺 = 𝑐𝑜𝑛𝑠𝑡 𝐹𝐶 = 𝑐𝑜𝑛𝑠𝑡 𝛥𝐹𝑁 = 𝑐𝑜𝑛𝑠𝑡 𝛥𝐹𝑡 = 𝑐𝑜𝑛𝑠𝑡 𝛥𝐹𝑁 (𝜔𝑡) 𝛥𝐹𝑡(𝜔𝑡)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Rotating frame 𝑀𝑥(𝜔𝑡) 𝐹𝑧 = 𝑐𝑜𝑛𝑠𝑡 𝑀𝑦 = 𝑐𝑜𝑛𝑠𝑡 𝐹𝑦 = 𝑐𝑜𝑛𝑠𝑡 N/A
⇓ ⇓ ⇓ ⇓ ⇓

Fixed frame 𝑀𝑋 (𝜔𝑡) 𝐹𝑌 ,𝑍 (𝜔𝑡) 𝑀𝑌 ,𝑍 (𝜔𝑡) 𝐹𝑌 ,𝑍 (𝜔𝑡) 𝐹𝑌 (𝜔𝑡)
⇓ ⇓ ⇓ ⇓ ⇓

Structural response – 𝑌 (𝑡) – 𝑌 (𝑡) 𝑌 (𝑡)

Drivetrain response �̇�(𝑡) – 𝑌 (𝑡) – –

Fig. 2. Imbalance forces in rotating (𝑥, 𝑦, 𝑧) and fixed coordinate frame (𝑋, 𝑌 ,𝑍) for different rotor imbalances.

3. Results and discussion

3.1. Analysis based on first principles

For the development of robust, physics-based diagnostic methods, it
is crucial to understand the physical relationship of faults and dynamic
system responses. In this section a short elaboration on the effect of
rotor imbalance faults on main shaft loads in the rotating and fixed
frame and their corresponding dynamic responses in the wind turbine
structure and drivetrain is presented and summarized in Table 4. An
idealized case without turbulence, wind shear, rotor axis tilt and tower
shadow effects is considered to better isolate the primary effects of rotor
imbalances.

Mass imbalance can be represented by a point mass 𝑚 with distance
𝑟 from the rotor axis that entails imbalance forces in the form of grav-
itational 𝐹𝐺 and centrifugal forces 𝐹𝐶 (Fig. 2). Centrifugal imbalance
forces cause constant main shaft loads in the radial direction of the
rotating frame (𝐹𝑧), which translate to periodical shear forces in the
fixed frame (𝐹𝑌 , 𝐹𝑍 ). Shear forces primarily excite transverse bending
modes of the tower. Gravitational imbalance forces are constant in the
fixed frame, but cause torque oscillations (𝑀𝑥,𝑀𝑋) due to periodical
changes of lever length (𝛥𝑌 ), which excite torsional modes of the
drivetrain.

A pitch misalignment of 𝛥𝜃 leads to discrepancies of lift forces 𝐹𝐿
and drag forces 𝐹𝐷 between faulty and healthy blades, which in turn
can be represented as differences in thrust 𝛥𝐹𝑁 and tangential forces
𝛥𝐹𝑡. Thrust imbalances translate to constant bending moments in the
rotating frame (𝑀𝑦) and periodical yaw and tilting moments in the
fixed frame (𝑀𝑌 ,𝑀𝑍 ). Imbalances in tangential forces correspond to
constant circumferential forces in the rotating frame (𝐹𝑦) and peri-
odical shear forces in the fixed frame (𝐹𝑋 , 𝐹𝑌 ). The combination of
shear forces and bending moments has an impact on both structural
and drivetrain responses. Shear forces pass through the main bearings
into the structure due to the high radial bearing stiffness and excite
transverse tower bending modes, while out-of-plane bending moments

primarily excite bending modes of the main shaft, which further impact
the dynamics of downwind gear stages.

In the case of yaw misalignment, the effective angle of attack varies
periodically as a function of the blade azimuth angle; it is increased in
the upper half of the rotor disk and decreased in the lower half com-
pared to non-yawed conditions. As a result the thrust and tangential
forces of each blade oscillate in the rotating frame (𝐹𝑡(𝜔𝑡), 𝐹𝑁 (𝜔𝑡)). The
load effects of yaw misalignment on the tower and the drivetrain are
highly complex and can exhibit both upwards and downwards trends
depending on the operational region and the yaw angle sign [29,40].
Dynamic responses to yaw misalignment are reportedly increased tower
sway and platform roll motions due to shear force excitations [41].

3.2. Main shaft loads

The qualitative analysis of rotor imbalance dynamics in Section 3.1
is underlined with aeroelastic simulation results of the global wind
turbine model. The analysis is limited to the amplitudes of the once per
revolution (1P) oscillatory load component, where the effect imbalance
faults is observable. Shown in Fig. 3 are the 1P-amplitudes of main
shaft loads averaged over 6 realizations of one hour simulations for
each FC–EC combination. The loads are extracted at the rotor hub in
the fixed reference frame, where X is aligned with the rotor axis. First,
a significant influence of environmental conditions can be observed.
Shear forces (𝐹𝑌 ) and out-of-plane bending moments (𝑀𝑌 ,𝑀𝑍 ) show
a positive trend with increasing wind speeds due to higher aerodynamic
loads. Thrust (𝐹𝑋) and torque (𝑀𝑋) on the other hand level off or
decrease above rated wind speed, which can be attributed to the pitch
control system limiting the aerodynamic torque. Furthermore, there is a
discernible peak in the thrust excitations at EC3 (𝑈 = 10 m∕s), which is
slightly below rated wind speed. Similar results are reported by Nejad
et al. [42], where the highest axial damage equivalent loads (DEL) in
floating offshore wind turbines are simulated at 𝑈 = 11 m∕s. Nejad
et al. argue that the frequent activation and deactivation of the pitch
control system in the region close to rated wind speed is the causes of
increased axial DEL.
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Fig. 3. 1P-amplitude �̃� (Eq. (3)) of main shaft loads averaged over 6 seeds of one hour simulations for different rotor imbalances and environmental conditions.

Fig. 4. 1P-amplitude (Eq. (3)) of global and drivetrain signals averaged over 6 seeds of one hour simulations of for different rotor imbalances and environmental conditions.

The effect of different rotor imbalances is indicated in Fig. 3 by
the change relative to healthy conditions (h). It is apparent that mass
imbalances (m1, m2, m3) cause significant excitations in shear (𝐹𝑌 )
and vertical forces (𝐹𝑍 ) due to centrifugal forces (𝐹𝐶 , Table 4), as well
as torsional excitations (𝑀𝑋) from gravitational forces (𝐹𝐺, Table 4).
Torsional excitations are only noticeable at lower wind speeds (EC1,
EC2), where gravitational forces are more significant compared to aero-
dynamic forces. At EC1 the torque amplitudes due to mass imbalance
reach 135 kN m, which amounts to 22% of the mean aerodynamic
torque of 616 kN m. For reference, at EC6 the torque amplitudes of 55
kN m are insignificant compared to the rated aerodynamic torque of
10,000 kN m. Yaw misalignment (y1, y2, y3) appears to consistently
increase amplitudes of shear forces (𝐹𝑌 ) for all EC, while the effect
other load components is insignificant. Similar results are reported by
Cardaun et al. [29]. Pitch misalignment (p1, p2, p3) results in high

excitations in shear (𝐹𝑌 ), vertical forces (𝐹𝑍 ) from circumferential
force imbalances (𝛥𝐹𝑡, Table 4) and out-of-plane bending moments
(𝑀𝑌 ,𝑀𝑍 ), which can directly be attributed to thrust imbalances (𝛥𝐹𝑁 ,
Table 4). In this regard pitch misalignment is unique, as it is the only
rotor imbalance fault that causes 1P excitation with bending moments.

3.3. Dynamic structural and drivetrain responses

Dynamic responses in the wind turbine structure and the drive-
train to the periodic imbalance forces discussed in Section 3.2 are
characterized with a selection of simulated SCADA and drivetrain
CMS signals, shown in Fig. 4. Indicative of structural dynamics are
nacelle accelerations 𝑎𝑁𝑎𝑐 in fore-aft (X), side-side (Y) and vertical (Z)
direction. Gearbox housing velocities 𝑣𝐺𝐵 , as well as rotor speed 𝜔𝑅𝑜𝑡
and electrical power output 𝑃𝑒𝑙 are shown to illustrate the lateral and
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torsional drivetrain response. The vibration signals at the main bearings
and the generator exhibit similar behaviour to the gearbox housing
signals and are omitted for brevity. The respective statistical features
1P-amplitude or mean are calculated for each signals and averaged over
6 seeds of one hour simulations for each FC–EC combination. Central to
this discussion is the signal sensitivity towards faults, which is required
for robust fault detection. The signal sensitivity is formally quantified
by the change in mean value relative to the signal variance (𝑆 = 𝜇1−𝜇0

𝜎0
)

and is indicated in Fig. 4 by the slope with respect to increasing fault
severity.

Mass imbalances appear to increase side-side nacelle motion as a
result of periodic shear forces, as well as increase torsional vibration in
the drivetrain due to torque imbalances. Increased torsional vibrations
are unique to mass imbalance faults, however the signal sensitivity
is relatively low except at cut-in wind speeds (EC1). This is likely a
result of the high aerodynamic torque that overshadows any torque
amplitudes from mass imbalances (Section 3.2). The effect of yaw
misalignment can primarily be observed in an increase of nacelle
side-side acceleration amplitudes, which show a high sensitivity. The
drivetrain torsional dynamics are affected by yaw misalignment as
well, however a consistent upwards or downwards trend cannot be
observed. Furthermore, it is evident that yaw misalignment reduces
the mean electrical power by reducing the effective inflow wind speed,
as stated in many references, however the environmental influences
seem to dominate over effects of yaw misalignment. Unique dynamic
responses to pitch misalignment can be observed in the drivetrain
vibration signals that show increased velocity amplitudes in side-side
and vertical direction, which are likely a result of periodic out-of-plane
bending moments. In addition, pitch misalignment increases nacelle
side-side motion with shear force excitation similar to the other rotor
imbalance faults. A minor reduction in power output is also observed
due to reduced lift forces at the faulty blade.

In conclusion, the following characteristic traits of each rotor imbal-
ance are identified, which are leveraged as heuristic domain knowledge
for the proposed diagnostic method:

• Increased side-side nacelle acceleration amplitudes as a result of
periodical shear forces may be used universally for detection of
any type of rotor imbalance.

• Pitch misalignment may be isolated from other fault types by
increased lateral drivetrain vibration amplitudes caused by out-
of-plane bending moments.

• Mass imbalance may be identified at lower wind speeds by in-
creased rotor speed oscillations due to torque excitations.

3.4. Fault detection by means of drivetrain CMS signals

Focus of this section is to assess the capabilities of drivetrain CMS
signals relative to traditionally used SCADA signals for fault detection.
According to statistical change detection theory [33], the probability
of detection is primarily affected by three factors: the signal sensitivity
(𝑆 = 𝜇1−𝜇0

𝜎0
), the sample size 𝑁 and the probability of false alarm 𝑃𝐹𝐴.

The signal sensitivity towards faults is discussed for different signals in
Section 3.3. Increased sample sizes 𝑁 effectively reduce the variance
of the test statistic and thus improve the confidence in fault detection.
Two test scenarios with sample lengths of 10 and 60 min (𝑁 = [10, 60])
are considered here to analyse the influence of 𝑁 and to give an
indication of expected detection times. The parameter 𝑃𝐹𝐴 regulates the
expected false positive rate by increasing or decreasing the detection
threshold. In field operation 𝑃𝐹𝐴 must be set appropriately to balance
costs of false positives and detection rates. In this study a relatively low
value of 𝑃𝐹𝐴 = 10−4 is assumed.

The test statistic 𝑇 (𝑥) (Eq. (8)) is applied on samples of simulated
drivetrain CMS and SCADA signals in order to quantitatively assess
fault detection performances. The detection thresholds (Eq. (9)) are set
for each signal and EC based on training data of healthy behaviour only.

The testing data set consists of 360 realizations of the statistical features
mean and 1P-amplitude extracted from 1 min intervals for each FC–EC
combination. The resulting true positive rates (TPR) aggregated for all
environmental conditions are shown in Tables 5, 6 for sample lengths
of 10 and 60 min respectively.

The electrical power signal 𝑃𝑒𝑙, shows underwhelming performance
with TPR of less than 10% for the severe pitch and yaw misalignment
cases p3, y3. The signal sensitivity appears to be insufficient to reliably
detect pitch and yaw misalignment based a one hour observation.
Side-side nacelle acceleration amplitudes 𝑎𝑁𝑎𝑐,𝑌 show a response for
every rotor imbalance type. The highest TPR (> 0.95) are calculated
for yaw misalignment, even for short time frames of 10 min. The
signal is less sensitive to pitch misalignment and mass imbalance with
maximum TPR of 0.64 and 0.61 for one hour observations. Hence,
nacelle accelerations may be utilized as a universal detector for rotor
imbalances, however larger sample sizes are necessary for robust de-
tection of all fault types. Rotor speed amplitudes 𝜔𝑅𝑜𝑡 can be used in
principle for mass imbalance detection, however with a maximum TPR
of 0.22 the detection performance is inferior to nacelle accelerations.
Gearbox housing vibration signals show a significant response to pitch
misalignment, predominantly in side-side direction 𝑣𝐺𝐵,𝑌 , which results
in TPR near 1 for a 10 min sample. Similar results are obtained for
vibration signals at the main bearings and the generator housing, which
are omitted for brevity.

It is concluded that drivetrain vibration signals are particularly
beneficial for the detection of pitch errors, since they show much higher
sensitivity than classical nacelle acceleration signals.

3.5. Classification performance

The proposed knowledge-based expert system and the reference
LDA classifier are trained and tested on the simulated SCADA and
CMS signals 𝑎𝑁𝑎𝑐,𝑌 , 𝑣𝐺𝐵,𝑌 , 𝜔𝑅𝑜𝑡 using 6-fold cross validation. The expert
system is trained exclusively on data of healthy conditions to determine
the normal behaviour model (𝜇0, 𝜎0) and set the thresholds 𝛾𝑖 (Eq. (9)),
while LDA classifier is trained on the entire dataset to estimate dis-
tribution parameters 𝜇𝑘, 𝛴𝑘 (Eq. (13)) of each fault case. Each EC is
trained and tested separately to factor out influences of wind speed,
which would be available from measurements in field operation.

The results for the expert system are shown in Fig. 5 as confusion
matrices. Confusion matrices relate the predicted values of a classifier
with the actual values and are commonly used for performance assess-
ment in machine learning. The diagonal elements denote the number of
instances, where a class is correctly predicted, whereas the off-diagonal
elements represent misclassifications between classes. The individual
fault severity levels (eg. m1, m2, m3) are aggregated into a single class
(m), since the method is unable to estimate these. First, it is observed
that all healthy cases with one exception are correctly classified as a
result of the relatively low value of 𝑃𝐹𝐴 = 10−4 and corresponding
high detection thresholds. In addition, all pitch misalignment cases are
correctly identified regardless of the environmental conditions, which
suggests that the gearbox housing vibration signal 𝑣𝐺𝐵,𝑌 is effective at
isolating this fault type. Yaw misalignment is correctly predicted in the
majority of cases using nacelle accelerations 𝑎𝑁𝑎𝑐,𝑌 with the exception
of three misclassifications as mass imbalance. Mass imbalance is identi-
fied in 10 out of 18 cases at cut-in wind speeds (EC1) using rotor speed
amplitudes 𝜔𝑅𝑜𝑡. At higher wind speeds, however, the signal sensitivity
of 𝜔𝑅𝑜𝑡 is insufficient such that mass imbalances are either not detected
or misclassified as yaw misalignment. Reasons for the low sensitivity
at higher wind speeds may be higher influences of the aerodynamic
torque compared to the torque excitation from gravitational imbalance.
It is also feasible that above rated wind speeds the pitch controller is
actively damping the 1P torque fluctuations.

For comparison, the results for a traditional LDA classifier are pre-
sented in Fig. 6. The LDA classifier is able to predict both fault type and
fault severity, as it is trained on a labelled dataset of faulty conditions.
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Table 5
True positive rates for fault detection with a 10 min sample size (𝑁 = 10) with test statistic 𝑇 (𝑥) (Eq. (8)).

h m1 m2 m3 p1 p2 p3 y1 y2 y3

Classical SCADA 𝑃𝑒𝑙 0.98 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.04

𝑎𝑁𝑎𝑐,𝑌 1 0.01 0.06 0.23 0.05 0.25 0.42 0.95 1 1

𝜔𝑅𝑜𝑡 0.98 0.03 0.04 0.07 0.02 0.02 0.02 0.02 0.02 0.02

Proposed drivetrain CMS 𝑣𝐺𝐵,𝑋 1 0 0 0 0 0.01 0,01 0 0 0

𝑣𝐺𝐵,𝑌 1 0 0 0 0.82 1 1 0 0 0

𝑣𝐺𝐵,𝑍 1 0 0 0 0.59 0.75 0.89 0 0 0.01

Table 6
True positive rates for fault detection with a 60 min sample size (𝑁 = 60) with test statistic 𝑇 (𝑥) (Eq. (8)).

h m1 m2 m3 p1 p2 p3 y1 y2 y3

Classical SCADA 𝑃𝑒𝑙 1 0 0 0 0 0 0.03 0 0 0

𝑎𝑁𝑎𝑐,𝑌 1 0.14 0.31 0.64 0.19 0.44 0.61 1 1 1

𝜔𝑅𝑜𝑡 0.94 0.06 0.17 0.22 0.06 0.06 0.06 0.06 0.06 0.06

Proposed drivetrain CMS 𝑣𝐺𝐵,𝑋 1 0 0 0 0 0 0 0 0 0

𝑣𝐺𝐵,𝑌 1 0 0 0 1 1 1 0 0 0

𝑣𝐺𝐵,𝑍 1 0 0 0 0.67 0.81 1 0 0.03 0.14

Fig. 5. Confusion matrix for knowledge-based expert system (Section 2.3.2) tested on one hour samples of simulated SCADA and CMS signals under healthy conditions (h) and
rotor imbalance faults (m, p, y).

With regard to pitch misalignment and yaw misalignment classification
the performance is comparable to the expert system with a TPR of close
to 100%. The prediction of mass imbalance is significantly improved:
Mass imbalance is longer misclassified as yaw misalignment, however
it still suffers from low detection rates due to a generally weak dynamic
system response and low signal sensitivities.

From these results it can be concluded that the SCADA signals 𝑎𝑁𝑎𝑐,𝑌
and 𝜔𝑅𝑜𝑡 in combination with the CMS signal 𝑣𝐺𝐵,𝑌 are suitable to
detect and classify the three considered rotor imbalance types, at least
at lower wind speeds. With the inclusion of training data of faulty
conditions, the classification accuracy may be improved, however such
information is rarely available in practice.

3.6. Fault localization accuracy

The accuracy of localizing the faulty blade is displayed in Fig. 7 for
both classical SCADA signals and the proposed CMS drivetrain signals.
The fault location is estimated with Eq. (10) based on one hour samples
and shown here aggregated for all environmental conditions. In all
simulated cases the fault is implemented at blade 1, which corresponds

to 𝜃 = 0. The results show that an accurate localization of mass
imbalances is possible with the phase of nacelle acceleration signals
∠𝑎𝑁𝑎𝑐,𝑌 . The expected error (mean ± standard deviation) ranges from
−0.1 ± 27.4.5◦ (m1) to 2.0 ± 16.4◦ (m3). The remaining signals show
standard errors of higher than ±100◦ and are thus not suitable for
localizing mass imbalance. The best performance for localizing pitch
misalignment show side-side gearbox housing velocities ∠𝑣𝐺𝐵,𝑌 with
errors between 0.6 ± 11.2◦ (p1) to 0.1 ± 13.2◦ (p3). This is a significant
improvement compared to classical SCADA signals (∠𝑎𝑁𝑎𝑐,𝑌 ), which
result in much higher standard errors of up to ±71.5◦ (p1)

Similar conclusions as in Section 3.4 can be drawn in that drivetrain
CMS vibration signals outperform classical SCADA signals and facilitate
the detection and localization of pitch errors with much higher accu-
racy. For mass imbalance and yaw misalignment, however, the classical
approach with nacelle acceleration signals prevails.

3.7. Considerations for field implementation and sources of uncertainty

Implementation of the proposed knowledge-based diagnostic
method requires only the normal behaviour model. In practice, this
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Fig. 6. Confusion matrix for data-driven LDA classifier (Section 2.4) trained and tested on one hour samples of simulated SCADA and CMS signals under healthy conditions (h)
and rotor imbalance faults of varying severity (m, p, y).

Fig. 7. Estimated fault location �̂� (Eq. (10)) based on 60 min samples of simulated SCADA and CMS signals. Shown are median, 25 and 75 percentiles, and extreme values
aggregated for all EC. The true fault location is 𝜃 = 0 (blade 1).

would entail measuring long-term mean values and standard deviation
of the signals nacelle side–side acceleration, gearbox housing side–side
vibrations, and rotor speed for different wind speed bins.

It is feasible to integrate the proposed diagnostic method with re-
silient control techniques, which aim at minimizing fault consequences
by compensating the faulty signal. Resilient control strategies for pitch
misalignment are presented by Bertele et al. [7], who propose a re-
balancing algorithm to iteratively correct for pitch imbalance. Other
signals compensation methods such as Takagi–Sugeno fuzzy models
may also be applicable in this case [43].

In addition, the detection thresholds must be set to appropriate
values using the parameter 𝑃𝐹𝐴 (Eq. (9)). Unfortunately, standards
or guidelines on setting detection thresholds for this specific appli-
cation have not been developed yet, and the values of 𝑃𝐹𝐴 reported
in scientific publications range widely from 10−2 to 10−12 [34,35].
Lower thresholds are desirable to maximize fault detection rates and
to mitigate potentially harmful consequences of rotor imbalance faults
such as increased fatigue loads, reduced lifetime and higher risks of
failure of wind turbine components. On the other hand, low thresholds
are conducive to false positives and lead to unnecessary activation of
automatic rebalancing algorithms, which are disruptive to the wind

turbine operation. This represents an optimization problem with the
objective of minimizing the combined costs associated with false neg-
atives 𝐾𝐹𝑁 and false positives 𝐾𝐹𝑃 and can be expressed with a cost
function 𝐾 [44]

min
𝑃𝐹𝐴

𝐾 = 𝐾𝐹𝑃 +𝐾𝐹𝑁 (14)

Defining the cost functions of false positives 𝐾𝐹𝑃 and false negatives
𝐾𝐹𝑁 is challenging, as it requires extensive economical analysis and
risk assessment on the effects of rotor imbalance faults. Wind farm
operators may instead resort to empirical methods based on confidence
intervals commonly employed for drivetrain condition monitoring. Typ-
ical threshold values are 𝛾 = 𝜇0 + 3𝜎0, which corresponds to a 99.7%
confidence interval [45].

Lastly, several limitations of the presented methodology and other
sources of uncertainty need to be carefully considered for implementa-
tion in the field.

• Simulation model limitations: Simulation-based studies with aca-
demic reference models are effective for demonstrating the proof
of concept of novel methods. Simulation models enable the ex-
ploration of many different fault scenarios in a short time frame,
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however due to model assumptions and complexity reduction
they do not fully reflect the dynamics of real wind turbines.
The 10 MW DTU reference drivetrain model is considered state-
of-the-art for load calculations, but is limited with regard to
vibration analysis. Flexible housing models for the main bearings,
gearbox and the generator are not implemented and as a result the
simulated drivetrain CMS signals may suffer from inaccuracies.
It should also be noted that the analysis of this paper is limited
to four point support, medium speed drivetrains and that the
findings are not directly transferable to direct drive systems.

• Considered fault cases: The scope of this paper is limited to a
small amount of fault cases to retain reasonable simulation times,
in particular with the computationally expensive MBS drivetrain
model. Only static pitch misalignment of a single blade towards
feather is investigated. Combinations of aerodynamic and mass
imbalances, which are likely to occur in practice, are not consid-
ered in this study. Shaft misalignment faults are not considered
in this study, but may cause similar dynamic responses at 1P
and thus be misclassified as a rotor imbalance by the diagnostic
method. Other faults including main bearing and gear faults are
out of the scope of this paper, since they typically have much
higher characteristic frequencies and would be filtered out by the
proposed method.

• Fault severity : The proposed method is not capable of estimating
the rotor imbalance severity, as this would require additional
model assumptions and/or training data. For instance, the power
reduction with respect to the yaw misalignment angle can be
modelled with the third power of the cosine function [20]. Veloc-
ity and acceleration amplitudes can be well described by linear
functions of the rotor imbalance severity, as seen in Fig. 4,
however additional training data would be required to determine
the unknown slopes.

• Operational conditions: The proposed method is only robust at cut-
in wind speeds, where mass imbalance cause significant torque
excitations and induce an observable torsional response in the
drivetrain. At higher wind speeds the method is unable to distin-
guish between yaw misalignment and mass imbalance. Further-
more the method was not tested under other IEC 61400-1 load
cases such as start-up or emergency shutdown.

• Measurement noise: Sensors in the field are subject to measure-
ment noise and other sources of uncertainty, which could affect
the diagnostic performance. However, it can be argued that the
measurement noise of commercial accelerometers has relatively
low energy compared to the excitations of rotor imbalance faults.
Typical values for measurement noise in the low frequency range
of 1P are specified to 4 μg or 4⋅10−5 m∕s2 (see PCB Model
622B01), whereas simulated acceleration amplitudes under faulty
conditions were of the order 10−4 m∕s2 at the gearbox housing
and 10−2 m∕s2 at the nacelle (Fig. 4). Furthermore, it is observed
in this study that the employed statistical methods are effec-
tive at filtering out the energetic 1P component from a noisy
background.

• Signal resolution: Sensor data quality is also limited by the signal
resolution. The minimum required sample frequency to estimate
1P-amplitudes of nacelle and drivetrain signals is 0.2 Hz at a mini-
mum rotor speed of 6 rpm. Classical SCADA data stored as 10 min
averages do not suffice for this purpose, however, it is reported
that wind farm operators are moving towards high-frequency
(1 Hz) SCADA data [46].

4. Conclusions

This paper presented a novel approach for diagnosis of rotor imbal-
ance faults, namely pitch misalignment, yaw misalignment and mass
imbalance, by monitoring the drivetrain vibration response. Tradition-
ally, only SCADA signals indicative of structural dynamics including

nacelle accelerations, rotor speed and electrical power are utilized for
this purpose. Drivetrain CMS signals on the other hand are normally
used for diagnosis of local drivetrain faults in gears and bearings. The
proposed method comprises the three steps fault detection, classifi-
cation and localization. Fault detection is realized with methods of
statistical change detection from normal behaviour. Classification of
the rotor imbalance type uses heuristic, physics-based decision criteria
derived from simulations and literature review. Localization of the
faulty blade is based on maximum likelihood estimates of the phase
angle.

Simulations were conducted with both high-fidelity aeroelastic and
drivetrain models of the floating 10 MW DTU reference turbine to
synthesize SCADA and CMS signals and evaluate the proposed method.
Six environmental conditions with wind speeds ranging from cut-in to
cut-out and three fault severity levels were carefully selected based on
literature review to emulate realistic conditions.

The proposed drivetrain CMS signal (gearbox housing side-side
velocity) outperformed classical SCADA signals in detecting pitch mis-
alignment and increased the detection rate of a 1◦ pitch error from
19% to near 100% based on one hour measurements. Furthermore,
the standard error in localizing the blade with faulty pitch angle was
reduced from 71.5◦ to 11.2◦. For mass imbalance and yaw misalignment,
however, the classical approach using nacelle accelerations remained
more accurate.

The benefit of drivetrain CMS signals is also seen in the classification
of the rotor imbalance type. Pitch misalignment uniquely causes once
per revolution (1P) bending moments on the main shaft, which are
observable throughout the drivetrain as increased lateral vibration
amplitudes. Thus, the 1P-amplitudes of CMS signals are proposed as an
indicator to distinguish pitch misalignment from other rotor imbalance
types. Using CMS signals all simulated test cases of pitch misalign-
ment ranging from 1◦ to 3◦ were correctly classified regardless of the
environmental conditions.

A unique characteristic of mass imbalance are periodic 1P torque
loads, which excite torsional modes of the drivetrain. For this reason
the 1P-amplitude of the main shaft speed is proposed as an identifier
for mass imbalances, however, in practice the signal sensitivity is
relatively low due to environmental influences and controller effects.
Only at cut-in wind speeds (EC1) this criterion was shown to be robust
and able to identify 10 out of 18 of test cases. A benchmark linear
discriminant analysis (LDA) classifier representative for a fully data-
driven approach showed significantly higher classification performance
for both mass imbalance and yaw misalignment. However, the success
of this approach relies on the availability of training data of faulty
conditions, which in practice is rarely the case.

From these results it can be concluded that the SCADA signals na-
celle side-side acceleration (𝑎𝑁𝑎𝑐,𝑌 ) and rotor speed (𝜔𝑅𝑜𝑡) in combina-
tion with the CMS signal gearbox housing velocity (𝑣𝐺𝐵,𝑌 ) are suitable
to detect and classify the three considered rotor imbalance types, at
least at lower wind speeds. For practical implementation in operating
turbines it is recommended to apply the change detection framework
presented in this paper, as it has very low requirements. Only the
normal behaviour model of healthy conditions must be established from
historical measurements. However, some method limitations have to
be considered including lower accuracy than data-driven methods, the
inability to estimate the fault severity, the required signal resolution of
1 Hz and the limited operational range near cut-in wind speeds.
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• 10 min averaging of SCADA data results in a significant loss of infor-
mation.

• The state estimation uncertainty is driven by estimating the unknown
rotor torque.

• The uncertainty in the system parameters is highest at cut-in and rated
wind speed.

• The model uncertainty originates from neglecting non-torsional dynam-
ics
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Abstract

This article presents a systematic assessment of the uncertainty in digital
twins for load and fatigue monitoring in wind turbine drivetrains. The un-
certainty in the measurement input, the reduced order drivetrain models and
the model updating methods are investigated. A statistical analysis is con-
ducted on gear and bearing load measurements from numerical studies with
5 and 10 MW drivetrain models and from field measurements of a 1.5 MW
research turbine. The uncertainty is quantified using lognormal distributions
and limitations of digital twin are discussed such as the measurement uncer-
tainty in 10 min averaged SCADA data, the uncertainty in estimating the
unknown rotor torque, and the modelling errors in torsional reduced order
drivetrain models. This study contributes to a deeper understanding of the
origin and the effects of uncertainty in digital twins and delivers a foundation
for further reliability and risk assessment studies.

Keywords: Digital twin, wind turbine drivetrain, uncertainty, fatigue
assessment, reduced order model, virtual sensing

1. Introduction

Offshore wind turbine installations are projected to accelerate rapidly in
the near future driven by better wind resources and higher social acceptance
rates compared to onshore sites [1]. However, a major economic limitation
of offshore wind turbines are high operational and maintenance expenditures
(OPEX), which amount to about 34 % of the levelized cost of energy (LCOE)
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[2]. These are caused by lower reliability due to harsher environmental condi-
tions and time-consuming replacement or repair due to difficulties accessing
the site and dependency on good weather conditions. A major contributor to
the OPEX is the geared drivetrain with frequent failures and long downtimes
and is thus the subject of current research [3].
Digital twin (DT) is an emerging technology with prospects of decreasing
the OPEX and improving the market competitiveness of offshore wind farms.
The wind turbine drivetrain DT proposed by the authors in [4] would enable
monitoring drivetrain loads and fatigue damage at otherwise inaccessible lo-
cations such as bearing and gear contacts using “virtual sensors”. A DT
framework with the three components data, virtual model and decision sup-
port is envisioned for this objective (Fig. 1). The Data comprise continuous
data streams provided by the supervisory control and data acquisition sys-
tem (SCADA) and the condition monitoring system (CMS), the data history
including the load history and the accumulated fatigue damage, asset in-
formation such as the drivetrain topology, and general domain knowledge
on drivetrain physics. The virtual model refers to physics-based models to
simulate internal drivetrain dynamics. Reduced order models (ROMs) are
derived from high-fidelity multibody simulation (MBS) models for the pur-
pose of real-time simulation. The virtual model and its physical counterpart
are synchronized with real-time field measurements using model updating
techniques. State estimators such as Kalman filters are applied to infer the
dynamic states of the drivetrain at small time intervals, given by the sensor
sample frequency of 200 Hz. System identification methods are used to esti-
mate system parameters such as inertia, stiffness and damping parameters,
as a means to validate values provided by gearbox manufacturers or to track
long-term parameter variations due to faults, material degradation or other
mechanisms. Therefore it is sufficient to update the model parameters at
longer time intervals, here set to 10 min. The model updating, also referred
to as data fusion or digital twinning, is essential as it facilitates the use of vir-
tual sensors in the synchronized model. The virtual sensor measurements are
converted to value-adding information for the turbine operator in the com-
ponent called decision support. The focus lies on long-term fatigue damage
and remaining useful life (RUL) assessment of drivetrain components, which
is necessary to advance from corrective to predictive maintenance strategies.
In previous numerical and field studies the proof of concept of the DT frame-
work could be demonstrated [4][5], however, there remain research questions
on the sources and the magnitude of the the virtual measurements’ uncer-
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tainty. Uncertainty is present in the DT’s data input due to the stochastic
nature of wind and wave loads, as well as in the load and fatigue calculations
due to the limitations of the DT model.
The uncertainty in long-term fatigue damage calculation of wind turbine
drivetrains is addressed in several studies on reliability-based design [6][7][8].
Nejad et al. presents a method for fatigue analysis for gear tooth root bend-
ing and differentiate between the uncertainty in the aeroelastic model, the
drivetrain model and the fatigue damage model [6]. The uncertainty is char-
acterized by lognormal distributions with standard deviation values ranging
from 0.01 for the drivetrain model to 0.1 for the aeroelastic model. Li et
al. present a study on reliability-based design optimization of gear profiles
and consider the uncertainty of the wind conditions with a joint probability
density function of the wind speed and turbulence intensity [7]. Dong et al.
further consider model uncertainties in a wide range of drivetrain and fatigue
model parameters [8].
The aforementioned studies are focused on the design of wind turbine driv-
etrains, where the aleatory uncertainty in the unknown environmental con-
ditions is most influential. For DTs of operating wind turbines the challenge
shifts from aleatory uncertainty towards epistemic uncertainty, since the en-
vironmental conditions and the dynamic system response are continuously
estimated using real-time measurements and state estimation methods. The
epistemic uncertainty of such methods has not yet been investigated system-
atically, as this approach is relatively novel in the field of wind energy. The
presented study bridges this gap and contributes to a better knowledge of
the origin, the magnitude and the distribution shape of the uncertainty in
DTs for fatigue damage monitoring.
The remainder of this article is structured as follows: Sec. 2 presents the
methodology of the DT framework for fatigue damage monitoring and de-
fines the numerical and experimental case studies for uncertainty assessment.
Sec. 3 discusses the uncertainty in different DT components and their impact
on long-term fatigue damage. Concluding remarks are provided in Sec. 4.

2. Methodology

2.1. Definition of uncertainty

The proposed DT framework comprises several interacting models and
data processing algorithms, each of which introduce characteristic uncertain-
ties. These uncertainties are grouped into the categories of measurement,
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Figure 1: Digital twin framework for continuous remaining useful life estimation in wind
turbine drivetrain components and sources of uncertainty. [4].

state estimation, system identification, model and fatigue damage uncer-
tainty. The measurement uncertainty χmeas originates from poor sensor data
quality due to measurement noise, sensor failure or the low sampling fre-
quency, which imposes a frequency limit on the observable drivetrain load
spectrum. Only the latter is investigated in this study, since simulation mea-
surements are used. The measurement uncertainty is defined here as the
ratio of the true generator torque TGen to the measured generator torque
T̄Gen. The true generator torque is sampled from simulation measurements
at 200 Hz, which is sufficient to reflect all relevant drivetrain dynamics, while
the measured generator torque is obtained by averaging the simulation mea-
surements in 1 s or 10 min intervals, which is the typical resolution of SCADA
data.

χmeas =
TGen

T̄Gen

(1)

The state estimation uncertainty χSE refers to errors caused by the Kalman
filter algorithm. The Kalman filter fuses uncertain information from mea-
surements and model predictions and is the optimal state estimator in case
of white Gaussian measurement and process noise. However, this assumption
is not valid here since the unknown rotor torque modelled as process noise
exhibits non-uniformity such as peaks at characteristic excitation frequencies
(1P, 3P, ...). It is therefore expected that use of Kalman filter introduces an
additional uncertainty in the drivetrain case. This uncertainty is defined as
the ratio of the true dynamic states x to the states estimated by Kalman
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filtering x̂.

χSE =
x

x̂
(2)

The system identification uncertainty χSI reflects the error that is introduced
by the inverse methods to estimate the system’s inertia, stiffness and damping
matrices Ĵ , K̂, Ĉ and is defined as the ratio of the true system parameters θ
to the estimated parameter set θ̂.

χSI =
θ

θ̂
(3)

The model uncertainty χmodel refers to to the limitations of the DT model
to simulate all relevant drivetrain dynamics. ROMs with a limited number
of torsional DOFs are considered, which are unable to capture non-torsional
drivetrain dynamics such as shaft bending modes or complex torsional dy-
namics such as gear meshing. The error caused by the model complexity
reduction is described with the model uncertainty and defined as the ratio of
the drivetrain loads F, F̂ calculated with the FOM and the ROM, respectively

χmodel =
F

F̂
(4)

The uncertainty of the fatigue damage model, χD as shown in Fig. 1, in-
cluding the stress cycle counting method and the S-N curves is related to
the material and fatigue testing which is out the scope of this numerical case
study.

2.2. Numerical case studies

Two numerical case studies with the National Renewable Energy Labo-
ratory (NREL) 5 MW baseline turbine [9] and the DTU 10 MW reference
turbine are conducted [10]. The best practice for dynamic drivetrain simula-
tion is the decoupled analysis approach, where the ”global“, structural blade
and tower dynamics and the ”internal“ drivetrain dynamics are simulated
separately [6]. The global system response is simulated first with an aeroe-
lastic model and the resultant main shaft loads and nacelle motions are then
imposed as boundary conditions on the drivetrain model. This procedure is
motivated by the fact that the global dynamics are governed by aerodynamic
excitations and occur at low frequencies (< 10Hz), while much higher fre-
quencies such as gear meshing frequencies at > 100Hz need to be considered
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for the drivetrain dynamics. The simulation cases are designed according to
the IEC 61400-1 requirements for long-term fatigue analysis. Twelve wind
speed cases ranging from cut-in wind speed of 3 m/s to cut-out wind speed
of 25 m/s are considered. One case of turbulence intensity is considered and
modelled with the IEC turbulence classes A. Only one case of wave height
and wave period are considered, since the drivetrain bearing and gear loads
are reportedly insensitive to the sea state. The primary effect of harsher sea
states can be observed in increased axial loads induced by pitch motions,
which are compensated by the main bearings in a four-point suspension and
do not propagate further into the drivetrain [11]. Each environmental con-
dition (EC) is simulated for one hour with six different random realizations
(seeds) of turbulent wind fields.

Table 1: Environmental conditions for simulation with global and drivetrain models.
Wind speed [m/s] 3...25
Turbulence intensity [-] IEC class A
Wave height [m] 5
Wave period [s] 12
Simulation length [s] 6× 3600

2.3. Global models

The global wind turbine dynamics are simulated with open source aeroe-
lastic models of the NREL 5 MW and DTU 10 MW reference turbines
mounted on the OC4 and Nautilus semisubmersible platforms, respectively
[12][13]. The models are implemented in the aeroelastic code OpenFAST that
comprises of computational modules for calculation of the aerodynamics, hy-
drodynamics, structural dynamics and wind turbine control [14]. The aero-
dynamics are calculated with blade element momentum (BEM) theory, where
the turbulent wind field is generated with the Kaimal turbulence model. The
structural dynamics of the blades and the tower are based on Timoshenko
elastic beam theory. The incident wave loads on the floater are modelled
with a Jonswap spectrum. A variable-speed controller is implemented for
the 5 MW and the 10 MW model.

2.4. Full order drivetrain models

Multibody simulation (MBS) models of the NREL 5 MW and DTU 10
MW reference turbine serve as benchmark in this study [15][16]. The MBS
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Figure 2: Topology and component nomenclature of the NREL 5MW and DTU 10MW
drivetrain models.

models are developed according to best practices and current model fidelity
guidelines [17] and are thus considered as full order models (FOMs). Both
FOMs have similar topology and comprise a four-point suspension for the
main shaft and a gearbox with two planetary gear stages and one parallel
gear stage (Fig. 2). However, the 5 MW model represents a high-speed
gearbox with a gear ratio of 1:96.354, while the 10 MW model represents
a medium-speed gearbox with a gear ratio of 1:50.039. The FOMs allow
shaft motion in all six degrees of freedom (DOF) and consider the flexibil-
ity in the main shaft and the planet carriers. The bearings and the torque
arm bushings are modelled as linear spring-damper connections in six DOF
with diagonal stiffness and damping matrices. The gear compliance is mod-
elled with a time-invariant mesh stiffness function capable of emulating gear
meshing excitations. The input loads simulated with aeroelastic models are
imposed on the main shaft, while the generator shaft speed is controlled with
a PI-controller.

2.5. Reduced order drivetrain models

Reduced order models (ROMs) are preferable as DT models due to the
high computational costs in real-time monitoring applications [18]. The com-
plexity of DT models is also limited by the observability requirement of the
state estimator. The state estimator that is used to match the dynamics
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of the DT model with the physical turbine requires that all dynamic states
are observable with the available measurement input. The SCADA mea-
surements of the main and generator shaft speeds allow the observation of
torsional drivetrain modes. Bending and lateral drivetrain modes are observ-
able with CMS accelerometers mounted on the gearbox housing, however the
sensitivity is relatively low due to measurement noise and the observation
function is complex due to the transfer path of the vibration through the
housing [18]. For this reason, the ROMs are limited to torsional degrees of
freedom (DOF) only. Lumped parameter models with one and two torsional
DOFs are considered. The input torques at each gear stage Tin,k are calcu-
lated with the torsional ROMs and then further used to determine local gear
and bearing forces (Sec. 2.5.3).

2.5.1. Rigid one degree of freedom ROM

The first ROM represents a rigid, torsional model with one degree of
freedom (DOF). The flexibility of shafts and gear contacts are neglected,
which yields direct coupling of the angular shaft velocities ωk and input
torques at each gear stage Tin,k via the gear ratios ik

ωRot = ωin,2/i1 = ωin,3/i1/i2 = ωGen/i1/i2/i3

Tin,1 = i1Tin,2 = i1i2Tin,3 = i1i2i3TGen

(5)

The rigid ROM is advantageous, in that it does not require inertia, stiffness
or damping parameters for model construction and validation, which min-
imizes the uncertainty associated with system identification techniques for
parameter estimation (χSI). In addition, it is not necessary to apply state
estimation methods, since the gear stage torques and thus all drivetrain loads
are directly observable with the measured generator torque, which reduces
state estimation uncertainties (χSE).

2.5.2. Flexible two degree of freedom ROM

The second ROM introduces one additional torsional DOF and is able to
represent the first torsional mode. However, this model assumes knowledge
of inertia, stiffness and damping parameters, which may be estimated via
system identification techniques. The flexibility of all drivetrain components
are lumped into a scalar drivetrain stiffness kDT , while the torsional inertias
are lumped into either the rotor inertia JRot or the generator inertia JGen.
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The equations of motion are then given by

Jϕ̈+Cϕ̇+Kϕ+ f = 0 (6)

where J denotes the inertia matrix, C is the damping matrix, K is the
stiffness matrix, f is the external force vector and ϕ are the independent
dynamic states

J =

[
JRot 0
0 JGen

]
,C =

[
cDT −cDT/iDT

−cDT/iDT cDT/i
2
DT

]
,K =

[
kDT −kDT/iDT

−kDT/iDT kDT/i
2
DT

]

ϕ =

[
ϕRot

ϕGen

]
, f =

[
−TRot

TGen

]
,

(7)

The gear stage input torques are still coupled and only a function of the rotor
and generator shaft angular positions ϕ

Tin,1 = i1Tin,2 = i1i2Tin,3 = [cDT , −cDT/iDT ]ϕ̇+ [kDT , −kDT/iDT ]ϕ (8)

2.5.3. Bearing and gear forces

The gear forces are determined with free body diagrams and moment
balances as a function of the gear stage input torques. Dynamic effects of
planet load sharing are not considered at the planetary gear stages, hence the
gear stage torque is distributed equally among the number of planets NPL.
Furthermore, the gear forces at the ring-planet and the sun-planet contacts
are assumed to be equal. The circumferential (z-direction) gear forces Ft are
then obtained as follows

Ft,1 = Tin,1 · i1/rb,S,1/NPL,1

Ft,2 = Tin,2 · i2/rb,S,2/NPL,2

Ft,3 = Tin,3/rb,G,3

(9)

where rb are the base radii of the first and second stage sun and of the third
stage gear wheel. The remaining gear force components in x- and y-direction,
the axial and radial gear force components Fa, Fr, are determined with the
tangential pressure angle αt and helix angle β. The planetary gear stage is
modelled with spur gears (β = 0), while the parallel gear stage is modelled
with a helix angle of β = 10◦

Fr = Ft tan(αt)/ cos(β)

Fa = Ft tan(β)
(10)
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At the planetary gear stages the radial bearing forces Frad are directly pro-
portional to the circumferential gear forces with the assumption of negligible
gravity forces.

Frad,PL−A = 2 · Ft,1

Frad,IMS−PL−A = 2 · Ft,2

(11)

At the helical gear stage the radial bearing forces are derived with moment
balances

Frad =
√

F 2
y + F 2

z (12)

where

Fy,IMS−A = −Fr
dIMS−B − dW

dIMS−B − dIMS−A

+ Fa
rp,W

dIMS−B − dIMS−A

Fy,IMS−B = −Fr
dW − dIMS−A

dIMS−B − dIMS−A

− Fa
rp,W

dIMS−B − dIMS−A

Fy,HSS−A = Fr
dHSS−B − dP

dHSS−B − dHSS−A

+ Fa
rp,P

dHSS−B − dHSS−A

Fy,HSS−B = Fr
dP − dHSS−A

dHSS−B − dHSS−A

− Fa
rp,P

dHSS−B − dHSS−A

(13)

Fz,IMS−A = −Ft,3
dIMS−B − dW

dIMS−B − dIMS−A

Fz,IMS−B = −Ft,3
dW − dIMS−A

dIMS−B − dIMS−A

Fz,HSS−A = Ft,3
dHSS−B − dP

dHSS−B − dHSS−A

Fz,HSS−B = Ft,3
dP − dHSS−A

dHSS−B − dHSS−A

(14)

The axial gear force component of the helical high-speed gear stage is sup-
ported by the HSS-B and IMS-B bearings.

Fax,IMS−B = Fa

Fax,HSS−B = −Fa

(15)

2.6. Experimental case study

The simulation measurements are partially validated with field measure-
ments of the department of energy (DOE) 1.5 MW research turbine located
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at the National Renewable Energy Laboratory (NREL) [19]. The DOE 1.5
MW turbine is equipped with a commercial Winergy PEAB 4410.4 high-
speed gearbox with similar three stage topology as the above simulation
models. The dataset, originally collected for the analysis of cage and roller
slip in the HSS-A bearing [20], is repurposed for this study. The original
sample frequency of 5 kHz necessary to observe slip dynamics restricted the
measurement duration and as a result the total recorded data amounts to
only about 30 min. Nonetheless, the full wind spectrum is covered, which
allows for comparison with simulated data.
The loading of the HSS is fully determined with three shaft mounted strain
gauge bridges, one for measuring torque and two 90-degree offset bridges for
measuring bending moments. The forces at the HSS-A bearing are calculated
with the torque T and bending moment measurements My,Mz [20]

Fy,HSS−A =
1

dB − dHSS−A

[−Mz − T/rb(dB − dP ) sin β]

Fz,HSS−A =
1

dB − dHSS−A

[−My − T/rb(dB − dP ) cos β]
(16)

These measurements are considered FOM bearing load measurements, since
all relevant torsional and shaft bending dynamics are captured. The FOM
loads are set in relation to the ROM loads calculated solely with torque
measurements and the rigid ROM (eq. 14) to assess the model uncertainty.

2.7. State and input estimation

The DT model is synchronized with the operating wind turbine at regu-
lar time intervals ∆t such that gear and bearing loads can be measured with
”virtual sensors” in the synchronized model. The challenge lies in the in-
complete and noisy measurements of both the dynamic states and the input
forces, which poses a joint state and input estimation problem. The measure-
ments of the dynamic states, the shaft angular velocities and positions, are
corrupted with measurement noise, while the input forces at the main shaft
are unknown; only the generator side torque is measured. The augmented
Kalman filter is applied here as an joint state and input estimator, as it is
the optimal estimator for dynamic systems governed by linear, stochastic
equations subjected to white Gaussian process and measurement noise. For
this purpose the equations of motion of the flexible ROMs are first brought
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Figure 3: Forces at the HSS.

into discrete state-space representation

xn+1 = Fdxn +Gd
kuk,n +Gd

uuu,n +wn, (17)

yn = Hdxn + vn, (18)

where the state vector x is obtained by stacking the shaft angular positions
and velocities, the input forces u are split into the known generator torque
uk and the unknown rotor torque uu, the measurement vector y contains the
rotor and generator shaft speeds, the unknown dynamic component of the
rotor torque is considered white Gaussian process noise w with covariance
Q, and v is white Gaussian measurement noise with covariance R

x := [ϕ ϕ̇]T

uk := TGen

uu := TRot

y := [ϕ̇Rot, ϕ̇Gen]
T

w ∼ N (0,Q)

v ∼ N (0,R)

(19)
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The system matrix Fd, the input matrix Gd and the observation matrix Hd

of the discrete state-space model are calculated as follows

Fd = exp(Fc∆t), (20)

Gd =
[
Gd

k Gd
u

]
= (Fc)−1(Fd − I

2N×2N)[Gc
k Gc

u] (21)

Hd =
[
0N×N IN×N

]
(22)

where N denotes the model’s DOF, 0 is the null matrix, I is the identity
matrix, and Fc, Gc

k, G
c
u and Hc are the matrices of the continuous state

space model

Fc =

[
0N×N IN×N

−J−1K −J−1C

]

Gc
k =

[
01×2N−1 1/JGen

]T

Gc
u =

[
01×N −iDT/JRot 01×N−1

]T

Hc = Hd

(23)

For the purpose of simultaneous state and input estimation, the state vector
x is expanded with the unknown input force uu, yielding the state-space
representation with the augmented state vector xa = [x uu]

T.

xa
n+1 = Fxa

n +Gkuk,n +wn, (24)

yn = Hxa
n + vn, (25)

where the system matrix F, the input matrix G and the observation matrix
H of the augmented state space model are calculated as follows

F =

[
Fd Gd

u

01×N 1

]
(26)

G =

[
Gd

k

0

]
(27)

H =
[
Hd 0N×1

]
(28)

The Kalman filter produces the state estimates x̂ in a two-step algorithm,
comprising of the prediction step and the measurement update step.

x̂a
n|n−1 = Fx̂a

n−1|n−1 +Gun−1, (29)

P̂n|n−1 = Fx̂a
n−1|n−1F

T +Q. (30)
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Mn = P̂n|n−1H
T(HP̂n|n−1H

T +R)−1, (31)

x̂a
n|n = x̂a

n|n−1 +Mn(yn −Hx̂a
n|n−1), (32)

P̂n|n = (I−MnH)P̂n|n−1. (33)

2.8. System identification

System identification methods are applied to continuously update the
model properties to ensure the convergence of the virtual model and the phys-
ical wind turbine’s dynamic behaviour. The rotor inertia, generator inertia,
drivetrain torsional stiffness and damping are considered time-variant param-
eters to reflect long-term changes of the physical wind turbine. The rotor
inertia may increase due to the accretion of dirt, moisture and ice, or decrease
as a result of leading edge erosion or similar damages. The drivetrain stiffness
and damping values are affected by material fatigue and localized faults such
as spalls or tooth root cracks. The second line of the equations of motion
(Eq. 2.5.2) is used to estimate the parameter set θ = [JGen, cDT , kDT , α0],
since the boundary conditions are fully determined here by measurements of
the generator torque. The following least-squares optimization problem is
then formulated

θ̂ = argmin
θ

||JGenϕ̈Gen − cDT/iDT α̇− kDT/iDT (α− α0) + TGen||22 (34)

The generator shaft acceleration ϕ̈Gen is obtained by numerical differentia-
tion of the measured SCADA generator shaft speed. The drivetrain torsion
defined as α = ϕRot − ϕGen/iDT is calculated by numerical integration of
the shaft speeds. As a result of the numerical integration of noisy signals, a
runaway trend or sensor drift is observed, which is removed via MATLAB’s
detrend function. Furthermore, the initial state α0 of the integrated signal
is unknown and therefore added to the parameter set of the optimization
problem. The optimization problem is solved for 10 min time sections at
each EC using a least-squares solver.
Unfortunately, the same procedure cannot be employed to obtain the remain-
ing parameter, the rotor inertia JRot, since the rotor torque is typically not
measured by SCADA systems, which leaves the rotor side equations of mo-
tion undefined (Eq. 2.5.2). Operational modal analysis (OMA) techniques
are used instead. The first torsional natural frequency f̂N is estimated using
peak finding algorithms in the frequency spectrum of the drivetrain torsion
signal α. Since the natural frequency is a function of the drivetrain inertia
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and stiffness, one may solve for the unknown rotor inertia as follows

Ĵeq =
k̂DT

(2πf̂N)2

ĴRot = (1/Ĵeq − 1/ĴGen/iDT )
−1

(35)

2.9. Fatigue damage

The gear and bearing fatigue damage is based on the gear tooth root stress
calculation of ISO 6336 [21] and the nominal bearing life calculation of ISO
281 [22]. The gear tooth root stress s is determined from the circumferential
gear force Ft, the flank width b, the normal modul mn and the modification
factors Y and K [21]

s =
Ft

bmn

YSYFYβYBYDTKAKVKFβKFαKγ (36)

The pendant for bearings is the equivalent dynamic load P that is defined
for for cylindrical roller bearings (CRB) and tapered roller bearings (TRB)
as follows [22]:

for CRB: P = Frad (37)

for TRB: P =

{
Frad + Y1Fax, if Fax/Frad ≤ e

0.67Frad + Y2Fax, otherwise
(38)

where Y1, Y2, e are bearing-specific parameters.
The load duration distribution (LDD) method is used as stress cycle counting
method for components in rotating machinery that experience cyclic loading
due to entering and exiting the load zone [6]. The LDD method counts one
stress cycle per shaft revolution and distributed the cycles ni into 64 bins of
increasing stress range. The permissible stress cycles Ni for each stress range
is modelled with S-N curves for gear tooth root fatigue

Ni = Kc s
−m
i (39)

where m = 6.225 and Kc = 1024.744 [6], and the nominal bearing life equation
for bearing fatigue [22]

Ni = 106
(
C

Pi

)m

(40)
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where C is the basic dynamic load rating and m = 10/3 for roller bearings.
The short-term fatigue damage is then calculated for 10 min time sections
by summation of all stress range bins

DST =
∑

i

ni/Ni (41)

The long-term fatigue damage DLT for the nominal life time of 20 years
is extrapolated from the short-term fatigue damage by weighting with the
wind speed probability density function f(uk). A representative wind speed
distribution measured at Anholt, Denmark is selected.

DLT =
20 year

10 min

∑

k

f(uk)D
ST
k (42)

3. Results and discussions

3.1. Choice of uncertainty distribution

The first step in the statistical analysis of the uncertainty in DTs is the
identification of the distribution types, which are of importance in reliability
and risk assessment studies. A common assumption is to use lognormal dis-
tributions for representing model uncertainties [6][8]. The numerical results
of the measurement, state estimation, system identification and model uncer-
tainty are fitted with fourteen different statistical distributions and ranked
according their goodness of fit given by the coefficient of determination R2.
Fig. 4 shows the R2-values of the six best performing distributions aggre-
gated for all EC of the 5 MW case study. The results are inconclusive as
to which distribution is best suited, but it can be stated that the lognormal
distribution yields a reasonable fit of R2 > 0.9 for all types of uncertainty in
DTs. The further statistical analysis is continued with lognormal distribu-
tions to maintain the comparability with other publications.

3.2. Measurement uncertainty

The first source of uncertainty in the proposed load and fatigue monitor-
ing approach originates from the the low temporal resolution of the SCADA
data input. Typical SCADA systems operate with sampling frequencies of 1
Hz, but store the data only as 10 min averages, which has already been iden-
tified as a limiting factor for monitoring approaches. The generator torque
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Figure 4: Goodness of fit of different distribution shapes for the measurement, state
estimation, system identification and model uncertainty, aggregated for all ECs of the 5
MW case study.

reportedly has the fastest decaying autocorrelation out of all SCADA signals,
which results in a large loss of information when using time averaged signals
[23]. This motivated efforts in the industry to adopt high frequency (1 Hz)
SCADA systems; however, even a sampling frequency 1 Hz is arguably insuf-
ficient to fully capture drivetrain dynamics, since the first torsional natural
frequency and internal excitation frequencies such as gear meshing frequen-
cies lie well above the Nyquist frequency of 0.5 Hz. The effects of this are
illustrated in Fig. 5, which shows the standard deviation σχmeas of the fitted
measurement uncertainty χmeas resulting from either 1 s or 10 min averag-
ing of the generator torque input. The measurement uncertainty of 10 min
data is particularly high below rated wind speed and reaches values of up to
0.75 near cut-in wind speed. In wind turbines with variable-speed controllers
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Figure 5: Standard deviation of fitted lognormal distributions for measurement uncertainty
as a function of wind speed.

this operational regime is characterized by a high variance in the drivetrain
torque, which is not reflected in 10 min averaged data. The uncertainty of
1 Hz data only amounts to only about 0.03 for most operational conditions
with the exception of cut-in wind speeds, which suggests that this resolu-
tion is sufficient to observe low-frequency (< 0.5 Hz) load variations due to
the wind speed volatility. The remaining uncertainty is related to neglect-
ing higher frequency dynamics such as torsional drivetrain modes. Based on
these results it a measurement resolution of at least 1 Hz is recommended
for load and fatigue damage monitoring in wind turbine drivetrains.

3.3. State estimation uncertainty

The second source of uncertainty is also related to the limitations of the
SCADA measurements, in that the rotor torque is typically not measured
and must be estimated indirectly using the augmented Kalman filter as joint
input-state estimation method. The error in the estimated rotor torque is
described by the state estimation uncertainty χSE. Fig. 6 shows the standard
deviation of χSE from numerical case studies with the 5 MW and 10 MW
model at different ECs. Particularly high uncertainty is observed around cut-
in wind speeds, which can be attributed to start-up and shut-down effects.
At normal power generation the uncertainty is limited to values of 0.07 and
0.04 for the 5 MW and 10 MW turbine, respectively. A slightly higher error
is observed with the 5 MW model, which is also apparent in the frequency
spectra and time series shown in Fig. 7. The rotor torque estimates for the
10 MW turbine show a good agreement in the low-frequency range and at
the peaks of the first torsional natural frequency (2.08 Hz). For the 5 MW
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Figure 6: Standard deviation of fitted lognormal distributions for state estimation uncer-
tainty as a function of wind speed.

turbine, on the other hand, the rotor torque is underestimated at the first
torsional natural frequency (1.7 Hz) and at higher order modes.

3.4. System identification uncertainty

The third source of uncertainty originates from the aleatory uncertainty
of the system properties, for instance, the rotor inertia may vary due to ice
accretion or leading edge erosion and the drivetrain stiffness may decrease
due to tooth root cracks or spalling. System identification methods are ap-
plied to detect these changes and update the model parameters accordingly,
nonetheless, a small uncertainty of epistemic nature remains due to method
limitations, referred to as the system identification uncertainty χSI . The
system identification uncertainty in the parameters JRot, JGen, kDT , cDT is in-
vestigated in numerical case studies with the 5 MW and 10 MW models.
The numerical results are shown in Fig. 8 as the mean and the standard de-
viation of the fitted lognormal distributions across all ECs. The uncertainty
in the inertia and stiffness parameter estimation shows similar behaviour.
Local maxima in the bias and variance are observed near cut-in (5 m/s) and
near rated wind speeds (11-13 m/s), while the minimum is located at cut-out
wind speed (25 m/s). It appears that the quasi-stationary conditions in the
torque controlled operational regime above rated wind speeds are conducive
to accurate parameter estimation, while the transient dynamics at rated wind
speeds due to activation and deactivation of the pitch controller introduce
higher estimation errors.
Contrary to the inertia and stiffness estimates, the damping parameter esti-
mates show significantly higher uncertainty reaching values of up to σ > 0.55.
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Figure 7: True and estimated rotor torque Trot, T̂rot using joint state-input estimation
methods. Shown are the PSD frequency spectrum and the time series at EC8

This finding is in agreement with recent studies on drivetrain model valida-
tion, where it is reported that the estimation of damping values by OMA
techniques is challenging due to the low parameter sensitivity [24]. The
damping parameter has outside of the resonance area, at the considered op-
erational conditions a small influence on the dynamic response.

3.5. Model uncertainty

Lastly, the model uncertainty χmodel is investigated, which characterizes
the uncertainty in the calculated bearing and gear loads due to modelling
errors and the complexity reduction of the ROMs. The discussion is divided
into a frequency analysis (Sec. 3.5.1), the analysis of the model bias (Sec.
3.5.2) and the analysis of the dynamic model error (Sec. 3.5.3).
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Figure 8: Mean and standard deviation of fitted lognormal distributions for system iden-
tification uncertainty as a function of wind speed.

3.5.1. Characterization of drivetrain dynamics

A frequency analysis of the simulated drivetrain loads is conducted to
identify which aspects of the drivetrain dynamics the ROMs are able to rep-
resent well and which aspects are sources of uncertainty. The drivetrain
dynamics can be generally characterized as dynamic responses to a variety
of both internal and external excitations. These excitations can be further
differentiated into torque and non-torque loads, i.e lateral forces and bending
moments (Tab. 3.5.1).
External excitations are mainly the result of aerodynamics and are prevalent
at low frequencies. Aerodynamic imbalance is present in healthy conditions
due to turbulence, wind shear, the vertical wind profile and the rotor axis
tilt, or caused by faulty yaw and pitch misalignment. This results in periodic
load variations in the rotor torque, thrust and bending moments at the rotor
frequency 1P [5]. The tower shadow is also known to induce similar torque
and non-torque excitations at the blade passing frequency 3P.
The system boundaries of the drivetrain models cut through the rotor hub
and the yaw bearing, hence, all structural dynamics of the blades and the
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Table 2: Type of excitations and characteristic frequencies in wind turbine drivetrains
Torque Non-Torque

External Aerodynamic imbalance (f1P ) Aerodynamic imbalance (f1P )
Tower shadow (f3P ) Tower shadow (f3P )
Blade edgewise modes (fN ) -
- Blade flapwise modes (fN )
- Tower bending modes (fN )

Internal Planet carriers (fplc) Planet carriers (fplc)
Gear meshing (fgm) Gear meshing (fgm)
- Bearings (fbpf )

tower are considered as external excitations. These are simulated with the
global aeroelastic models and the resulting main shaft loads and tower mo-
tions are applied as boundary conditions in the drivetrain models. The de-
formation of the blades with edgewise bending modes translates to torque
excitations at the main shaft, while flapwise bending modes cause primarily
non-torque excitations. Similarly, fore-aft and side-side tower bending intro-
duces excitations in the thrust and bending moments.
Internal excitations are caused by periodic changes of component stiffnesses
and occur generally at much higher frequencies. Gear mesh excitations are
a result of the changing number of tooth contacts during one meshing cy-
cle. Gear meshing primarily results in periodic variation of the transmitted
torque, but may also have non-torque components in helical gear stages.
Bearing excitations are caused by roller elements passing the load zone and
result in non-torque excitations at the ball passing frequencies. Further inter-
nal excitations are observed at the planet carrier rotational frequencies. Shaft
misalignment, mass imbalance or non-torque loading may result in bending
of the flexible planet carrier and in skewing of the load distribution between
planets, such that each planet bearing experiences periodic load changes dur-
ing one planet carrier revolution.
The characteristic excitations are observable in the power spectral densi-

ties (PSD) of the bearing loads (Fig 9). Shown are the simulated bearing
loads at each gear stage for EC8 (17 m/s) using the FOM and the rigid
and flexible ROM. The rigid ROM exhibits a good agreement in the lowest
frequency range (< 1 Hz) governed by wind and wave load excitations, but
generally underestimates higher frequency dynamics, as it is only considering
rigid body modes. The flexible ROM achieves more accurate load estimates
by inclusion of the first torsional drivetrain mode. It is able to match the
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Figure 9: Power spectral densities of bearing radial loads simulated with the 5 MW FOM,
rigid ROM and flexible ROM at EC8.

peaks of external excitations such as the first collective edgewise blade bend-
ing mode (fN1) and higher order modes. The internal dynamics are captured
reasonably well with a good agreement in the second stage gear meshing fre-
quency (fgm2). However, some discrepancies remain in the first stage gear
meshing frequency peak (fgm1) and in the planet carrier excitations (fplc1,
fplc2) visible at the first and second stage planet bearings (PL-A, IMS-PL-A).
These suggest the presence of non-torque loads at the planet carriers. The
investigated 5 and 10 MW drivetrain models are designed with a four-point
main bearing suspension, where it is generally assumed that all non-torque
loads of the rotor are fully compensated by the main bearings, but it appears
that this is not the case and that non-torque loads partially propagate further
downwind into the drivetrain. The results showcase the limitations of tor-
sional ROMS and suggest that a significant source of uncertainty originates
from neglecting planetary carrier bending modes.
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3.5.2. Model bias

The focus of the statistical analysis lies first on the model bias, which
is quantified by the mean value of the fitted model uncertainty distribution.
Values of greater than one represent consistent underestimation of drivetrain
loads by the ROMs and vice versa for values smaller than one. Shown in
Fig. 10 are the model biases of the rigid and flexible ROM in numerical and
experimental case studies. The field measurements are only available for the
HSS-A bearing. The highest biases are observed near cut-in wind speeds
(5 m/s), which can be associated with start-up and shut-down effects. At
higher wind speeds (> 7m/s) the environmental conditions have a marginal
influence on the model bias. Significant biases of up to 0.46 are observed at
the high-speed gear stage. The loads at the upwind HSS-A and IMS-A bear-
ings are consistently underestimated, while the loads at the downwind HSS-B
and IMS-B bearings are overestimated. One reason for these discrepancies
could lie in the physical simplifications of the ROMs, which reduces the gear
contact force to a singular vector along the line of action. The load distri-
bution along the gear flank is not considered and thus the bending moments
resulting from inhomogeneous load distributions are neglected. Other au-
thors introduce a ”twist stiffness” perpendicular to the circumferential gear
meshing stiffness to account for the load distribution [25]. However, in this
approach the solution requires knowledge of gear and bearing stiffness pa-
rameters, which are difficult to determine and validate in practice. Another
factor could be the assumption of open-ended shafts that do not allow the
transfer of non-torque loads. In the FOMs this is not the case, since the
generator coupling at the HSS and the sun-planet gear contact at the IMS
allow the transfer of shear forces. These could skew the HSS and IMS bear-
ing loads and further contribute to the model bias. The persistence of model
biases in such analytical ROMs is further supported with field measurements
of the DOE 1.5 MW turbine. The measured model bias is independent of the
EC and amounts to about 0.15, which is of similar magnitude as the values
of the numerical case studies.

3.5.3. Dynamic error

The standard deviation of the of the fitted uncertainty distributions indi-
cates how well the ROMs capture drivetrain dynamics compared the FOM.
As depicted in Fig. 11, the standard deviation is positive for all considered
cases, which suggests that the ROMs generally underestimate the load dy-
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Figure 10: Mean values of fitted lognormal distributions for model uncertainty as a function
of wind speed.

namics. The uncertainty distributions show similar trends across all bearing
and gear types. The highest values are observed near cut-in wind speeds
(5 m/s), followed by a steep decline to the global minimum at 9 m/s and a
gradual progressive trend towards cut-out wind speeds (25 m/s). Similarly
to the high model bias, the high uncertainty at cut-in wind speeds can be
attributed to start-up and shut-down effects. The progressive trend can be
attributed to aerodynamic non-torque loads transferred from the rotor into
the drivetrain. While the torque is controlled to rated conditions above rated
wind speed, the non-torque loads, in particular pitch and yaw bending mo-
ments, continue to increase with higher wind speeds [18]. These can excite
non-torsional modes of the drivetrain, in particular planet carrier bending
modes (see Sec. 3.5.1), which the purely torsional ROMs do not account for.
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Figure 11: Standard deviation of fitted lognormal distributions for model uncertainty as
a function of wind speed.

The flexible ROM appears to capture the drivetrain dynamics to a much
higher degree than the rigid ROM resulting in lower uncertainty values across
all bearing and gear locations. The largest differences are observed above
rated wind speed, where the excitation of the first drivetrain torsional mode
becomes increasingly more energetic. Below rated wind speed the relative
improvement is much lower, since in this operational regime the drivetrain
dyanamics are governed by rigid-body modes.
The uncertainty standard deviation based on field measurements shows a
similar trend and order of magnitude and supports the previous findings of
the numerical case studies.
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3.6. Long-term fatigue damage error
The use case of long-term fatigue damage monitoring is considered to

assess the impact of the uncertainties in the DT framework. Three scenarios
are hereby considered with increasing resolution of SCADA measurements,
ranging from 10 min, 1 Hz to 200 Hz. The resolution of 10 min and 1 Hz
limits the DT model to the rigid torsional ROM, since the first torsional
natural frequency lies above the Nyquist-frequency, while the case of 200
Hz measurements allows the application of the flexible ROM. The long-term
fatigue damage is calculated by weighting the short-term fatigue damage of
each EC with the wind speed distribution.
As shown in Fig. 12, the contribution of wind speeds near cut-in (3-7 m/s)
to long-term fatigue does not exceed 2% due to the low probability of such
wind speeds in addition to small aerodynamic loads. The small contribu-
tion suggests that the high uncertainty observed at cut-in wind speeds due
to start-up and shut-down effects (Sec. 3.5.2) has a negligible impact. The
highest contribution have wind speeds of 13 m/s, where model and measure-
ment uncertainty are fortunately near their minima.
The relative error in long-term fatigue damage for each of the scenarios is
shown in Fig. 13. The long-term fatigue damage is generally underestimated
by the DTs due to underestimation of the load amplitudes. It should be
noted that the error in the bearing and gear load estimates is amplified by
exponentiation with the S-N curve exponent of 10/3 and 6.225, respectively.
Hence, the gear fatigue damage error tends to be larger due to the larger
exponent.
The first scenario with 10 min SCADA data results in relative errors of up
to -44.4% in the gear fatigue damage and up to -15.9% in the bearing fatigue
damage due to the high measurement uncertainty χmeas (Sec. 3.2). The res-
olution is insufficient to capture neither the low-frequency aerodynamics nor
the high-frequency internal drivetrain dynamics. The second scenario with
1 Hz data yields significantly smaller relative errors limited to -11.2% and
-6.6% in the gear and bearing fatigue damage, respectively. In this case, the
rigid ROM is able to represent low frequency load variations due to wind
and wave excitations, but is limited with respect to higher frequency inter-
nal dynamics dynamics. The third scenario with 200 Hz measurements and
the two DOF flexible ROM results in only marginally lower fatigue damage
errors of -9.7% and -5.5%, which showcase the trade-off of increasing the
model fidelity. While the addition of a torsional DOF in the flexible ROM
significantly reduces the modelling errors and the model uncertainty χmodel
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Figure 12: Contribution of each wind speed bin to long-term fatigue damage for the
example of the 5 MW HSS-A bearing.

(Sec. 3.5.3), it introduces one unknown variable in the rotor torque and four
unknown parameters in the rotor intertia, generator inertia, drivetrain stiff-
ness and damping. The estimation of the rotor torque and the parameters
by inverse methods cause additional uncertainty χSE, χSI (Sec. 3.3 and 3.4),
which partially diminish the benefit of the lower model uncertainty.

4. Conclusion

This paper presents a systematic assessment of the uncertainty of DTs
for load and fatigue damage monitoring in wind turbine drivetrains. Nu-
merical studies with the NREL 5 MW and DTU 10 MW reference turbines
and experimental studies with the DOE 1.5 MW research turbine were con-
ducted to assess the uncertainty of different DT elements and their impact
of long-term fatigue damage. The measurement uncertainty in the SCADA
data input χmeas, the uncertainty in the state estimation and system identifi-
cation methods χSE, χSI , and the model uncertainty of the drivetrain ROMs
χmodel were investigated and quantified using lognormal distributions (Tab.
4)
The investigation of the measurement uncertainty revealed a significant loss
of information by using 10 min averaged SCADA data. The measurement
resolution is insufficient to observe the low frequency drivetrain load dy-
namics due to the wind speed and rotor torque volatility, which resulted in
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Figure 13: Relative error [%] in long-term bearing and gear fatigue damage

maximum uncertainty of σ = 0.75 and long-term fatigue damage errors of
up to -44.4% in the gears and -15.9% in the bearings. The results strongly
suggest the use of high-frequency SCADA data with a resolution of at least
1 Hz for fatigue monitoring purposes.
The second source of uncertainty is identified in the state estimation method,
the augmented Kalman filter, that is applied to match the dynamic state
of the DT model with the physical wind turbine based on real-time data
streams. The challenge lies in estimating the rotor torque, which is not mea-
sured directly and must be estimated by the Kalman filter. The Kalman
filter tends to underestimate the rotor torque at the first torsional natural
frequency, which results in a uncertainty standard deviation ranging from
0.03 to 0.07 at normal operational conditions (> 5m/s).
The third source of uncertainty originates from the aleatory uncertainty of the
system properties. Inertia, stiffness and damping values may vary over the
turbine’s life cycle as a result of faults, material degradation or part replace-
ment. System identification methods are applied to detect these changes
and update the model parameter accordingly. The uncertainty in the pa-
rameter estimates is particularly high at cut-in and near rated wind speeds
(σ < 0.22) due to transient dynamics and the high variance in the drivetrain
torque, while the lowest uncertainty is observed in the torque controlled
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Table 3: Summary of the uncertainty quantification in DTs.
Uncertainty distribution mean µ standard deviation σ
χmeas lognormal 0 0.02...0.75
χSE lognormal 0 0.03...0.07
χSI lognormal −0.86..0.38 0.01...0.55
χmodel lognormal −0.45...0.28 0.01...0.17

regime above rated wind speed (σ > 0.006). Furthermore, it is observed that
the estimation of the drivetrain torsional damping is significantly more inac-
curate than inertia and stiffness parameters (σ < 0.22). This is likely due to
the low sensitivity of the damping parameter with respect to the drivetrain
torsional dynamics at normal power production.
Lastly, the epistemic model uncertainty due to the ROMs’ limitations is in-
vestigated. ROMs with one or two torsional DOFs are used as DT models due
to their lower computational loads in real-time monitoring applications, their
lower validation costs, and the limited observability of non-torsional dynamic
states with the available SCADA measurements. One DOF rigid ROMs are
only able to match the dynamics in the lowest frequency range (< 1 Hz)
governed by wind and wave load excitations, while two DOF flexible ROMs
better capture the dynamic drivetrain response to higher frequency inter-
nal excitations such as gear meshing. Remaining limitations are observed in
capturing non-torsional dynamics, in particular the bending dynamics of the
first and second stage planet carriers. The uncertainty in the load estimates
of the flexible ROM is noticeably smaller, however only a small improvement
with respect to the fatigue damage estimates is observed (−6.6% to −5.5%).
While the addition of a torsional DOF in the flexible ROM significantly re-
duces the modelling errors, it introduces additional unknown variables and
parameters with associated uncertainties that partially diminish the benefit
of lower modelling uncertainty.
The presented study contributes to a deeper understanding of the uncertainty
in DTs for load and fatigue monitoring. The reported uncertainty distribu-
tions may be used in reliability studies, in risk assessment and the derivation
of safety factors, or assist in the decision processes on the model fidelity and
the sensor measurement resolution.
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jected to Collision and Grounding. PhD-thesis,
IMT

IMT-2009-48 Koushan, Kamran Vortex Induced Vibrations of Free Span
Pipelines, PhD thesis, IMT

IMT-2009-49 Korsvik, Jarl
Eirik

Heuristic Methods for Ship Routing and
Scheduling. PhD-thesis, IMT

IMT-2009-50 Lee, Jihoon Experimental Investigation and Numerical in
Analyzing the Ocean Current Displacement of
Longlines. Ph.d.-Thesis, IMT.

IMT-2009-51 Vestbøstad, Tone
Gran

A Numerical Study of Wave-in-Deck Impact
usin a Two-Dimensional Constrained Interpo-
lation Profile Method, Ph.d.thesis, CeSOS.

IMT-2009-52 Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine
Power Plants. Ph.d.-thesis, IMT

IMT-2009-53 Holstad, Anders Numerical Investigation of Turbulence in a Sek-
wed Three-Dimensional Channel Flow, Ph.d.-
thesis, IMT.

IMT-2009-54 Ayala-Uraga,
Efren

Reliability-Based Assessment of Deteriorating
Ship-shaped Offshore Structures, Ph.d.-thesis,
IMT

IMT-2009-55 Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam
Sea Waves. Ph.d.-thesis, IMT/CeSOS.

IMT-2010-56 Kristiansen,
David

Wave Induced Effects on Floaters of Aquacul-
ture Plants, Ph.d.-thesis, CeSOS.

IMT-2010-57 Ludvigsen,
Martin

An ROV-Toolbox for Optical and Acoustic Sci-
entific Seabed Investigation. Ph.d.-thesis IMT.

IMT-2010-58 Hals, Jørgen Modelling and Phase Control of Wave-Energy
Converters. Ph.d.thesis, CeSOS.

IMT-2010-59 Shu, Zhi Uncertainty Assessment of Wave Loads and Ul-
timate Strength of Tankers and Bulk Carriers in
a Reliability Framework. Ph.d. Thesis, IMT/
CeSOS

IMT-2010-60 Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/with-
out Small Forward Speed, Ph.d.thesis, CeSOS.

IMT-2010-61 Califano, Andrea Dynamic Loads on Marine Propellers due to In-
termittent Ventilation. Ph.d.thesis, IMT.

IMT-2010-62 El Khoury,
George

Numerical Simulations of Massively Separated
Turbulent Flows, Ph.d.-thesis, IMT

IMT-2010-63 Seim, Knut
Sponheim

Mixing Process in Dense Overflows with Em-
phasis on the Faroe Bank Channel Overflow.
Ph.d.thesis, IMT
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IMT-2010-64 Jia, Huirong Structural Analysis of Intect and Damaged
Ships in a Collission Risk Analysis Perspective.
Ph.d.thesis CeSoS.

IMT-2010-65 Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very
Large Floating Structures (VLFS). Ph.D.-
thesis, CeSOS.

IMT-2010-66 Abrahamsen,
Bjørn Christian

Sloshing Induced Tank Roof with Entrapped
Air Pocket. Ph.d.thesis, CeSOS.

IMT-2011-67 Karimirad,
Madjid

Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut
Mooring Systems. Ph.d.-thesis, CeSOS.

IMT-2011-68 Erlend Meland Condition Monitoring of Safety Critical Valves.
Ph.d.-thesis, IMT.

IMT-2011-69 Yang, Limin Stochastic Dynamic System Analysis of Wave
Energy Converter with Hydraulic Power Take-
Off, with Particular Reference to Wear Damage
Analysis, Ph.d. Thesis, CeSOS.

IMT-2011-70 Visscher, Jan Application of Particla Image Velocimetry on
Turbulent Marine Flows, Ph.d.Thesis, IMT.

IMT-2011-71 Su, Biao Numerical Predictions of Global and Local Ice
Loads on Ships. Ph.d.Thesis, CeSOS.

IMT-2011-72 Liu, Zhenhui Analytical and Numerical Analysis of Iceberg
Collision with Ship Structures. Ph.d.Thesis,
IMT.

IMT-2011-73 Aarsæther, Karl
Gunnar

Modeling and Analysis of Ship Traffic by Obser-
vation and Numerical Simulation. Ph.d.Thesis,
IMT.

IMT-2011-74 Wu, Jie Hydrodynamic Force Identification from
Stochastic Vortex Induced Vibration Experi-
ments with Slender Beams. Ph.d.Thesis, IMT.

IMT-2011-75 Amini, Hamid Azimuth Propulsors in Off-design Conditions.
Ph.d.Thesis, IMT.

IMT-2011-76 Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and
Monitoring of Bottom Damage Conditions Dur-
ing Ship Grounding. Ph.d.thesis, IMT.

IMT-2011-77 Tavakoli,
Mohammad T.

Assessment of Oil Spill in Ship Collision and
Grounding, Ph.d.thesis, IMT.

IMT-2011-78 Guo, Bingjie Numerical and Experimental Investigation of
Added Resistance in Waves. Ph.d.Thesis, IMT.

IMT-2011-79 Chen, Qiaofeng Ultimate Strength of Aluminium Panels, con-
sidering HAZ Effects, IMT

IMT-2012-80 Kota, Ravikiran
S.

Wave Loads on Decks of Offshore Structures in
Random Seas, CeSOS.

IMT-2012-81 Sten, Ronny Dynamic Simulation of Deep Water Drilling
Risers with Heave Compensating System, IMT.

IMT-2012-82 Berle, Øyvind Risk and resilience in global maritime supply
chains, IMT.

IMT-2012-83 Fang, Shaoji Fault Tolerant Position Mooring Control Based
on Structural Reliability, CeSOS.
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IMT-2012-84 You, Jikun Numerical studies on wave forces and moored
ship motions in intermediate and shallow water,
CeSOS.

IMT-2012-85 Xiang, Xu Maneuvering of two interacting ships in waves,
CeSOS

IMT-2012-86 Dong, Wenbin Time-domain fatigue response and reliability
analysis of offshore wind turbines with emphasis
on welded tubular joints and gear components,
CeSOS

IMT-2012-87 Zhu, Suji Investigation of Wave-Induced Nonlinear Load
Effects in Open Ships considering Hull Girder
Vibrations in Bending and Torsion, CeSOS

IMT-2012-88 Zhou, Li Numerical and Experimental Investigation of
Station-keeping in Level Ice, CeSOS

IMT-2012-90 Ushakov, Sergey Particulate matter emission characteristics from
diesel enignes operating on conventional and al-
ternative marine fuels, IMT

IMT-2013-1 Yin, Decao Experimental and Numerical Analysis of Com-
bined In-line and Cross-flow Vortex Induced Vi-
brations, CeSOS

IMT-2013-2 Kurniawan, Adi Modelling and geometry optimisation of wave
energy converters, CeSOS

IMT-2013-3 Al Ryati, Nabil Technical condition indexes doe auxiliary ma-
rine diesel engines, IMT

IMT-2013-4 Firoozkoohi, Reza Experimental, numerical and analytical investi-
gation of the effect of screens on sloshing, Ce-
SOS

IMT-2013-5 Ommani, Babak Potential-Flow Predictions of a Semi-
Displacement Vessel Including Applications to
Calm Water Broaching, CeSOS

IMT-2013-6 Xing, Yihan Modelling and analysis of the gearbox in a float-
ing spar-type wind turbine, CeSOS

IMT-7-2013 Balland, Océane Optimization models for reducing air emissions
from ships, IMT

IMT-8-2013 Yang, Dan Transitional wake flow behind an inclined flat
plate – Computation and analysis, IMT

IMT-9-2013 Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Dam-
age for a Ship Hull due to Ice Action, IMT

IMT-10-2013 Ramı̀rez, Pedro
Agust̀ın Pèrez

Ageing management and life extension of tech-
nical systems. Concepts and methods applied
to oil and gas facilities, IMT

IMT-11-2013 Chuang, Zhenju Experimental and Numerical Investigation of
Speed Loss due to Seakeeping and Maneuver-
ing. IMT

IMT-12-2013 Etemaddar,
Mahmoud

Load and Response Analysis of Wind Turbines
under Atmospheric Icing and Controller System
Faults with Emphasis on Spar Type Floating
Wind Turbines, IMT
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IMT-13-2013 Lindstad, Haakon Strategies and measures for reducing maritime
CO2 emissons, IMT

IMT-14-2013 Haris, Sabril Damage interaction analysis of ship collisions,
IMT

IMT-15-2013 Shainee,
Mohamed

Conceptual Design, Numerical and Experimen-
tal Investigation of a SPM Cage Concept for
Offshore Mariculture, IMT

IMT-16-2013 Gansel, Lars Flow past porous cylinders and effects of bio-
fouling and fish behavior on the flow in and
around Atlantic salmon net cages, IMT

IMT-17-2013 Gaspar, Henrique Handling Aspects of Complexity in Conceptual
Ship Design, IMT

IMT-18-2013 Thys, Maxime Theoretical and Experimental Investigation of a
Free Running Fishing Vessel at Small Frequency
of Encounter, CeSOS

IMT-19-2013 Aglen, Ida VIV in Free Spanning Pipelines, CeSOS

IMT-1-2014 Song, An Theoretical and experimental studies of wave
diffraction and radiation loads on a horizontally
submerged perforated plate, CeSOS

IMT-2-2014 Rogne, Øyvind
Ygre

Numerical and Experimental Investigation of a
Hinged 5-body Wave Energy Converter, CeSOS

IMT-3-2014 Dai, Lijuan Safe and efficient operation and maintenance of
offshore wind farms, IMT

IMT-4-2014 Bachynski, Erin
Elizabeth

Design and Dynamic Analysis of Tension Leg
Platform Wind Turbines, CeSOS

IMT-5-2014 Wang, Jingbo Water Entry of Freefall Wedged – Wedge mo-
tions and Cavity Dynamics, CeSOS

IMT-6-2014 Kim, Ekaterina Experimental and numerical studies related to
the coupled behavior of ice mass and steel struc-
tures during accidental collisions, IMT

IMT-7-2014 Tan, Xiang Numerical investigation of ship’s continuous-
mode icebreaking in leverl ice, CeSOS

IMT-8-2014 Muliawan, Made
Jaya

Design and Analysis of Combined Floating
Wave and Wind Power Facilities, with Empha-
sis on Extreme Load Effects of the Mooring Sys-
tem, CeSOS

IMT-9-2014 Jiang, Zhiyu Long-term response analysis of wind turbines
with an emphasis on fault and shutdown condi-
tions, IMT

IMT-10-2014 Dukan, Fredrik ROV Motion Control Systems, IMT

IMT-11-2014 Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for
heave compensation of deep water drilling ris-
ers, IMT

IMT-12-2014 Kvittem, Marit I. Modelling and response analysis for fatigue de-
sign of a semisubmersible wind turbine, CeSOS

IMT-13-2014 Akhtar, Juned The Effects of Human Fatigue on Risk at Sea,
IMT
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IMT-14-2014 Syahroni, Nur Fatigue Assessment of Welded Joints Taking
into Account Effects of Residual Stress, IMT

IMT-1-2015 Bøckmann, Eirik Wave Propulsion of ships, IMT

IMT-2-2015 Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine,
CeSOS

IMT-3-2015 Fredriksen, Arnt
Gunvald

A numerical and experimental study of a two-
dimensional body with moonpool in waves and
current, CeSOS

IMT-4-2015 Jose Patricio
Gallardo Canabes

Numerical studies of viscous flow around bluff
bodies, IMT

IMT-5-2015 Vegard Longva Formulation and application of finite element
techniques for slender marine structures sub-
jected to contact interactions, IMT

IMT-6-2015 Jacobus De Vaal Aerodynamic modelling of floating wind tur-
bines, CeSOS

IMT-7-2015 Fachri Nasution Fatigue Performance of Copper Power Conduc-
tors, IMT

IMT-8-2015 Oleh Karpa Development of bivariate extreme value distri-
butions for applications in marine technology,
CeSOS

IMT-9-2015 Daniel de
Almeida
Fernandes

An output feedback motion control system for
ROVs, CeSOS/AMOS

IMT-10-2015 Bo Zhao Particle Filter for Fault Diagnosis: Application
to Dynamic Positioning Vessel and Underwater
Robotics, CeSOS

IMT-11-2015 Wenting Zhu Impact of emission allocation in maritime trans-
portation, IMT

IMT-12-2015 Amir Rasekhi
Nejad

Dynamic Analysis and Design of Gearboxes in
Offshore Wind Turbines in a Structural Relia-
bility Perspective, CeSOS

IMT-13-2015 Arturo Jesùs
Ortega Malca

Dynamic Response of Flexibles Risers due to
Unsteady Slug Flow, CeSOS

IMT-14-2015 Dagfinn Husjord Guidance and decision-support system for safe
navigation of ships operating in close proximity,
IMT

IMT-15-2015 Anirban
Bhattacharyya

Ducted Propellers: Behaviour in Waves and
Scale Effects, IMT

IMT-16-2015 Qin Zhang Image Processing for Ice Parameter Identifica-
tion in Ice Management, IMT

IMT-1-2016 Vincentius
Rumawas

Human Factors in Ship Design and Operation:
An Experiential Learning, IMT

IMT-2-2016 Martin Storheim Structural response in ship-platform and ship-
ice collisions, IMT

IMT-3-2016 Mia Abrahamsen
Prsic

Numerical Simulations of the Flow around sin-
gle and Tandem Circular Cylinders Close to a
Plane Wall, IMT
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IMT-4-2016 Tufan Arslan Large-eddy simulations of cross-flow around
ship sections, IMT

IMT-5-2016 Pierre
Yves-Henry

Parametrisation of aquatic vegetation in hy-
draulic and coastal research,IMT

IMT-6-2016 Lin Li Dynamic Analysis of the Instalation of
Monopiles for Offshore Wind Turbines, CeSOS

IMT-7-2016 Øivind K̊are
Kjerstad

Dynamic Positioning of Marine Vessels in Ice,
IMT

IMT-8-2016 Xiaopeng Wu Numerical Analysis of Anchor Handling and
Fish Trawling Operations in a Safety Perspec-
tive, CeSOS

IMT-9-2016 Zhengshun Cheng Integrated Dynamic Analysis of Floating Verti-
cal Axis Wind Turbines, CeSOS

IMT-10-2016 Ling Wan Experimental and Numerical Study of a Com-
bined Offshore Wind and Wave Energy Con-
verter Concept

IMT-11-2016 Wei Chai Stochastic dynamic analysis and reliability eval-
uation of the roll motion for ships in random
seas, CeSOS

IMT-12-2016 Øyvind Selnes
Patricksson

Decision support for conceptual ship design
with focus on a changing life cycle and future
uncertainty, IMT

IMT-13-2016 Mats Jørgen
Thorsen

Time domain analysis of vortex-induced vibra-
tions, IMT

IMT-14-2016 Edgar
McGuinness

Safety in the Norwegian Fishing Fleet – Analy-
sis and measures for improvement, IMT

IMT-15-2016 Sepideh
Jafarzadeh

Energy effiency and emission abatement in the
fishing fleet, IMT

IMT-16-2016 Wilson Ivan
Guachamin Acero

Assessment of marine operations for offshore
wind turbine installation with emphasis on
response-based operational limits, IMT

IMT-17-2016 Mauro Candeloro Tools and Methods for Autonomous Operations
on Seabed and Water Coumn using Underwater
Vehicles, IMT

IMT-18-2016 Valentin Chabaud Real-Time Hybrid Model Testing of Floating
Wind Tubines, IMT

IMT-1-2017 Mohammad Saud
Afzal

Three-dimensional streaming in a sea bed
boundary layer

IMT-2-2017 Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular
Floating Collar

IMT-3-2017 Martin Bergström A simulation-based design method for arctic
maritime transport systems

IMT-4-2017 Bhushan Taskar The effect of waves on marine propellers and
propulsion

IMT-5-2017 Mohsen
Bardestani

A two-dimensional numerical and experimental
study of a floater with net and sinker tube in
waves and current
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IMT-6-2017 Fatemeh Hoseini
Dadmarzi

Direct Numerical Simualtion of turbulent wakes
behind different plate configurations

IMT-7-2017 Michel R.
Miyazaki

Modeling and control of hybrid marine power
plants

IMT-8-2017 Giri Rajasekhar
Gunnu

Safety and effiency enhancement of anchor han-
dling operations with particular emphasis on
the stability of anchor handling vessels

IMT-9-2017 Kevin Koosup
Yum

Transient Performance and Emissions of a Tur-
bocharged Diesel Engine for Marine Power
Plants

IMT-10-2017 Zhaolong Yu Hydrodynamic and structural aspects of ship
collisions

IMT-11-2017 Martin Hassel Risk Analysis and Modelling of Allisions be-
tween Passing Vessels and Offshore Installations

IMT-12-2017 Astrid H.
Brodtkorb

Hybrid Control of Marine Vessels – Dynamic
Positioning in Varying Conditions

IMT-13-2017 Kjersti Bruserud Simultaneous stochastic model of waves and
current for prediction of structural design loads

IMT-14-2017 Finn-Idar Grøtta
Giske

Long-Term Extreme Response Analysis of Ma-
rine Structures Using Inverse Reliability Meth-
ods

IMT-15-2017 Stian Skjong Modeling and Simulation of Maritime Systems
and Operations for Virtual Prototyping using
co-Simulations

IMT-1-2018 Yingguang Chu Virtual Prototyping for Marine Crane Design
and Operations

IMT-2-2018 Sergey Gavrilin Validation of ship manoeuvring simulation
models

IMT-3-2018 Jeevith Hegde Tools and methods to manage risk in au-
tonomous subsea inspection,maintenance and
repair operations

IMT-4-2018 Ida M. Strand Sea Loads on Closed Flexible Fish Cages

IMT-5-2018 Erlend Kvinge
Jørgensen

Navigation and Control of Underwater Robotic
Vehicles

IMT-6-2018 B̊ard Stovner Aided Intertial Navigation of Underwater Vehi-
cles

IMT-7-2018 Erlend Liav̊ag
Grotle

Thermodynamic Response Enhanced by Slosh-
ing in Marine LNG Fuel Tanks

IMT-8-2018 Børge Rokseth Safety and Verification of Advanced Maritime
Vessels

IMT-9-2018 Jan Vidar
Ulveseter

Advances in Semi-Empirical Time Domain
Modelling of Vortex-Induced Vibrations

IMT-10-2018 Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW hori-
zontal axis wind turbine

IMT-11-2018 Carl Fredrik Rehn Ship Design under Uncertainty

IMT-12-2018 Øyvind Ødeg̊ard Towards Autonomous Operations and Systems
in Marine Archaeology
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IMT-13- 2018 Stein Melvær
Nornes

Guidance and Control of Marine Robotics for
Ocean Mapping and Monitoring

IMT-14-2018 Petter Norgren Autonomous Underwater Vehicles in Arctic Ma-
rine Operations: Arctic marine research and ice
monitoring

IMT-15-2018 Minjoo Choi Modular Adaptable Ship Design for Handling
Uncertainty in the Future Operating Context

MT-16-2018 Ole Alexander
Eidsvik

Dynamics of Remotely Operated Underwater
Vehicle Systems

IMT-17-2018 Mahdi Ghane Fault Diagnosis of Floating Wind Turbine
Drivetrain- Methodologies and Applications

IMT-18-2018 Christoph
Alexander
Thieme

Risk Analysis and Modelling of Autonomous
Marine Systems

IMT-19-2018 Yugao Shen Operational limits for floating-collar fish farms
in waves and current, without and with well-
boat presence

IMT-20-2018 Tianjiao Dai Investigations of Shear Interaction and Stresses
in Flexible Pipes and Umbilicals

IMT-21-2018 Sigurd Solheim
Pettersen

Resilience by Latent Capabilities in Marine Sys-
tems

IMT-22-2018 Thomas Sauder Fidelity of Cyber-physical Empirical Methods.
Application to the Active Truncation of Slender
Marine Structures

IMT-23-2018 Jan-Tore Horn Statistical and Modelling Uncertainties in the
Design of Offshore Wind Turbines

IMT-24-2018 Anna Swider Data Mining Methods for the Analysis of Power
Systems of Vessels

IMT-1-2019 Zhao He Hydrodynamic study of a moored fish farming
cage with fish influence

IMT-2-2019 Isar Ghamari Numerical and Experimental Study on the Ship
Parametric Roll Resonance and the Effect of
Anti-Roll Tank

IMT-3-2019 H̊akon Strandenes Turbulent Flow Simulations at Higher Reynolds
Numbers

IMT-4-2019 Siri Mariane
Holen

Safety in Norwegian Fish Farming – Concepts
and Methods for Improvement

IMT-5-2019 Ping Fu Reliability Analysis of Wake-Induced Riser Col-
lision

IMT-6-2019 Vladimir
Krivopolianskii

Experimental Investigation of Injection and
Combustion Processes in Marine Gas Engines
using Constant Volume Rig

IMT-7-2019 Anna Maria
Kozlowska

Hydrodynamic Loads on Marine Propellers
Subject to Ventilation and out of Water Con-
dition.

IMT-8-2019 Hans-Martin
Heyn

Motion Sensing on Vessels Operating in Sea Ice:
A Local Ice Monitoring System for Transit and
Stationkeeping Operations under the Influence
of Sea Ice
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IMT-9-2019 Stefan Vilsen Method for Real-Time Hybrid Model Testing
of Ocean Structures – Case on Slender Marine
Systems

IMT-10-2019 Finn-Christian
W. Hanssen

Non-Linear Wave-Body Interaction in Severe
Waves

IMT-11-2019 Trygve Olav
Fossum

Adaptive Sampling for Marine Robotics

IMT-12-2019 Jørgen Bremnes
Nielsen

Modeling and Simulation for Design Evaluation

IMT-13-2019 Yuna Zhao Numerical modelling and dyncamic analysis of
offshore wind turbine blade installation

IMT-14-2019 Daniela Myland Experimental and Theoretical Investigations on
the Ship Resistance in Level Ice

IMT-15-2019 Zhengru Ren Advanced control algorithms to support auto-
mated offshore wind turbine installation

IMT-16-2019 Drazen Polic Ice-propeller impact analysis using an inverse
propulsion machinery simulation approach

IMT-17-2019 Endre Sandvik Sea passage scenario simulation for ship system
performance evaluation

IMT-18-2019 Loup
Suja-Thauvin

Response of Monopile Wind Turbines to Higher
Order Wave Loads

IMT-19-2019 Emil Smilden Structural control of offshore wind turbines –
Increasing the role of control design in offshore
wind farm development

IMT-20-2019 Aleksandar-Sasa
Milakovic

On equivalent ice thickness and machine learn-
ing in ship ice transit simulations

IMT-1-2020 Amrit Shankar
Verma

Modelling, Analysis and Response-based Oper-
ability Assessment of Offshore Wind Turbine
Blade Installation with Emphasis on Impact
Damages

IMT-2-2020 Bent Oddvar
Arnesen
Haugaløkken

Autonomous Technology for Inspection, Main-
tenance and Repair Operations in the Norwe-
gian Aquaculture

IMT-3-2020 Seongpil Cho Model-based fault detection and diagnosis of a
blade pitch system in floating wind turbines

IMT-4-2020 Jose Jorge Garcia
Agis

Effectiveness in Decision-Making in Ship Design
under Uncertainty

IMT-5-2020 Thomas H. Viuff Uncertainty Assessment of Wave-and Current-
induced Global Response of Floating Bridges

IMT-6-2020 Fredrik Mentzoni Hydrodynamic Loads on Complex Structures in
the Wave Zone

IMT-7-2020 Senthuran
Ravinthrakumar

Numerical and Experimental Studies of Reso-
nant Flow in Moonpools in Operational Condi-
tions

IMT-8-2020 Stian Skaalvik
Sandøy

Acoustic-based Probabilistic Localization and
Mapping using Unmanned Underwater Vehicles
for Aquaculture Operations
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IMT-9-2020 Kun Xu Design and Analysis of Mooring System for
Semi-submersible Floating Wind Turbine in
Shallow Water

IMT-10-2020 Jianxun Zhu Cavity Flows and Wake Behind an Elliptic
Cylinder Translating Above the Wall

IMT-11-2020 Sandra
Hogenboom

Decision-making within Dynamic Positioning
Operations in the Offshore Industry – A Hu-
man Factors based Approach

IMT-12-2020 Woongshik Nam Structural Resistance of Ship and Offshore
Structures Exposed to the Risk of Brittle Fail-
ure

IMT-13-2020 Svenn Are
Tutturen Værnø

Transient Performance in Dynamic Positioning
of Ships: Investigation of Residual Load Models
and Control Methods for Effective Compensa-
tion

IMT-14-2020 Mohd Atif
Siddiqui

Experimental and Numerical Hydrodynamic
Analysis of a Damaged Ship in Waves

IMT-15-2020 John Marius
Hegseth

Efficient Modelling and Design Optimization of
Large Floating Wind Turbines

IMT-16-2020 Asle Natsk̊ar Reliability-based Assessment of Marine Oper-
ations with Emphasis on Sea Transport on
Barges

IMT-17-2020 Shi Deng Experimental and Numerical Study of Hydro-
dynamic Responses of a Twin-Tube Submerged
Floating Tunnel Considering Vortex-Induced
Vibration

IMT-18-2020 Jone Torsvik Dynamic Analysis in Design and Operation of
Large Floating Offshore Wind Turbine Drive-
trains

IMT-1-2021 Ali Ebrahimi Handling Complexity to Improve Ship Design
Competitiveness

IMT-2-2021 Davide Proserpio Isogeometric Phase-Field Methods for Modeling
Fracture in Shell Structures

IMT-3-2021 Cai Tian Numerical Studies of Viscous Flow Around Step
Cylinders

IMT-4-2021 Farid Khazaeli
Moghadam

Vibration-based Condition Monitoring of Large
Offshore Wind Turbines in a Digital Twin Per-
spective

IMT-5-2021 Shuaishuai Wang Design and Dynamic Analysis of a 10-MW
Medium-Speed Drivetrain in Offshore Wind
Turbines

IMT-6-2021 Sadi Tavakoli Ship Propulsion Dynamics and Emissions

IMT-7-2021 Haoran Li Nonlinear wave loads, and resulting global re-
sponse statistics of a semi-submersible wind tur-
bine platform with heave plates

IMT-8-2021 Einar Skiftestad
Ueland

Load Control for Real-Time Hybrid Model Test-
ing using Cable-Driven Parallel Robots
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IMT-9-2021 Mengning Wu Uncertainty of machine learning-based methods
for wave forecast and its effect on installation of
offshore wind turbines

IMT-10-2021 Xu Han Onboard Tuning and Uncertainty Estimation of
Vessel Seakeeping Model Parameters

IMT-01-2022 Ingunn Marie
Holmen

Safety in Exposed Aquacultrue Operations

IMT-02-2022 Prateek Gupta Ship Performance Monitoring using In-service
Measurements and Big Data Analysis Methods

IMT-03-2022 Sangwoo Kim Non-linear time domain analysis of deepwater
riser vortex-induced vibrations

IMT-04-2022 Jarle Vinje
Kramer

Hydrodynamic Aspects of Sail-Assisted Mer-
chant Vessels

IMT-05-2022 Øyvind Rabli̊as Numerical and Experimental Studies of Maneu-
vering in Regular and Irregular Waves

IMT-06-2022 Pramod Ghimire Simulation-Based Ship Hybrid Power System
Conspet Studies and Performance Analyses

IMT-07-2022 Carlos Eduardo
Silva de Souza

Structural modelling, coupled dynamics, and
design of large floating wind turbines

IMT-08-2022 Lorenzo Balestra Design of hybrid fuel cell & battery systems for
maritime vessels

IMT-09-2022 Sharmin Sultana Process safety and risk management using sys-
tem perspectives – A contribution to the chem-
ical process and petroleum industry

IMT-10-2022 Øystein Sture Autonomous Exploration for Marine Minerals

IMT-11-2022 Tiantian Zhu Information and Decision-making for Major Ac-
cident Prevention – A concept of information-
based strategies for accident prevention

IMT-12-2022 Siamak Karimi Shore-to-Ship Charging Systems for Battery-
Electric Ships

IMT-01-2023 Huili Xu Fish-inspired Propulsion Study: Numerical Hy-
drodynamics of Rigid/Flexible/Morphing Foils
and Observations on Real Fish

IMT-02-2023 Chana
Sinsabvarodom

Probabilistic Modelling of Ice-drift and Ice
Loading on Fixed and Floating Offshore Struc-
tures

IMT-03-2023 Martin Skaldebø Intelligent low-cost solutions for underwater in-
tervention using computer vision and machine
learning

IMT-04-2023 Hans Tobias
Slette

Vessel operations in exposed aquaculture –
Achieving safe and efficient operation of ves-
sel fleets in fish farm systems experiencing chal-
lenging metocean conditions

IMT-05-2023 Ruochen Yang Methods and models for analyzing and control-
ling the safety in operations of autonomous ma-
rine systems

IMT-06-2023 Tobias Rye
Torben

Formal Approaches to Design and Verification
of Safe Control Systems for Autonomous Vessels
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IMT-07-2023 YoungRong Kim Modeling Operational Performance for the
Global Fleet & Application of an Energy Saving
Measure

IMT-08-2023 Henrik Schmidt-
Didlaukies

Modeling and Hybrid Feedback Control of Un-
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