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Abstract

This work presents closed-form expressions for a new model architecture for wave-propelled
uncrewed surface vehicles (USVs) for the analysis and support of a physical speed model. A
simple expression for the wave-foil propulsion forces inspired by rudder theory is presented.
Viscous damping effects from the foils are incorporated directly in the wave-induced seakeeping
motions of the vehicle by an efficient monohull geometry. Moreover, the maneuvering motion
is also found through a set of design parameters of the vehicle. In total, the joint unified motion
of the maneuvering and seakeeping models provides an excitation of the foil model, driving
the motion of the hydrofoils through the water. The equations of motion for the foils is found
by modeling the angles relative to an inertial frame of reference, and correcting inertia forces
provided by the interacting motion with the overall USV.

The hydrodynamic principles for the common use of correcting spring-loaded foils on such
vehicles are modeled by considering factors such as high angles of attack, three-dimensional
effects and unsteady effects. Semi-empirical equations are proposed to describe quasi-steady
lift and drag curves, along with assumptions regarding stability and model applicability. The
forces on the foils are considered through a simple wing model, where the forces are evaluated
by considering the kinematics involved and the relative motion through irregular sea, which was
expressed by a superposition of linear wave potentials.

Fluid memory effects in wave-induced motion on the efficient monohull geometry is found
by least squares optimization of the impulse response of the matrix of retardation to support
closed-form expression suited for simulation purposes. Additionally, unsteady thin foil theory,
which is unfitted for simulation purposes in its analytical form, was incorporated by a velocity-
dependent reduced order state-space representation with good agreement of the frequency-
domain analytical response.

A case study involving the AutoNaut vehicle demonstrates the feasibility of the model in
different wave, wind, and sea current environmental conditions, paving the way for further
research and adaptation of the framework proposed.

The simulation in this work suggest that three different spring settings available in this
particular case study are most efficient for different sea states. The soft springs were efficient in
wave-frequencies below 𝜔 < 1.4 [s−1], the medium stiffness was efficient around 𝜔 = 1.8 [s−1]
and the stiff spring was efficient for 𝜔 > 2.2 [s−1].

Future work includes the development of a general simulation model and incorporating
validation methods for the maneuvering- and foil models.
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Sammendrag

This abstract is written in Norwegian as per the requirements for the master’s thesis.

Arbeidet presenterer en ny modellarkitektur med lukkede uttrykk for bølgedrevne ube-
mannede overflatefartøy (USVer) for analyse og forskning av en fysisk hastighetsmodell. Det
ble foreslått et enkelt uttrykk for fremdriften fra bølgekreftene gjennom foilene som var inspirert
av rorteori. Viskøse dempningseffekter fra foilene er direkte inkorporet i de bølge-induserte
bevegelsene til fartøyet ved hjelp av et effektiv monoskrog. Videre ble manøvreringsbevegelsen
også funnet gjennom en sett med designparametere for fartøyet. De samlede bevegelsene av
manøvrerings- og bølgebevegelsene gir en eksitasjon av dynamikken til foilene gjennom vannet.
Bevegelsesligningene for foilene er funnet ved å modellere vinklene i forhold til en inertial
referanseramme, korrigert av inertialkrefter gitt ved samspillet av den overordnede bevegelsen
til fartøyet. Hydrodynamiske effekter ved bruk av korrigerende fjærlasteded foiler på slike fartøy
er modellert ved å ta i betraktning faktorer som høye angrepsvinkler, tredimensjonale effekter
og ustabile effekter. Semi-empiriske ligninger er foreslått for å beskrive kvasi-stasjonære løfte-
og dragkurver, hvor stabilitet og modellens anvendelighet er tatt med i betraktning. Kreftene
på foilene ble funnet fra en enkel foreslått vingemodell, hvor kinematikken fra fartøybeveg-
elsen og den relative hastigheten fra sjøen er tatt med. Sjøens matematiske modell består av
en superposisjon av lineære bølgepotensialer. Minneeffekter fra vannet i den bølgeinduserte
bevegelse på den effektive monoskroggeometrien var funnet ved minste kvadraters metode av
impulsresponsen til en matrise for å finne lukkede uttrykk som passer seg for simuleringsformål.
I tillegg ble ikke-stasjonær foilteori, som dessverre ikke egner seg for simuleringsformål i sin
analytiske form, approksimert ved en enkel hastighetsavhengig tilstandsromsrepresentasjon som
ga god overensstemmelse med den analytiske responsen i frekvensdomenet. Et case-studie av
AutoNaut-fartøyet viste at modellen egner seg for simularing under ulike forhold på sjøen, med
både bølger, vind og strøm. Videre forskning og tilpasning av det foreslåtte rammeverket er
mulig. Simuleringsmodellen utviklet i dette arbeidet antyder at tre forskjellige fjærinnstillinger
på case-studiet er optimale for ulike sjøtilstander. De myke fjærene fungerte best for bølge-
frekvenser under 𝜔 < 1.4 [s−1], middels stive fjærer var best egnet rundt 𝜔 = 1.8 [s−1] og den
stive fjæren var mest effektiv for 𝜔 > 2.2 [s−1].

Videre arbeid inkluderer utviklingen av en generell simuleringsmodell, samt å foreslå gode
valideringsmetoder for manøvreringsmodellen og modellen for foildynamikken.

ii



Preface

This report is submitted in partial fulfilment for the requirements for the degree of Master of
Science in the field of Cybernetics and Robotics at the Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU), in Trondheim. It corresponds to a
full semester’s work load. The thesis is supervised by Tor Arne Johansen, with co-supervisors
Morten Breivik and Andrew Ross.

The original scope of this project was to find a dynamic speed model of wave-propelled
uncrewed surface vehicles (USVs) for advanced control purposes. The thesis has evolved into
a study of the general hydrodynamic and mathematical modelling of foil propulsion models
where closed-form expressions are identified. The motion of wave-propelled USVs are found by
merging this result with existing and recently emerged methods developed by the department.

I am grateful to my supervisor Tor Arne Johansen who has been orderly and helpful along
the process. Additionally, I would like to thank Morten Breivik, Andrew Ross, Thor I. Fossen,
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Kristoffer Gryte made me pursue this interesting topic.
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Nomenclature

All angular measurements are expressed in radians, and the International System of Units
(SI) [1] is employed unless explicitly stated otherwise. Additional nomenclature used in the
report are defined as they appear.

𝛼 Ratio between wave encounter frequency to
wave frequency

𝛽 Encounter angle waves

𝛽𝑐 Crab angle

𝛽𝑘 Cardinal wave direction

𝛽𝑉c Cardinal current direction

𝛽𝑉w Cardinal wind direction

𝜶𝑖 Parameter list for model 𝑖

𝝉 Body linear and angular forces

𝚯nb = [𝜙, \, 𝜓]⊤ Euler angles: roll, pitch and yaw

𝜒 Cardinal course angle

𝛿 Rudder angle

𝛿geo Geometric parameter for hull

Γ, 𝛾 Circulation and vortex distribution

𝛾w Angle of attack wind

^ Smith’s correction factor

^ Torsion spring stiffness

_ Wavelength

ΛR,ΛF Aspect ratio: rudder, wave foils

ΛT,ΛL Vehicle aspect ratio: transversal and longi-
tudinal

B Damping matrix

C(𝝂) Coriolis and centripetal force matrix

f𝑏 = [𝑋,𝑌, 𝑍]⊤ Linear body forces

G Gravity and restoring matrix

M Mass matrix

m𝑏 = [𝐾, 𝑀, 𝑁]⊤ Angular body moments

Q Generalized forces

q General coordinates for configuration

R𝑛
𝑏

Rotation matrix from {𝑛} to {𝑏}

v𝑏nb = [𝑢, 𝑣, 𝑤]⊤ Body linear velocities

`, a Fluid viscosity, kinematic viscosity

`𝐵 Ratio viscous damping to critical damping

∇,Δ Displacement, Displacement mass

𝜔, 𝜔e Wave frequency, Encounter wave frequency

Φ, 𝜑 Wave potential, complex wave potential

𝜓 Cardinal heading angle

𝜌, 𝜌a Sea and air density

Σ𝑖 Model 𝑖
GML Longitudinal metacentric height

GMT Transverse metacentric height

Z, Za Wave elevation, wave amplitude

𝐴Fw, 𝐴Lw Frontal and lateral projected vehicle area
above free surface

𝑎H Force factor rudder
𝐴R, 𝐴F Rudder area, hydrofoil area

𝐵 Breadth
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𝑏 Sectional hydrodynamic damping

𝑐 Chord length

𝑐𝑥 , 𝑐𝑦 , 𝑐𝑛 Wind coefficients

𝑑 Longitudinal distance between IMU and CG𝑥

𝑔 Acceleration due to gravity

ℎ Water depth

𝐻𝑏𝑎 (𝑠) Transfer function from 𝑎 to 𝑏

𝑘 Linear spring coefficient

𝑘, 𝑘e Wave number (w.n.), encounter w.n.

𝐾0, 𝑀0, 𝑁0 Angular forcing functions

𝐿, 𝐿oa Length, Length over all

𝐿pp Length between perpendiculars

𝑃 Pressure
𝑝, 𝑞, 𝑟 Body angular velocities

𝑅𝑖𝑖 Radius of gyration in axis 𝑖

𝑠 Laplace variable

𝑆, 𝑏 Span, half-span for foil

𝑇 Draft (or draught)

𝑡 Time
𝑡R, 𝑡F Drag coefficient rudder and hydrofoil

𝑇𝑖 Time period in DOF 𝑖

𝑢c, 𝑣c, 𝑤c Current velocities in body frame

𝑢r, 𝑣r, 𝑤r Relative velocities in body frame

𝑉c Current speed

𝑉w Wind speed

𝑋0, 𝑌0, 𝑍0 Linear forcing functions

𝑥H Interaction coefficient rudder

𝑥R Longitudinal rudder position coordinate

𝑥p, 𝑦p, 𝑧p Position of pivot point for foil

C3D Three-dimensional correction coefficient

Ca Non-circulatory force coefficient

CB Block coefficient

CD Drag coefficient

Cgeo Geometric integral constant

Chull Geometric hull constant

CL Lift coefficient

CN Normal force coefficient

CTh Theodorsen function

Cwp Waterplane area coefficient

CG Center of gravity (usage, e.g. 𝑥g)

CO Coordinate origin body

CP Center of pressure (usage, e.g. 𝑥c.p.)
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Chapter 1

Introduction

1.1 Motivation
Despite the long history of wave-propelled boats since the 1890s and proposals dating back
to 1858, their mainstream adoption has been limited. Today, the growing economic incentive
to reduce fossil fuel usage, alongside environmental concerns like global warming, has led to
renewed interest in utilizing renewable energy for ship propulsion. [2]

Wave energy offers an advantage over traditional sails for ship propulsion due to its typically
lower variability, as waves propagate uniformly across oceans from distant storm sources. The
primary method employed in wave-propelled boats involves the use of lift-surfaces called foils,
which convert the relative motion between the foil and the water into propulsive thrust.

A promising area for the practical application of wave-propulsion is through foils mounted
underneath the hull on uncrewed surface vehicles (USVs). When there are sufficient waves, the
wave-induced motions of the hull, coupled with the interaction of the foils, propel the vehicle
forward without any additional fuel. This will in principle allow the USV to operate with an un-
restricted endurance – if not for regular maintenance – with many new and exciting applications,
e.g. in marine robotics or remote oceanography monitoring without human interventions.

A drawback however, is that the forward speed rely on the environmental sea state, and is thus
not actively controlled. Course over ground control is challenging when the drift forces exerted
by the environment predominate the steering and propulsion forces generated by the waves.
Guidance, navigation and control (GNC) systems implemented on wave-propelled USVs need
to show a degree of robustness to allow autonomous operations across different environmental
states. For steering control purposes, it is thus beneficial to predict future vehicle’s states. Such
predictions can be estimated from a physical speed model of the USV along present and forecast
sea states, winds and ocean currents.

This work serves as a continuation on previous work on steering control for a specific wave-
propelled USV at the Norwegian University of Science and Technology (NTNU), wherein

“... a speed model is key and would provide useful knowledge used for mission planning
and course control purposes. The investigation of a speed model for this unique wave-propelled
USV is left as a future work.” – Dallolio et al., 2022 [3]

1



1.1. Motivation Chapter 1. Introduction

1.1.1 Foils in the marine context
Hydrofoils are lift-generating surfaces – foils – operating below the free surface. Unlike aerial
counterparts, marine vehicles are mainly using lift-generating surfaces for control purposes.
Lifting surfaces, such as rudders, are used to create forces and moments for steering boats, while
stabilizing fins dampen wave-induced motions. Hydroplanes are actively controlled lifting
surfaces for adjusting the elevation of submarines. [4]

The two most common ways of adjusting lifting surfaces are through the use of trailing edge
flaps to control the camber, or by adjusting the attack angle via incidence control [5]. The
adjustment of the attack angle can be achieved by moving either or both the lifting part of the
foil and the supporting strut. In the latter case, the actuators need to be even more powerful.

A hydrofoil boat is a boat where foils are used to lift the hull partly or fully above the
waterline to reduce resistance, or drag of the hull, through water [6].

1.1.2 Wave-propulsion from foils
In this work, a special type of hydrofoils whose role is to create horizontal lift able to propel
a marine vehicle forward is researched. Pitch and heave motion of a marine craft pushes and
drags the foils through water, generating propulsive thrust for anOne of the earliest working
concepts for a wave-propelled boat is illustrated in Fig. 1.1, where elastic metal plates were used
as foils [7]. In that case, both the curvature and the attack angle of the foils were controlled
passively by the stiffness in the metal plates, chosen by trial and error.

Figure 1.1: Drawing of the wave-propelled boat Autonaut from Pearson’s
Magazine, December 1898. Facsimile from Burnett [7].

A classification of longitudinal displacements of the foils is illustrated in Fig. 1.2. Foils used
for wave-propulsion is usually placed at the bow or at the stern to extract combined pitching and
heaving motion of the vehicle for forward thrust. The foil propulsion works much like a rectifier,
converting energy in the vertical motion into forward thrust.

Bøckmann [2] investigated wave propulsion of ships through the use of auxiliary foils, and
found that a “. . . spring-loaded foil with welltuned spring stiffness is preferable over a fixed foil”.
However, Bøckmann also found that “the drawback of a spring-loaded wavefoil . . . is that the
spring stiffness needs to be tuned for the instantaneous wave condition.”

2



1.2. Previous work Chapter 1. Introduction

An additional challenge arises when sea waves are absent, in which case wave-propelled
USVs drift in the ocean current without sufficient forward thrust [8].

Figure 1.2: Longitudinal displacement and relative sizes of foils corresponding to
plane/classic, tandem and canard configuration. The illustration is a bottom view
of vehicles. the blue rectangles represent lifting surfaces. Based on Ploe [5].

1.2 Previous work
Ship maneuvering in calm water has long been investigated, and a vast collection of existing
maneuverability standards is found from the International Maritime Organization (IMO), for
instance in resolutions [9] and [10]. The handbook of Fossen [4] delivers a great overview on
marine craft modeling and control and is a great source of reference used throughout this work.
According to Fossen, “The models in this book can be used for prediction, real-time simulation,
decision-support systems, situational awareness as well as controller-observer-design.” Rapid
estimation of the motion of marine vehicles in 6 degrees of freedom (DOFs) can be found in
Taimuri et al. [11] and references therein. Mathematical modeling of ships for control purposes
may also be referred to Perez [12].

The literature on oscillating foils extend far beyond the realm of wave propulsion of ships [2].
The theoretical framework on foils as lifting surfaces has been studied for over a hundred years,
with significant results from thin airfoil theory with experimental results in Jacobs et al. [13],
and analytical results for unsteady circulatory forces on foils are given by Theodorsen [14]. A
great reference to lift and drag with application on foils can be found in the corresponding books
by Hoerner [15] and [6]. Updated literature on the fundamentals in airfoil theory can be found
in the book by Anderson [16]. One of the limitations in the existing models is the assumption of
small attack angles. The characteristics of foils through all attack angles has been de-prioritized.
On wave-propelled USVs however, the speed is small and closed-form expressions for foil forces
beyond small attack angles is necessary. Empiric formulae for sectional lift and drag curves
based on physical models was proposed by Tufte [17].

Previous theoretical models typically neglects the effects of stall, which is reasonable only
when the ship speed is high or for small wave amplitudes [2]. An early study of the extraction of
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wave energy from wings oscillating in waves can be found in Wu [18]. Hydrodynamics of oscil-
lating foils beneath the free surface can for instance be found in Filippas and Belibassakis [19].
An analytical model of the study of flapping hydrofoil for wave propulsion can be found in
Lopes et al. [20]. One of the best references to wave-propulsion models with hydrofoils is the
thesis from Bøckmann [2] and the master’s thesis from Eitzen [21] investigated mathematical
framework for wave-propulsion from foils.

Recently, Zghyer [22] investigated the role of ship simulators and maneuvering models in
maritime operations: “Full autonomy holds great promise for enhancing safety and efficiency
in the maritime industry. Control is the main challenge: Autonomous ships’ main development
challenge is merely a collision detection and avoidance problem.” If wave-propulsion becomes
more widespread, an additional dimension for ship autonomy is introduced.

Wave-propelled USVs are heavily affected by sea waves and knowledge of the wave encounter
frequency can be used by the steering control algorithm for guidance and control purposes.
Investigation of ship motion in waves can for instance be found in the book by Jensen [23]
and is also treated in the hydrodynamics book by Newman [24]. Analytical estimation of ship
motion in waves using closed-form expressions can be found in Jensen et al. [25] and successful
estimation of the wave encounter frequency was developed and tested for a wave-propelled USV
by Dallolio et al. [26].

Recently, linear and Gaussian regression has been applied to predict the speed of wave-
propelled USVs, see Øveraas et al. [27]. This method is based on met-ocean forecast. A
proposed control strategy for steering of wave-propelled USVs is reported in Dallolio et al. [8]
by using gain-scheduled control.

It is hoped that a development for a physical speed model for wave-propelled USVs contribute
to the research on such vehicles, paving the way for possible advanced control strategies,
decision-support and a working simulation framework.

1.3 Research question
A simple overview of the dynamics of wave-proepelled USVs is presented in Sect. 1.3.1 and the
research question is stated in Sect. 1.3.2.

1.3.1 Overview of dynamics
Denote X the configuration space of a given USV, and the states x ∈ X the coordinates for the
position and attitude of this vehicle including foils and their time-derivatives.

The workspace for the USV, at sea, contains stochastic disturbances from sea waves, ocean
current and wind. Denote this environmental configuration space by E and by 𝝐 ∈ E the
environmental configuration. The control problem for the USV is to steer the rudder angle 𝛿.

The general vehicle dynamics is a state-space dynamics driven by the current and previous
states, affected by the environment and steered by rudder control 𝛿c by

¤x(𝑡) = f (x(𝑡), 𝝐 (𝑡), 𝛿c(𝑡) | x(𝜏) for 𝜏 ≤ 𝑡), x ∈ X. (1.1)
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Wave-propelled USV model Σ
by parameters 𝜶 ∈ H𝛼

Wind,
current,
waves

Forces

E:

Nonlinear terms:
Coriolis,
viscous damping,
fluid memory,
foil dynamics

Linear mass-damper-spring
with memory effects (𝜔 ≥ 0)

Path
reference

Steering
control

USV motion

USV configuration in X

Figure 1.3: Overall wave-propelled USV model is denoted by Σ and the model
parameters are given by the vector 𝜶. The overall model is a frequency-dependent,
and nonlinear forces are present. Theses will be described in this work, Coriolis,
centripetal forces, viscous damping, fluid memory effects and unsteady effects in
the foil dynamics. The simulation model can be simulated in closed-loop by active
steering controller.

The overall system model, denoted by Σ is illustrated in Fig. 1.3. The vehicle dynamics is a
highly nonlinear system because of the various forces and effects present in such systems. The
model may be parametrized by a parameter vector 𝜶 which is bounded to a set H𝛼.

1.3.2 Problem statement
The primary objective of this work is the derivation of a physical speed model for wave-
propelled USVs. The model architecture is proposed with a fresh perspective from the discipline
engineering cybernetics. The articulated problem statements are:

Problem statement 1. (Modeling)
Propose a model architecture for the general dynamics in Eq. (1.1) for wave-propelled USVs,

preferably by using closed-form expressions.

Problem statement 2. (Case study)
Perform a case study with the proposed method on the vehicle NTNU AutoNaut1.

Remark 1. In addition to the above problem statements, a proper validation of the case study
should be performed with available data sets.

1A specific version of the wave-propelled USV AutoNaut from the company AutoNaut Ltd. [28], owned by
NTNU.
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1.4 Contributions
This research offers a fresh perspective on the limitations of applying conventional thin foil
theory in the context of wave-propelled USV’s unique operational conditions, emphasizing the
need for auxiliary models.

In the developing stages of this work, various approaches was considered, among a frequency-
domain description of the USV vehicle. Time-domain analysis is however necessary since drag
forces on foils oscillates with twice the frequency of the vehicle. Furthermore, a time-domain
model allow making spatial motion prediction from the simulation model. The additional ad-
vantage with this approach is that the vehicle motions can be found even when the vehicle is
subjected to forces varying arbitrarily with time. On the contrary, wave-induced motions of
marine vehicles are still considered in the frequency domain, and this approach is also taken
here based on a monohull geometry describing wave-induced motions. Regarding foils, contri-
butions have been made in the development for closed-form expressions of foil forces as well as
identifying unsteady forces for a wide range of attack angles.

A summary of main contributions in this work include, but are not limited to:

• Proposed empiric lift and drag curves for foils beyond stall angle, including variation in
center of pressure from the relative attack angle

• Identification of transient foil dynamics with added mass, damping and three-dimensional
effects

• Proposed models for wing sections and span geometry

• The mutual wave-induced motion the vehicle and foils is designed in frequency-domain

• Identification of state-space representation of fluid-memory effects for efficient monohull
geometry capturing wave-induced motions

• Proposed unified model architecture for wave-propelled USVs: The model is split into
a 3-DOF maneuvering model affected mainly by currents and winds driven by a wave-
propulsion system

• Performed a case study on NTNU AutoNaut by collection of physical measures and
estimation of parameters 𝜶 for the proposed unified model architecture

• Performed a successful simulation of NTNU AutoNaut, suggesting feasibility in the
method
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1.5 Outline
The outline of the report is:

• Chapter 1: Introduction: Motivation and challenges for the project, previous work and
listing the main contributions of this work.

• Chapter 2: Theory: Contains all relevant theoretical models as well as derivations of
contributions in the field of foil theory.

• Chapter 3: Method to model wave-propelled USVs: A unified maneuvering and
seakeeping model is presented in which case the wave-propelled USV excites the foil
dynamics through wave-induced motion. A general model Σ with parameters 𝜶 and
estimation methods to obtain the parameters is presented.

• Chapter 4: Case study: NTNU AutoNaut: The parameters for the AutoNaut vehicle is
determined in order to proceed with a simulation environment.

• Chapter 5: Simulation results and discussion: Direct results and feasibility of the
simulation of the case study is presented. Discussions for the model and a summary of
main contributions from this work.

• Chapter 6: Conclusion and future work: The final conclusion and a list of possible
continuations of this work.
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Chapter 2

Theory

This chapter describes the necessary mathematical framework, hydrodynamic effects and non-
linear theory for foils that must be taken into account in order to make a physical model
for wave-propelled USVs. Notation, dynamics and kinematic preliminaries are presented in
Sect. 2.1. This is followed by a treatment of the equations of motion in Sect. 2.2, which is
written on a matrix-vector notation proposed by Fossen [4]. A brief mathematical foundation in
fluid mechanics is found in Sect. 2.3, which is necessary to describe linear waves, understanding
marine forces in Sect. 2.4 and understanding the theory developed for foils in Sect. 2.6. The last
section presents a common model for rudders.

2.1 Notation and preliminaries
The notation used in this thesis complies with the convention from the Society of Naval Architects
and Marine Engineers (SNAME) [29], see Tab. 2.1. Here, the coordinate system follows an
Eulerian description of the vessel, where [𝑥𝑏, 𝑦𝑏, 𝑧𝑏]⊤ is the body-frame {𝑏}. The body frame
and motion components are illustrated in Fig. 2.1. Reference frames are treated in Sect. 2.1.2.

𝑥b

𝑢 (surge)

𝑝 (roll)

𝑧b

𝑦b

𝑤 (heave)

𝑣 (sway)

𝑞 (pitch)

𝑟 (yaw)

Figure 2.1: Motion components in 6 degrees of freedom on a marine craft. A
wave-propulsion system is illustrated under the hull.
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Table 2.1: Common notation for marine craft’s. The notation complies with
SNAME [29].

forces 𝝉1−3 linear velocity 𝝂1−3 position 𝜼1−3
Motion along 𝑥𝑏-axis: surge 𝑋 𝑢 𝑥

Motion along 𝑦𝑏-axis: sway 𝑌 𝑣 𝑦

Motion along 𝑧𝑏-axis: heave 𝑍 𝑤 𝑧

moments 𝝉4−6 angular velocity 𝝂4−6 Euler angles 𝜼4−6
Rotation about 𝑥𝑏-axis: roll 𝐾 𝑝 𝜙

Rotation about 𝑦𝑏-axis: pitch 𝑀 𝑞 \

Rotation about 𝑧𝑏-axis: yaw 𝑁 𝑟 𝜓

2.1.1 Main particulars for wave-propelled USVs
A set of common particulars of a marine craft is briefly explained in this section and illustrated
in Fig. 2.2 displaying the length 𝐿, breadth 𝐵 and draft 𝑇 of the vehicle as well as the foil span
𝑆 and chord length 𝑐, which will be treated in Sect. 2.6. The length of the vehicle is commonly
measured by the length over all 𝐿oa and the length between perpendiculars 𝐿pp given in Fig. 2.3.

𝐵 (breadth)
𝐿 (length)

𝜗𝑖 (foil angle)

𝑇 (draft)

𝑆𝑖 (foil span) 𝑐𝑖 (chord length)

𝑇tot
(total draft)

Figure 2.2: Main particulars of length 𝐿, breadth 𝐵 and draft 𝑇 illustrated for a
wave-propelled USV where the submerged hull is blue. The total draft includes
strut length and vertical contribution from the maximum deflection of the foil angle
𝜗𝑖 with chord length 𝑐𝑖 at the deepest reaching foil 𝑖. The total breadth depends on
the maximum foil span 𝑆𝑖.

A description of the main particulars and parameters for a marine craft is [4]:

• Length 𝐿: The length of the vessel, often measured at the waterline, between perpendic-
ulars 𝐿pp or as the overall length from forward tip to aft tip 𝐿oa. For USVs, the length 𝐿
can be set as the overall length 𝐿 = 𝐿oa and 𝐿pp < 𝐿.
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𝐿pp (length between perpendiculars)

𝐿oa (length over all)

𝑇 (draft)

Figure 2.3: Common length measurement is length between perpendiculars 𝐿pp
and length over all 𝐿oa.

• Breadth 𝐵: The maximum width of the vessel, typically measured at the widest point. In
this report, the breadth is limited to the hull of the craft without foils.

• Draft 𝑇: The vertical distance from the waterline to the lowest point of the vessel’s hull.
It represents how deep the vessel extends into the water.

• Displaced volume ∇: The mass or weight of the vessel, expressed in kilograms for USVs.
It includes the weight of the vessel’s structure and cargo.

• Waterplane area 𝐴wp: It represents the projection of the vessel’s hull onto the plane of
the water surface. The waterplane area is important to calculate the vessel’s stability and
might be used to calculate hydrodynamic coefficients and resistance as the vessel moves
through the water.

• Block coefficient 𝐶B: Dimensionless measure for the hull’s underwater volume divided
by the volume of a rectangular block with the same length, breadth and draft. For 𝐶B
closer to 1, the vessel’s hull closely resembles a rectangular block suggesting a fuller and
more buoyant form. For 𝐶B around 0.5, the hull is more slender with less underwater
volume relative to the block suggesting a more streamlined vessel with less resistance.

• Waterplane area coefficient 𝐶wp: The waterplane area coefficient represents the propor-
tion of a vessel’s waterplane area to that of a rectangle with equivalent length and breadth.
It helps to characterize the cross-sectional shape relative to its size.

Some useful relations is found from the list above:
Remark 2. From the descriptions, the displaced volume is related to the block coefficient by

∇ ≡ 𝐿𝐵𝑇𝐶B, (2.1)

and the waterplane area can be related to the waterplane area coefficient by

𝐴wp ≡ 𝐿𝐵𝐶wp. (2.2)

The dimensions of different wave-propelled USVs differ in size, and results across different
vessels should only be directly compared after a proper similarity normalization. The next section
describes the common normalization practice to compare results across different vessels.
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Prime normalization for marine craft

In order to relate results and discussions among different vessel types, non-dimensional units
have been developed by SNAME in a system called the prime normalization system [29]. The
system is the most commonly accepted non-dimensional analysis employed.

The system uses the ship’s length 𝐿 as a basis for reference distance, and 𝑡′ = 𝑈/𝐿 as a basis
time unit, which corresponds to the passage of time required for the vessel to travel a distance
of it’s length. Tab. 2.2 lists the conversion factors for the Prime normalization system.

Table 2.2: Conversion factors for the Prime normalization system. From
SNAME [29] and Fossen [4].

Magnitude Conversion
Time 𝑡′ = (𝑈/𝐿)𝑡

Length 𝑥′ = (1/𝐿)𝑥
Mass 𝑚′ = (0.5𝜌𝐿3)−1𝑚

Inertia 𝐼′ = (0.5𝜌𝐿5)−1𝐼

Area 𝐴′ = (1/𝐿2)𝐴
Force 𝐹′ = (0.5𝜌𝑈2𝐿2)−1𝐹

Moment 𝑀′ = (0.5𝜌𝑈2𝐿3)−1𝑀
Velocity 𝑣′ = (1/𝑈)𝑣

Acceleration ¤𝑣′ = (𝐿/𝑈2) ¤𝑣
Angular velocity 𝑟′ = (𝐿/𝑈)𝑟

Angular acceleration ¤𝑟′ = (𝐿2/𝑈2) ¤𝑟

Prime normalization for foils

A non-dimensional system for foils may by utilized in the same manner, and is listed in Tab. 2.3.
The reduced frequency 𝜔′ = 𝑘F is introduced in unsteady foil theory, and non-dimensional
forces are written with the coefficient 𝐶𝐹 for the force 𝐹. Here, a prime will however denote lift
and lift coefficients per unit length of the span of the wing.

Table 2.3: Conversion factors for normalization system used on foils used in this
work.

Magnitude Conversion
Time 𝑡′ = (2𝑈/𝑐)𝑡

Length 𝑥′ = (1/𝑐)𝑥
Area 𝐴′ = (1/𝑐2)𝐴

Frequency 𝜔′ ≡ 𝑘F = (𝑐/2𝑈)𝜔
Force 𝐶𝐹 = (0.5𝜌𝑈2𝑐2)−1𝐹

Force per unit span 𝐶′
𝐹
= (0.5𝜌𝑈2𝑐2𝑆)−1𝐹
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2.1.2 Reference frames and coordinates
In order to describe physical quantities and denote mathematical relations, a convenient notation
for vectors, relativity and frame of reference follows. Fig. 2.4 displays the most commonly used
reference frames: The North-East-Down frame and the body frame. A seakeeping frame is
also illustrated, which will is concerned in the maneuvering model of the wave-propelled USV
explained in Sect. 3.2. The material in this section is based on Fossen [4].

Figure 2.4: Commonly used reference frames for marine vehicles. The North-
East-Down frame {𝑛} is inertial and the body frame {𝑏} follows the marine
craft, oscillating with seakeeping motions perturbed from the mean seakeeping
frame {𝑠}. Adapted facsimile from Fossen [4].

North-East-Down frame

The North-East-Down reference frame is defined relative to a tangent plane on Earth’s surface.
Its 𝑥𝑛-axis point North, 𝑦𝑛-axis point East and 𝑧𝑛 axis point downwards (not necessarily radially
down to center of Earth). The reference frame is denoted as {𝑛} and assumed inertial.

Remark 3. The position and attitude of the wave-propelled USV is described relative to a local
NED-frame.
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Body frame

The body fixed reference frame is defined to follow the body of the marine craft at a chosen point
of the craft with fixed axis following the craft’s attitude. For marine craft the usual convention is
that the 𝑥𝑏-axis point directly forwards, 𝑦𝑏-axis point starboard and 𝑧𝑏 completes the frame by
pointing downwards from the craft’s perspective. When the craft is rigid, any point on the craft
will have the same coordinate in the body frame. The reference frame is denoted as {𝑏} and the
origin of the frame is usually chosen at midships in the waterline or at the center of gravity.

Vectors

A coordinate free vector is denoted ®𝑟, which has a magnitude |®𝑟 | and a unit direction ®𝑟/|®𝑟 |. Such
vectors, e.g. Newton’s second law of motion, ®𝐹 = 𝑚 ®𝑎 (which is true in an inertial reference
frame), can be acted upon with an operator 𝑏 �̂� relative to the frame of reference {𝑏}. Newton’s
law can then be stated as ®𝐹 = 𝑚 𝑖 d

d𝑡 ®𝑣, where the time differentiation is taken with respect to an
inertial reference frame {𝑖}.

A coordinate vector on the other hand, is an Euclidean realization denoted as a boldface
with superscript for the frame of reference. For the vector above, r𝑖 ∈ R3×1 = R3.

Velocities and accelerations relative to a frame of reference are denoted with two letters in
subscripts. The first one is the relative frame of reference, and the second one is the point of
interest. One example is a rigid body (b) velocity relative to an inertial frame {𝑛}, expressed
in body frame {𝑏}, v𝑏nb. Another example is an angular velocity of a rigid body (b) relative to
inertial frame {𝑛}, expressed in the inertial frame, 𝝎𝑛

nb.

Generalized coordinates

A marine vessel operates in three linear motion components and three rotational motion com-
ponents described by a total of six degrees of freedom which was illustrated in Fig. 2.1. The
longitudinal motion is denoted as surge, sideways motion is sway and vertical motion is heave.

The Euler angle convention with three successive rotations describes fully the attitude of the
vessel. These rotations constitutes the yaw angle, or the heading of the vessel about a vertical
axis, roll as the rotation about the longitudinal axis and pitch as the rotation about the transverse
axis. The generalized position, velocity and force vectors according to SNAME [29] are

𝜼 ≜ [𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜙, \, 𝜓]⊤ ∈ R3 × T3, (position) (2.3a)
𝝂 ≜ [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟]⊤ ∈ R6, (velocity) (2.3b)
𝝉 ≜ [𝑋,𝑌, 𝑍, 𝐾, 𝑀, 𝑁]⊤ ∈ R6, (forces) (2.3c)

where the North-East-Down position vector is

p ≜ [𝑥𝑛, 𝑦𝑛, 𝑧𝑛]⊤ ∈ R3, (2.4)

and the Euler angles are represented by the vector

𝚯nb ≜ [𝜙, \, 𝜓]⊤ ∈ T3. (2.5)
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Here, the Euclidean space R𝑛 is a vector of real values for 𝑛-dimensions, and the hypertorus
T𝑚 = S1 × · · · × S1︸          ︷︷          ︸

𝑚 times

denotes the cartesian product of angles wrapped in the interval S1 = [0, 2𝜋).

Linear forces are denoted as f𝑏b ≜ [𝑋,𝑌, 𝑍]
⊤ given in the body-frame. Similarly, the moments

are m𝑏
b ≜ [𝐾, 𝑀, 𝑁]

⊤, also in body frame. The linear body velocity is v𝑏nb ≜ [𝑢, 𝑣, 𝑤]
⊤ and the

angular velocity of the body is 𝝎𝑏
nb ≜ [𝑝, 𝑞, 𝑟]

⊤ [4].

2.1.3 Kinematics
Kinematics refer to the study of the motion of bodies and concerns the geometrical relations.
The material in this section is based on Egeland and Gravdahl [30].

To clarify the kinematic relation for time differentiation, let ®𝑟 = [®𝑟ab]𝑖 + [®𝑟bc]𝑏 denote a
physical vector from the inertial point “a” to a body-fixed point “c”. The notations [·]𝑖 and [·]𝑏
denote that the vectors contained within the brackets are fixed to the frame in superscript. An
inertial time differentiation of this vector is

𝑖 d
d𝑡
[®𝑟] ≡ 𝑖 d

d𝑡
[®𝑟ab]𝑖 + ®𝜔ib × [®𝑟bc]𝑏︸        ︷︷        ︸

frame velocity

+ 𝑏 d
d𝑡
[®𝑟bc]𝑏︸      ︷︷      ︸

frame derivative

, (2.6)

which constitutes the frame movement 𝑖 d
d𝑡 [®𝑟ab]𝑖, the frame rotational component ®𝜔ib × [®𝑟bc]𝑏

and the fixed frame differentiation 𝑏 d
d𝑡 [®𝑟bc]𝑏. Expressed in coordinate vectors, then the relation

can be written as

𝑖 d
d𝑡

r𝑏 = v𝑏ib + S(𝝎𝑏
ib)r

𝑏
bc + v𝑏bc, (2.7)

where S(a)b = a × b represents the vector cross product as a the skew-symmetric operator

S(k) ≡ −S(k)⊤ ≜ ©«
0 −𝑘3 𝑘2
𝑘3 0 −𝑘1
−𝑘2 𝑘1 0

ª®¬ , (2.8)

where k = [𝑘1, 𝑘2, 𝑘3]⊤. To transform a vector in basis {𝑏} to {𝑎} without translation, the
rotation matrix is introduced:

r𝑎 = R𝑎
𝑏r
𝑏 . (2.9)

Remark 4. In the general transformation case, when a vector is transformed from a basis to
another with rotation and translation, this is referred to as a homogeneous transformation. The
reader is referred to the book by Egeland and Gravdahl [30].

The notation R𝑎
𝑏
∈ SO(3) implies that the matrix R𝑎

𝑏
is an active rotation from {𝑎} to {𝑏} in

the special orthogonal group (of order 3):
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SO(𝑛) = {R | R ∈ R𝑛×𝑛, R ∈ O(𝑛) is orthogonal, det(R) ≡ 1}, (2.10)

where the orthogonality is defined as

O(𝑛) = {R | RR⊤ ≡ R⊤R = I𝑛×𝑛}. (2.11)

Remark 5. From the definition of the rotation matrices, Eq. 2.10, it follows R𝑎⊤

𝑏
≡ R𝑎−1

𝑏
≡ R𝑏

𝑎 .

Simple active rotation matrices for rotations in 𝑥-, 𝑦- and 𝑧-axes are

R𝑧,𝜓 ≜
©«
𝑐(𝜓) −𝑠(𝜓) 0
𝑠(𝜓) 𝑐(𝜓) 0

0 0 1

ª®¬ , R𝑦, \ ≜
©«
𝑐(\) 0 𝑠(\)

0 1 0
−𝑠(\) 0 𝑐(\)

ª®¬ , R𝑥,𝜙 ≜
©«
1 0 0
0 𝑐(𝜙) −𝑠(𝜙)
0 𝑠(𝜙) 𝑐(𝜙)

ª®¬ , (2.12)

where 𝑠(·) ≡ sin(·) and 𝑐(·) ≡ cos(·).

2.1.4 Dynamics
In the following thesis, dynamics refer to the study of forces and torques and how they relate to
the motion at study. This term will be used indistinguishably from “kinetics,” which is a common
phrase in engineering studies that explains the same phenomena. The primary two methods
used in the report are the Newtonian mechanics, relating the motion to the forces involved, and
the Lagrangian mechanics, which is an energy consideration.

Newtonian dynamics

The linear dynamical equation is Newton’s second law of motion which relates force f, regardless
of attack point on the body, to the time differentiation of the body’s linear momentum 𝑚v. For
constant mass, the force f relates to the acceleration a of the center of mass as

f = 𝑖 d
d𝑡
(𝑚v) = 𝑚a. (2.13)

Euler’s equation of motion is an extension to Eq. (2.13) for arbitrary moments and rotations
for rigid bodies. The moments m acting on a body is related to the time differentiation of the
angular momentum I𝝎, where I is the inertia dyadic representing the mass distribution, as

m = 𝑖 d
d𝑡
(I𝝎) = S(𝝎)I𝝎 + I ¤𝝎. (2.14)
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Lagrangian dynamics

The dynamics of a mechanical system can be derived from the principle of least action, see for
instance the classic reference in Goldstein [31] or the control-oriented approach in Egeland and
Gravdahl [30]. For systems described by generalized positions q = [{𝑞𝑘 }]⊤, kinetic energy
𝑇 = 𝑇 ( ¤q) and potential energy 𝑉 = 𝑉 (q), the Lagrangian dynamics is(

𝜕𝐿

𝜕q

)⊤
− 𝑖 d

d𝑡

(
𝜕𝐿

𝜕 ¤q

)⊤
= Q, (2.15)

where 𝐿 ≜ 𝑇 − 𝑉 is the Lagrangian of the system and Q is the generalized forces acting on the
system [31]. This form is useful when there are unknown constraints in our system. Depending
on the forces Q, Eq. (2.15) is conservative unless a Rayleigh-dissipation on the form

F =
∑︁
𝑛

1
𝑛 + 1

∑︁
𝑘

𝑅𝑘𝑛 ¤𝑞 (𝑛+1)𝑘
, (2.16)

is included in the general force at right hand side with the dissipative force
(
𝜕F
𝜕 ¤q

)⊤
. Here, ¤𝑞𝑘 is

the 𝑘-th component of the generalized velocities ¤q, and 𝑅𝑘𝑛 is the dissipation term. The number
𝑛 represents the dissipation to 𝑛-th order.

Remark 6. Proportional friction is included with Rayleigh-dissipation in the coordinate 𝑞𝑘 by
setting 𝑛 = 1 such that the friction becomes −𝑅𝑘1 ¤𝑞𝑘 . Equations of motion from Lagrange’s
method from Eq. (2.15) is (

𝜕𝐿

𝜕q

)⊤
− 𝑖 d

d𝑡

(
𝜕𝐿

𝜕 ¤q

)⊤
= Q +

(
𝜕F
𝜕 ¤q

)⊤
.

2.2 Marine craft equations of motion
In this section the equations of motions for marine craft, including wave-propelled USVs are
derived with a matrix-vector notation inspired by the conventions used in robotics [30] [4].

2.2.1 Marine kinematics
The vessel is assumed to operate in a geographical area limited to a local tangent-plane with the
North-East-Down (NED) reference frame convention. The NED frame {𝑛} can be considered
inertial because the effects of Earth’s rotation is negligible in consideration with the hydrody-
namic forces experienced in {𝑛}. This means that Coriolis and centripetal forces due to the
movement of the NED frame from Earth’s rotation are disregarded, and that Newton’s laws of
motion can be applied directly in {𝑛}.

16



2.2. Marine craft equations of motion Chapter 2. Theory

Linear velocity transformation

The rotation matrix R𝑛
𝑏

from {𝑛} to {𝑏} expressed from Euler angles through the three simple
rotations yaw 𝜓, pitch \ and roll 𝜙

R𝑛
𝑏 (Θ𝑛𝑏) = R𝑧,𝜓R𝑦,\R𝑥,𝜙, (2.17)

where the simple rotations are defined in Eq. (2.12).

Angular velocity transformation

The angular velocities 𝝎𝑏
nb changes with the attitude of the body such that a direct integration of

𝝎𝑏
nb do not have any physical interpretation as the Euler angles do [4]. The angular velocity of

the body is related to the Euler angles 𝚯nb via the transformation matrix T(𝚯), implicitly found

𝝎𝑏
nb =

©«
¤𝜙
0
0

ª®¬ +R⊤
𝑥,𝜙

©«
0
¤𝜙
0

ª®¬ +R⊤
𝑥,𝜙R

⊤
𝑦,\

©«
0
0
¤𝜓
ª®¬ =

©«
1 0 −𝑠(\)
0 𝑐(𝜙) 𝑐(\)𝑠(𝜙)
0 −𝑠(𝜙) 𝑐(\)𝑐(𝜙)𝑦

ª®¬ ©«
¤𝜙
¤\
¤𝜓
ª®¬ =: T(𝚯nb)−1 ¤𝚯nb, (2.18)

where the transformation matrix T(𝚯) was identified with [4]

T(𝚯) ≜ ©«
1 𝑠(𝜙)𝑡 (\) 𝑐(𝜙)𝑡 (\)
0 𝑐(𝜙) −𝑠(𝜙)
0 𝑠(𝜙)/𝑐(\) 𝑐(𝜙)/𝑐(\)

ª®¬ . (2.19)

Kinematic equation

Combining the linear and angular velocity transformation, the kinematic transformation from
{𝑛} to {𝑏} is (

¤p𝑛nb¤𝚯nb

)
=

(
R𝑛
𝑏
(𝚯nb) 03×3

03×3 T(𝚯nb)

) (
¤v𝑏nb
¤𝝎𝑏

nb

)
=: JΘ(𝜼)𝝂𝑏, (2.20)

where the kinematic transformation matrix JΘ(𝜼) was identified in the equation above.

2.2.2 Equations of motion

Equations of motion about center of gravity

Let the body frame be fixed in the center of gravity of a rigid body. Euler’s equation of motion
from Eq. (2.14) can be stated as

I𝑏𝑔 ¤𝝎𝑏
nb − S(I𝑏𝑔𝝎𝑏

nb)𝝎
𝑏
nb = m𝑏

𝑔 , (2.21)

where I𝑏g is the inertia dyadic, 𝝎𝑏
nb is the body angular velocity relative to NED expressed in

body {𝑏} and m𝑏
g is the sum of external moments acting on the body. Newton’s second law takes
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the form
𝑚 ¤v𝑏ng + 𝑚S(𝝎𝑏

nb)v
𝑏
ng = f𝑏g , (2.22)

where𝑚 is the rigid body mass, v𝑏nb is the velocity of center of gravity relative to NED expressed
in body {𝑏} and f𝑏g is the sum of external forces acting on the body.

Eqs. (2.21) and (2.22) can be combined into the generalized velocity 𝝂g = [v𝑏ng
⊤
,𝝎𝑏

ng
⊤]⊤

and forces 𝝉g = [f𝑏g
⊤
,m𝑏

g
⊤]⊤ by

(
𝑚I3×3 0

0 I𝑏g

)
¤𝝂g +

(
𝑚S(𝝎𝑏

nb) 0
0 −S(I𝑏𝑔𝝎𝑏

nb)

)
𝝂g = 𝝉g. (Newton-Euler dynamics) (2.23)

The above equation is true when the body frame {𝑏} is given in the center of gravity. The
next section will provide the necessary formulae for expressing the equations of motion in a
general body-fixed frame.

Equations of motion in a body-fixed frame

It is desirable to choose the craft’s body-frame in regards to various considerations, and in
general the desired body-frame do not coincide with the craft’s center of gravity. Thus, when
the body frame do not coincide with the center of gravity, the generalized equations of motion
is altered by a kinematic coordinate transformation.

Denote r𝑏bg as the position of the center of mass relative to the body frame. The coordinate
transformation is performed on the velocity 𝝂.

Remark 7. Consider the similarity transformation z = Tx on the system ¤x = Ax, where T is
constant and a diffeomorphism. The new coordinate dynamic is ¤z = T¤x = TAx = TAT−1z.
From this, it is concluded that the coordinate is changed by T and the matrix is changed by
pre-multiplying with T and post-multiplying with T−1.

For the velocity 𝝂 = [v𝑏nb;𝝎𝑏
nb], the linear velocity is related to the new frame via Eq. 2.7 as

v𝑏ng = v𝑏nb + S(𝝎𝑏
ng)r𝑏bg, (2.24)

or v𝑏nb = v𝑏ng + S(r𝑏bg)𝝎
𝑏
ng and the angular velocity is unchanged. Following the notation in

Fossen [4], the similarity transformation from center of gravity to the new body frame is H(r𝑏bg):

𝝂𝑏ng = H(r𝑏bg)𝝂
𝑏
nb, H(r𝑏bg) =

(
I3×3 S(r𝑏bg)

⊤

03×3 I3×3

)
. (2.25)

Carrying out the calculations, the new equations of motion is
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H(r𝑏bg)
⊤

(
𝑚I3×3 0

0 I𝑏g

)
H(r𝑏bg) ¤𝝂 +H(r𝑏bg)

⊤

(
𝑚S(𝝎𝑏

nb) 0
0 −S(I𝑏𝑔𝝎𝑏

nb)

)
H(r𝑏bg)𝝂 = H(r𝑏bg)

⊤𝝉g.

(2.26)

Remark 8. The above equation can be interpreted by intuition: The velocities 𝝂 given in the
origin of the body frame, needs to be transformed by H such that the velocities are expressed
at the center of gravity, 𝝂g = H𝝂. Then the Newton-Euler dynamics by Eq. 2.23 describes
the dynamics, and the inverse transformation H⊤ can be post-multiplied to return back to the
coordinate frame {𝑏}.

The transformation of the body-fixed forces do not alter the linear force terms, f𝑏b = f𝑏g , but
the moments are changed by m𝑏

b = S(r𝑏bg)f
𝑏
g +m𝑏

g .

2.2.3 Matrix-vector representation
The body dynamics is expressed in matrix-vector form according to Fossen [4] as

MRB ¤𝝂 + CRB(𝝂)𝝂 = 𝝉RB, (2.27)

where the inertia matrix MRB and the Coriolis and centripetal matrix CRB(𝝂) are identified from
Eq. (2.26) with

MRB ≜

(
𝑚I3×3 −𝑚S(r𝑏bg)
𝑚S(r𝑏bg) I𝑏bg − 𝑚S(r𝑏bg)

2

)
, (2.28)

and

CRB(𝝂) ≜
(

𝑚S(𝝎𝑏
nb) −𝑚S(𝝎𝑏

nb)S(r
𝑏
bg)

𝑚S(r𝑏bg)S(𝝎
𝑏
nb) −𝑚S(r𝑏bg)S(𝝎

𝑏
nb)S(r

𝑏
bg) − S(I𝑏𝑔𝝎𝑏

nb)

)
. (2.29)

The complete vehicle model is fully described by the kinematic and dynamic equations

¤𝜼 = JΘ(𝜼)𝝂,
MRB ¤𝝂 + CRB(𝝂)𝝂 = 𝝉RB,

(2.30)

where the transformation matrix JΘ(𝜼) was found in Sect. 2.2.1.
Properties of the system inertia matrix MRB and the Coriolis and centripetal matrix CRB is

well known in the literature on marine systems, and the interested reader is referred to Fossen in
the chapter “Rigid-body Kinetics” [4].

Remark 9. For marine equations of motion, the notation 𝑋𝑖 𝑗 , for element (𝑖, 𝑗) in the matrix X
indicates a coupled interaction from degree of freedom 𝑗 in direction 𝑖.
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2.3 Fluid mechanics
The dynamics of Eqs. (2.13), (2.14) and (2.15) are fundamental for the derivations of the marine
craft equations of motion, and the kinematics in Sect. 2.1.3 is the geometrical interpretation of
these motions. One needs to understand the underlying fluid mechanical forces and assumptions
therein to provide mathematical description of the forces in the equations of motion. A great
introduction in fluid mechanics can be found in the book “Fluid Mechanics” from White [32],
and applications for hydrodynamics can be found in Lamb [33] and Newman [24]. Fig. 2.5
is included for the motivation for the following mathematics in fluid mechanics for a proper
understanding for modeling of wave-propelled USVs.

Figure 2.5: The mathematics of sea waves and the interconnection with wave-
propelled USVs can be derived from fluid mechanics. Image free of use under
Creative Common license, from [34].

2.3.1 Non-dimensional numbers
In fluid mechanics and hydrodynamics, there exist countless non-dimensional numbers used to
characterize flow patterns and different phenomena. The two most important numbers for the
study of the motion of surface vehicles are Reynold’s number and Froude number.

Reynold’s number

According to White [32], Reynold’s number is “... the most important parameter in fluid
mechanics”. The number is always influential, and can be neglected only in flow regions away
from high-velocity gradients. It is defined according to

Re ≜
𝑈𝐿

a
, (Reynold’s number) (2.31)
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where a = `/𝜌 is the kinematic viscosity, with further explanation in Definition 1.

Definition 1. (Reynolds number)
The relation between inertia forces and shear forces in a fluid, defined by a characteristic

length 𝐿 and a characteristic speed𝑈 by Eq. (2.31).

Remark 10. Reynolds number can be used to classify if a flow is turbulent or laminar. However,
the range of the number will vary depending on the system under study since the characteristic
length is chosen in accordance to a physical length at the system. The number is particularly
useful when geometrical similarity is present between systems.

Froude number

The Froude number characterizes the dominant effect in the case of free-surface flows and is
totally unimportant if there is no free surface [32]. In hydrodynamic design of ships, the Froude
number is used to establish similarity between towing-tank tests and full-scale operation in
regard to wave pattern and resistance [6]. It is defined according to

Fn ≜
𝑈
√
𝐿𝑔
, (Froude number) (2.32)

with an explanation in Definition 2.

Definition 2. (Froude number)
The relation between inertia forces and gravitational forces in a fluid, defined by a charac-

teristic length 𝐿 and a characteristic speed𝑈 by Eq. (2.32).

Remark 11. The definition of Froude number given in Definition 2 is the one used throughout
this report. In ship hydrodynamics this number is denoted by Fn. The reader should be aware
that the number might also be defined according to Fr = Fn2 = 𝑈2

𝑔𝐿
which is the square of

Eq. (2.32), and the definition found in White [32].

Remark 12. A hydrodynamic classification of surface vessels from Froude number can be
found at pp. 4 in Fossen [4]. Due to its low speeds, wave-propelled USVs are according to
Definition 2 classified as “displacements vessels”, where the restoring forces dominate relative
to hydrodynamic forces.

In this section, it is concluded that the non-dimensional numbers of Reynold’s number and
Froude number is useful to understand the motion of surface vehicles and flow patterns. The
governing physics should be described by potential theory.
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2.3.2 Potential theory
The following assumptions are fundamental for potential theory for liquids such as water. The
first two assumptions relates to conservation principles:

Assumption 1. (Conservation of mass)
Conservation of mass must apply.

Assumption 2. (Conservation of momentum)
Conservation of momentum must apply.

In the handbook on lift [6], Hoerner states that “for all practical purposes, the density can be
considered to be constant”. This is referred to as the incompressibility condition, meaning that
a given water amount has constant volume:

Assumption 3. (Incompressible)
The fluid can be considered incompressible, i.e. the density 𝜌 is constant.

Lastly, the flow field is assumed conservative with the following assumption:

Assumption 4. (Irrotational)
The flow field is irrotational and continuous, i.e. the field is conservative.

By conservation of mass in Assumption 1, incompressibility in Assumption 3 and applying
the divergence theorem, the continuity equation always holds

div(V) = ∇ · V =
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦
+ 𝜕𝑤
𝜕𝑧

= 0, (2.33)

where V = [𝑢, 𝑣, 𝑤]⊤ is the fluid flow field. The flow field is presumed continuous throughout
the domain. From Assumption 4, any line integral is path independent such that energy is not
lost, only converted. This means that the conservative flow field can be described by the gradient

V = grad(Φ) = ∇Φ =

[
𝜕Φ

𝜕𝑥
,
𝜕Φ

𝜕𝑦
,
𝜕Φ

𝜕𝑧

]⊤
, (2.34)

satisfying the irrotational assumption since the curl of a gradient is zero, ∇×V = ∇× (∇Φ) = 0.
The potential Φ is a scalar function in the domain of interest. Substituting Eq. (2.34) into
Eq. (2.33), it follows that the potential must follow Laplace’s equation

∇
2Φ = 0. (2.35)

From White [32], viscosity can be defined according to:

Definition 3. (Viscosity)
Viscosity is a quantitative measure of a fluid’s resistance to flow. More specifically, viscosity

determines the fluid strain rate as a result of an applied shear stress.
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In accordance with the momentum conservation from Assumption 2 and incorporating
viscosity effects from Definition 3, the incompressible Navier-Stokes equations

𝜌
D
D𝑡

V = 𝜌g − ∇𝑃 + `∇2V, (Navier-Stokes equation) (2.36)

where D
D𝑡 represents the material derivative, g is the acceleration due to gravity, 𝑃 is the pressure

and ` is the fluid viscosity, characterizes the fluid motion well [32]. The terms in Eq. (2.36)
depend on the position in the domain analyzed.

By neglecting viscosity, Eq. (2.36) can be transformed to the unsteady Bernoulli’s equation.
Along a streamline, the energy density 𝑒 is constant

𝑃 + 𝜌 𝜕Φ
𝜕𝑡
− 𝜌𝑔𝑧𝑛 + 1

2
𝜌 |V|2 = 𝑒, (Bernoulli’s equation) (2.37)

where the terms are evaluated on the streamline of the flow.

Remark 13. A practical use-case for Bernoulli’s equation, is to compare Eq. (2.37) at two
separate points along a streamline in order to cancel the constant energy density 𝑒 such that
relation between e.g. velocity |V| and pressure 𝑃 is found.

When the motion of fluids is analyzed, it is common to find a solution for the velocity
potential Φ in the domain of interest. This process is referred to as the boundary value problem
(BVP) defined according to Definition 4, and is the method employed to describe sea waves in
Sect. 2.3.3.

Definition 4. (Boundary value problem)
The boundary value problem in fluid mechanics relates to finding solutions for the velocity

potentialΦ satisfying Laplace’s equation from Eq. (2.35) everywhere within the fluid, and various
boundary conditions defined in the domain. These can for instance be kinematic conditions or
dynamic conditions on surfaces or interfaces.

Remark 14. An example of a kinematic boundary condition is impermeability, meaning that
the normal velocity of a fluid on a surface at rest is zero, 𝜕Φ

𝜕𝑛
= 0.

2.3.3 Wave theory
In order to describe the effects of ocean waves on a floating body on the free surface, a
mathematical description of the waves is necessary. The common way of describing ocean
waves is by using potential theory from Sect. 2.3.2. When only linear terms are kept, this is
referred to as linear wave theory, which is the core theory used in ocean and coastal engineering
and naval architecture [35].

Linear regular waves

Let the mean free sea level be defined by 𝑧𝑛 = 0, following the NED convention. A single regular
wave component may be described by an amplitude Za,𝑖, wave frequency 𝜔𝑖, cardinal direction
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𝛽𝑘,𝑖 and a phase 𝜖𝑖. The sea elevation – the elevation from irregular waves – is the summation

Z (𝑡) =
∑︁
𝑖

Za,𝑖 sin(𝜔𝑖𝑡 − k⊤
𝑖 r + 𝜖𝑖), (2.38)

where k𝑖 = [𝑘𝑥 , 𝑘𝑦, 0]⊤ such that 𝛽𝑘,𝑖 = arctan(𝑘𝑦, 𝑘𝑥). The dominating wave frequency
encounters the surface vehicle with an angle 𝛽, illustrated in Fig. 2.6. The wave encounter angle
is defined according to:

Definition 5. (Wave encounter angle)
The wave encounter angle 𝛽 is the angle from the bow to the direction of the wave 𝛽𝑘 positive

along the 𝑧𝑏-axis of the vehicle, by the right hand screw convention.

The figure also shows the wave number k and the wavelength _ of a regular wave component.

𝑥𝑏

𝜓
𝛽𝑘

_

𝛽

k

𝑥𝑛

𝑦𝑛

Figure 2.6: Regular waves encounter the USV by an angle 𝛽 = 𝛽𝑘 − 𝜓.

The undisturbed wave potential is usually expressed for a single wave component Φ𝑖 such
that the irregular wave potential is Φ =

∑
𝑖 Φ𝑖. The following assumptions need to be fulfilled

for a single wave component:

Assumption 5. (Impermeability at sea bed)
The vertical velocity at the bottom of the sea is zero.

Assumption 6. (Dynamic condition on the free surface)
Pressure is continuous over the free surface.

Assumption 7. (Kinematic condition on the free surface)
Fluid particles at the surface stays at the surface.

The material in this section is based on Krogstad and Arntsen [35]. Without loss of generality,
the potential for a single undisturbed wave is found. The index 𝑖 is dropped for now. Let a
regular wave traverse in direction 𝑥𝑛 with zero phase, such that the wave elevation is

Z (𝑡) = Za sin(𝜔𝑡 − 𝑘𝑥𝑛). (2.39)

24



2.3. Fluid mechanics Chapter 2. Theory

_

2Za

0.5_

Figure 2.7: Regular waves. Fluid parcel motion follows near circular paths in
deep water, until about half a wavelength in depth, which is the necessary depth
when deep water assumption is valid.

From the above assumptions, the following boundary conditions, given in Remarks 15–17 for
the potential Φ. Recall that Laplace’s equation for the potential is always held inside the fluid.
Fig. 2.7 show the wavelength _ and the wave amplitude Za.

Remark 15. Assumption 5 suggests that the vertical velocity is zero at the sea bed at depth ℎ,

𝜕Φ

𝜕𝑧𝑛
= 0. (at 𝑧𝑛 = ℎ) (2.40)

Remark 16. Assumption 6 suggest that the water pressure 𝑃 at the surface is equal to the air
pressure 𝑃a. From the linear terms in Bernoulli’s equation from Eq. (2.37) – meaning that the
term 1

2 |V|
2 is neglected – one arrives at the linear dynamic condition

𝜕Φ

𝜕𝑡
= 𝑔Z . (at 𝑧𝑛 = 0) (2.41)

Remark 17. Assumption 7 suggest that the vertical velocity of the water will follow the vertical
velocity of the surface elevation. By keeping linear terms, it can be shown that

𝜕Z

𝜕𝑡
=
𝜕Φ

𝜕𝑧𝑛
. (at 𝑧𝑛 = 0) (2.42)

Combining the boundary conditions from Eqs. (2.41) and (2.42), the linear undisturbed wave
potential satisfy

𝜕2Φ

𝜕𝑡2
+ 𝑔 𝜕Φ

𝜕𝑧𝑛
= 0. (at 𝑧𝑛 = 0) (linear wave eq.) (2.43)

After the linear boundary conditions is stated, Laplace’s equation can be solved analytically
for the wave potential of undisturbed linear waves. According to Krogstand and Arntsen, written
in terms of NED-coordinates, the wave potential is found as
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Φ𝑖 =
Za,𝑖𝑔

𝜔

cosh(𝑘𝑖 [ℎ − 𝑧𝑛])
cosh(𝑘𝑖ℎ)

cos(𝜔𝑡 − 𝑘𝑥,𝑖𝑥𝑛 − 𝑘𝑦,𝑖𝑦𝑛 + 𝜖𝑖), (2.44)

where 𝑖 is the phase.

Remark 18. The wave potential in Eq. (2.44) can be simplified when the wave depth ℎ is large
compared to the wavelength _. According to [35], a deep water approximation is accurate when
the depth is ℎ > 0.5_.

Deep water regular waves

For the deep water assumption, the velocity potential is approximately [35]

Φ𝑖 =
Za,𝑖𝑔

𝜔𝑖
e−𝑘𝑖𝑧

𝑛

cos(𝜔𝑖𝑡 − 𝑘𝑖 cos(𝛽𝑘,𝑖)𝑥𝑛 − 𝑘𝑖 sin(𝛽𝑘,𝑖)𝑦𝑛 + 𝜖𝑖), (2.45)

and the dispersion relation is

𝜔2 = 𝑔𝑘. (dispersion relation) (2.46)

Remark 19. The velocity field from the wave potential Φ is found by the gradient such that

Vwaves = ∇Φ. (2.47)

Wave potential forces

The usual method for finding the hydrodynamic forces acting on a vehicle in waves, is based on
the superposition of the diffraction forces due to the wave forces on a non-moving vehicle, and
of the radiation forces due to the vehicle motion in an undisturbed sea [24].

The wave potential in Eq. (2.45) is the potential for an undisturbed wave. According to
Jensen [23], the forces due to an undisturbed wave, the Froude-Krylov force, is an important
method for finding wave forces.

Definition 6. (Froude-Krylov force)
The hydrodynamic forces introduced on a submerged body from the undisturbed waves as if

the body was not present.

Remark 20. The Froude-Krylov forces can be found by integrating the unsteady pressure 𝑃𝑑
over the wetted surface 𝑆 of a submerged body

FFK =

∬
𝑆

𝑃𝑑dA, (2.48)

where the unsteady pressure field from the potential Φ is

𝑃𝑑 =
𝜕Φ

𝜕𝑡
. (2.49)
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Remark 21. The Froude-Krylov force is only a function of the ambient wave potential and
easy to evaluate. The diffraction force is a function of the diffraction potential and requires the
solution of a boundary value problem.

A useful formulation in more advanced methods in hydrodynamics is to calculate forces
from complex potentials. The complex wave potential from Eq. (2.45) is

𝜑 =
Za𝑔

𝜔
e−𝑘𝑧

𝑛

e𝑖𝜔𝑡e−𝑖𝑘 cos(𝛽𝑘)𝑥𝑛−𝑖𝑘 sin(𝛽𝑘)𝑦𝑛 . (2.50)

Wave spectra

The instantaneous wave elevation is Gaussian distributed with zero mean [4]. It is usual to
assume that the wave process is stationary under short time considerations of about 20 minutes
to 3 hours and the process is ergodic [36]. The wave frequencies present can be described by a
wave spectrum 𝑆(𝜔). When a discrete wave spectrum is employed for simulation purposes and
the distance between each wave component 𝜔𝑖 is Δ𝜔, the different wave amplitudes are

Za,𝑖 =
√︁

2𝑆(𝜔𝑖)Δ𝜔. (2.51)

According to Fossen [4], different wave spectra is useful for different sea states. The
Pierson-Moskowitz spectrum

𝑆(𝜔) = 𝐴𝜔−5 exp
(
−𝐵𝜔−4

)
, (2.52)

where the parameters 𝐴 and 𝐵 are adjusted, is used as a basis for several spectral formulations.
Common values for a one-parameter spectra is with [4]

𝐴 = 0.0081𝑔2, 𝐵 =
3.11
𝐻2
𝑠

.

For fully developed sea at large depth, the modified Pierson-Moskowitz spectrum is suggested.
For non-developed sea, the JONSWAP or Torsethaugen spectra is recommended. The spectral
density function for non-developed sea will be more peaked than those representing fully-
developed sea. The Torsethaugen spectrum has the added benefit of describing a low frequency
peak similar to the JONSWAP spectrum, and a high frequency peak representing newly developed
sea. A detailed discussion and numerical values for the different spectra can be found in [4].

Remark 22. For wave-propelled USVs operating in fjords, the wave spectrum contains higher
wave frequencies than that of open seas. This suggest that the Torsethaugen spectrum is the
correct wave spectrum to use.

Dominating forces on wave-propelled USV

When the forces due to waves are to be found on a wave-propelled USV, it may be beneficial
to classify the type of forces on the vehicle, preferably also on the vehicle hull and the foils.
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The classification helps in determining whether or not the undisturbed Froude-Krylov force
from Sect. 2.3.3 applies, or if the present of the body structure diffracts the impinging waves
significantly such that this method is inapplicable.

According to Pettersen [36], it is common to distinguish between small-scale constructions
and large-scale constructions in naval architecture. The definitions are:

Definition 7. (Large-scale constructions)
From a hydrodynamic standpoint, a structure is regarded as a large-scale construction when

the structure’s ability to generate waves is important when calculating the hydrodynamic forces.

Definition 8. (Small-scale constructions)
A structure is regarded as a small-scale construction when Definition 7 do not apply.

An analytical distinction is found for the case of vertical cylinders standing in regular waves.
For a regular wave with wave height 𝐻 = 2Za and wavelength _, the following definitions from
Pettersen [36] can be used:

Definition 9. Classification of cylinders standing in regular waves)
Given a vertical cylinder standing in regular waves. If the relationship between the wave-

length and diameter is less than 5, a construction is classified as a large-scale constructions in
Definition 7. Otherwise, it is classified as a small-scale construction according to Definition 8.

Definition 10. (Classification of dominating forces on small-scale construction)
Let a vertical cylinder standing in regular waves be classified as a small-scale construction

according to Definition 9. If the relationship between the wave height and diameter is less than
4𝜋, mass forces dominate. Otherwise, drag forces dominate.

The following remark showcases an example on how different forces can be determined on
the different parts of a wave-propelled USV:

Remark 23. Definitions 9 and 10 are applicable for cylinders standing in regular waves. Let
these classifications apply to a wave-propelled USV with length 𝐿 = 5.0 [m] and the foils
have chord width 𝑐 = 0.2 [m]. The foils are supported by struts with diameter 𝑑 = 0.05 [m].
According to the dispersion relation from Eq. (2.46), the wavelength is found through _ = 2𝜋

𝜔2𝑔,
since 𝑘 = 2𝜋/_.

Let the wave frequency be 𝜔 = 2.5 [s−1] and the wave height 𝐻 = 1 [m], such that the
wavelength is _ = 9.9 [m]. According to Definition 9, the USV may be regarded as a large-
scale construction (since _/𝐿 < 5), while the foils and the supporting struts are small-scale
constructions. Additionally, according to Definition 10, mass forces are dominating on the foils
(since 𝐻/𝑐 < 4𝜋), while drag forces is the dominating force on the struts (since 𝐻/𝑑 > 4𝜋).
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2.4 Marine craft forces
The governing equations of motion for a marine craft was found in Sect. 2.2, and the nature
of the interaction forces and moments 𝝉RB between the craft and the surrounding environment
from sea and air is explained briefly in this section before the subsequent sections determines
values. The theory can be found in any standard textbook on hydrodynamics, for instance the
handbook from Fossen 2021, chapters 4–6 [4]. Inspiration was also found in the master’s thesis
from Pinit, a thesis describing hydrodynamic modeling and simulation of ships explaining sea
loads [37]. Additionally, not seen to this extent, a direct classification of forces1 into first order
and second order effects is included to enhance the understanding of marine craft behavior.

2.4.1 Classification of forces
Firstly, note that the forces (relating to both linear forces and moments) is time-varying and their
origins can be separated, meaning that

𝝉RB = 𝝉RB(𝑡) =
∑︁
𝑖

𝝉RB,𝑖 (𝑡). (2.53)

Secondly, any observation of a marine craft facilitates the comprehension that some of the
degrees of freedom oscillates around a mean position, e.g. in heave, roll and pitch, indicating
that the forces can be categorized into a first order oscillatory forces and a second order drift
forces accordingly

𝝉RB = 𝝉1(𝜔𝑡) + 𝝉2(𝑡), (2.54)
where (𝜔𝑡) indicates that the forces oscillates.

Definition 11. (First order forces and moments on marine craft)
The first order forces and moments 𝝉1(𝑡) corresponds to zero mean oscillatory forces such

that ⟨𝝉1⟩ = 0 when ⟨·⟩ indicates a sufficient time average.

Definition 12. (Second order forces and moments on marine craft)
The second order forces and moments 𝝉2(𝑡) corresponds to a mean drift force such that

typically ⟨𝝉2⟩ ≠ 0 when ⟨·⟩ indicates a time average.

As a direct consequence of Definitions 11 and 12, the mean position of the craft, in concern
for navigation purposes, can be determined solely by the second order forces acting on the
marine craft.

2.4.2 Environmental forces

Sea waves

Sea waves induce a time-varying excitation force on the vehicle due to changes in water pressure
around the hull. As a result, the vehicle initiates movement and oscillation, leading to a feedback

1The term forces refer to both linear forces as well as moments

29



2.4. Marine craft forces Chapter 2. Theory

reaction that disturbs the water momentum, called radiation. Together, these forces are called
hydrodynamic forces.

This reaction comprises a conservative component, proportional to the vehicle’s acceleration,
and a non-conservative part proportional to the velocity. The former reflects the energy loss
carried away from the hull, transforming into a source of radiated waves.

The effects of excitation and radiation forces can be considered separate due to linearity,
where the overall effect when they act at the same time is found through superposition, and their
interactions is a negligible factor.

The excitation force from the waves can be split into a Froude-Krylov force 𝝉FK, representing
the effects of undisturbed waves on the vehicle, and the diffraction force 𝝉diff due to the vehicle
appearing as a solid obstacle conforming the incoming waves. In summary, the excitation force
is represented by

𝝉exc = 𝝉FK + 𝝉diff. (2.55)

It turns out that the excitation force causes both a first order force and a second order force. The
second order force is categorized as a mean wave-drift force.

The radiation force represents the energy propagated away from the vehicle to the sea when
a forced oscillation of the craft in calm sea is performed. This reaction force is due to the
adhesive acceleration of surrounding water causing an in-phase force called the added mass
force, and an out-of-phase damping force caused by all previous velocity motion of the vehicle
up to that point, referred to as fluid memory effect. Thus the instantaneous momentum change
of the vehicle causes a future force contribution. Cummins 1962 [38], showed that the radiation
force is represented by an added mass force and a damping force on the form

𝝉rad = −MA ¥𝜼 − 𝝁(𝑡), 𝝁(𝑡): fluid memory effect depending on history of ¤𝜼. (2.56)

where MA is the added inertia, which is defined later in Sect. 2.4.4.

Restoring forces

The mean position of the vehicle in heave, pitch and roll is the result of interaction between the
gravitational effect on the vehicle and the changing bouyant force from the static pressure field
in the water around the hull. The action of other hydrodynamic forces causes the position of
the vehicle to move, causing a slight shift in the center of bouyancy of the craft, which tends to
oppose the perturbation of the position in heave, pitch and roll. The restoring force is 𝝉res.

Viscous damping

Additional damping, called viscous damping is present due to skin friction and vortex shedding.
Skin friction arises primarily due to water flowing along the hull-water boundary. The molecules
at the interface adhere to the hull surface due to molecular forces, and those in the adjacent layers
experience a drag force as they slide past each other. Vortex shedding on the other hand, is the
alternating formation and shedding of vortexes when water flow past the hull.
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Sea currents

Sea currents are considered to be slowly changing, and the forces related to currents are incor-
porated into the marine craft dynamics in Eq. (2.30) by substituting the velocities appearing in
the second line with relative velocities instead. Correspondingly,

¤𝜼 = JΘ(𝜼)𝝂,
MRB ¤𝝂r + CRB(𝝂r)𝝂r = 𝝉RB,

(2.57)

where 𝝂r = 𝝂 − 𝝂c incorporates the effect of sea currents in the equations of motion. The sea
current has a speed 𝑉c and cardinal direction 𝛽𝑉c is illustrated in Fig. 2.8. The current angle of
attack is 𝛾c and defined according to:

Definition 13. (Relative current angle of attack)
The angle 𝛾w is the angle from the bow to the negative direction of the wind Vw, counter-

clockwise along 𝑧𝑏-axis.

Remark 24. This method is possible due to the choice of the Coriolis and centripetal matrix
C(𝝂) in this work. According to Fossen, several parametrization for this matrix exist, and
Property 10.1 in Fossen addresses this issue [4].

Assumption 8. The ocean current velocity in the inertial frame is short-term constant and
irrotational.

Remark 25. Assumption 8 is a reasonable simplification of the real-world situation and is a
standard assumption in marine control theory [4].

The current speed is V𝑏
c = [𝑢c, 𝑣c, 0]⊤ in the body frame.

𝛽𝑉c

𝛾c

𝑥𝑏

𝑉c0◦

Figure 2.8: Current speed 𝑉c = |Vc |, current direction 𝛽𝑉c and angle of attack 𝛾c
relative to the bow.
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Wind

The ambient air exerts a force 𝝉wind on the hull surface above the waterline, inducing a drag
force aligned with the relative wind direction and a moment. The cardinal wind angle is 𝛽𝑉w

and the relative wind angle 𝛾w is defined in Fig. 2.9 and by:

Definition 14. (Relative wind angle of attack)
The angle 𝛾w is the angle from the bow to the negative direction of the wind Vw, counter-

clockwise along 𝑧𝑏-axis.

Assumption 9. The air pressure above the free surface is constant and unchanging 𝑃a.

Assumption 10. The mean wind velocity in the inertial frame is considered constant and
irrotational for the instantaneous wind forces and moments.

Remark 26. Assumption 10 is a reasonable simplification for the mean wind forces and moments
in the real-world situation when the wind velocity is slowly changing. Gusts and other wind
effects are neglected in the model.

Remark 27. Notice that the attack angle for wind differs from the convention for attack angle
for sea current given in Definition 13. Accordingly, 𝛾w = 𝜓 − 𝛽𝑉w − 𝜋.

𝛽𝑉w

𝛾w

𝑥𝑏

𝑉w0◦

Figure 2.9: Wind speed 𝑉w = |Vw |, wind direction 𝛽𝑉w and angle of attack 𝛾w
relative to the bow.
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2.4.3 Hydrostatic forces
87Hydrostatic forces, commonly known as restoring forces, act on a vessel due to the combined
effects of gravity and buoyancy. Gravity exerts a constant force on the vessel as long as its mass
remains constant, while buoyancy is proportionate to the weight of the fluid displaced by the
vessel. The center of gravity (CG) is the point where the resultant gravity force acts on the body,
and the center of buoyancy (CB) is where buoyant forces act on the vessel. The material in this
section is based on Fossen [4].

Restoring forces

For a floating vessel the effects due to gravity and forces from buoyancy are

®𝑊 = 𝑚®𝑔, ®𝐵 = −𝜌®𝑔[∇ + 𝛿∇(𝑡)], (2.58)

where 𝑊 = | ®𝑊 | is the weight of the vessel and 𝐵 = | ®𝐵 | is the bouyancy. In equilibrium when
𝛿∇ = 0, the weight of the displaced volume ∇ equals the weight of the vessel such that𝑊 = 𝐵.
The gravity and bouyancy force expressed in {𝑛} are

f𝑛g =
©«

0
0
𝑚𝑔

ª®¬ , f𝑛b =
©«

0
0

−𝜌𝑔[∇ + 𝛿∇(𝑡)]
ª®¬ , (2.59)

and the resultant restoring force is the sum f𝑛r = f𝑛b + f𝑛g which equals

f𝑛r =
©«

0
0

−𝜌𝑔𝛿∇(𝑡)
ª®¬ . (2.60)

The variation in the displaced volume, 𝛿∇(𝑡) varies with the vessel’s motion and the free
surface. For calm water and small pitch and roll motions, the time-varying part of the displaced
volume is approximated by

𝛿∇(𝑧) =
∫ 𝑧𝑛

0
𝐴wp(𝑧′)d𝑧′, (2.61)

where 𝐴wp is the waterplane area of the vessel.

Restoring moments

For surface vessels, hydrostatic moments depend on the positions of the vessel’s CG and CB,
and the magnitude of the forces. The metacenter height is defined as the theoretical point where
an imaginary vertical line through the CB intersects another imaginary vertical line through a
new CB formed when the vessel is tilted in the water. This results in decomposed longitudinal
metacentric height GML and a transverse metacentric height GMT. [4]
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In equilibrium, CG lies vertically above CB, and the restoring moments depend on the
horizontal displacement of CB relative to CG. The moment arm is

r𝑏GM =
©«
−GML sin(\)
GMT sin(𝜙)

0

ª®¬ , (2.62)

and the restoring moment about CG is the bouyancy force f𝑏b . The restoring moment is thus
m𝑏

r = S(r𝑏GM)f
𝑏
b where the bouyancy force in body is f𝑏b = R𝑏

𝑛f𝑛b :

f𝑏b = R𝑏
𝑛f𝑛b = −𝜌𝑔∇ ©«

− sin(\)
cos(\) sin(𝜙)
cos(\) cos(𝜙)

ª®¬ . (2.63)

Notice that no force due to the perturbation 𝛿∇ is included. This is a good approximation.
The restoring moment becomes

m𝑏
r = S(r𝑏GM)f

𝑏
b = −𝜌𝑔∇ ©«

GMT𝑠(𝜙)𝑐(\)𝑐(𝜙)
GML𝑠(\)𝑐(\)𝑐(𝜙)

−GML𝑐(\) + GMT𝑠(𝜙)𝑠(\)
ª®¬ . (2.64)

Restoring forces

Combined, a gravitational vector capturing the restoring forces and moments for surface vessels
is on the form g(𝜼) = −𝝉hs(𝜼) = −[f𝑏r

⊤
,m𝑏

r
⊤]⊤:

g(𝜼) = 𝜌𝑔

©«

−
∫ 𝑧𝑛

0 𝐴wp(𝑧′)d𝑧′𝑠(\)∫ 𝑧𝑛

0 𝐴wp(𝑧′)d𝑧′𝑐(\)𝑠(𝜙)
−

∫ 𝑧𝑛

0 𝐴wp(𝑧′)d𝑧′𝑠(\)
∇GMT𝑠(𝜙)𝑐(\)𝑐(𝜙)
∇GML𝑠(\)𝑐(\)𝑐(𝜙)

−∇GML𝑐(\) + ∇GMT𝑠(𝜙)𝑠(\)

ª®®®®®®®®¬
. (2.65)
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2.4.4 Hydrodynamic forces
When the vessel moves through the water, the surrounding water parcels is pushed due to im-
permeability causing frequency-dependent oscillatory derivatives [39]. From Bailey et al. [40],
for the generalized force 𝐹 in

𝐹 ∈ {𝑋,𝑌, 𝑍, 𝐾, 𝑀, 𝑁},
and motion component 𝛼

𝛼 ∈ {𝑥, 𝑦, 𝑧, 𝜙, \, 𝜓, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, ¤𝑢, ¤𝑣, ¤𝑤, ¤𝑝, ¤𝑞, ¤𝑟},

the frequency-dependent oscillatory derivative is written as

�̃�𝛼 (𝜔), (oscillatory derivative) (2.66)

which corresponds to the contribution of the generalized force 𝐹 due to a motion component 𝛼
when the oscillation occurs at frequency 𝜔. The generalized force 𝐹 is approximated as the sum

𝐹 (𝜔) =
∑︁
𝛼

�̃�𝛼 (𝜔)𝛼. (2.67)

One example is �̃� ¤𝑣 (𝜔) which corresponds to a force contribution in 𝑥𝑏-direction due to the
sideways acceleration ¤𝑣. For zero-frequency 𝜔 = 0, the oscillatory derivative is defined as the
hydrodynamic derivative:

𝐹𝛼 ≜ �̃�𝛼 (0). (hydrodynamic derivative) (2.68)

From SNAME [29] this suggests that the hydrodynamic derivative is found from

𝐹𝛼 ≜
𝜕𝐹

𝜕𝛼
. (2.69)

Added inertia forces

Hydrodynamic added mass is an additional mass that appears when a body moves through a
fluid (like water). As the body accelerates or moves in the fluid, it causes the surrounding fluid
to also move and be displaced. This displacement creates a resistance or inertia effect, similar
to the way you might feel resistance if you have ever tried to run through snow.

Remark 28. In a one-dimensional linear motion, Newton’s second law would take on an extra
virtual mass, the added mass 𝑚𝑎 in the equation

®𝐹 = (𝑚 + 𝑚a) ®𝑎.

The hydrodynamic derivatives representing the added mass takes the following form
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MA ≜ −

©«

𝑋 ¤𝑢 𝑋 ¤𝑣 𝑋 ¤𝑤 𝑋 ¤𝑝 𝑋 ¤𝑞 𝑋 ¤𝑟
𝑌 ¤𝑢 𝑌¤𝑣 𝑌 ¤𝑤 𝑌 ¤𝑝 𝑌 ¤𝑞 𝑌¤𝑟
𝑍 ¤𝑢 𝑍 ¤𝑣 𝑍 ¤𝑤 𝑍 ¤𝑝 𝑍 ¤𝑞 𝑍 ¤𝑟
𝐾 ¤𝑢 𝐾 ¤𝑣 𝐾 ¤𝑤 𝐾 ¤𝑝 𝐾 ¤𝑞 𝐾 ¤𝑟
𝑀 ¤𝑢 𝑀¤𝑣 𝑀 ¤𝑤 𝑀 ¤𝑝 𝑀 ¤𝑞 𝑀 ¤𝑟
𝑁 ¤𝑢 𝑁 ¤𝑣 𝑁 ¤𝑤 𝑁 ¤𝑝 𝑁 ¤𝑞 𝑁 ¤𝑟

ª®®®®®®®¬
, (2.70)

where the added mass force and moment is 𝝉A = −MA ¤𝝂. Note that the matrix is multiplied with
−1 such that 𝑀A ≻ 0 is positive definite.

Remark 29. If experimental data is used to determine the added mass coefficients in Eq. 2.70,
Fossen pp. 145 [4] states that the added inertia matrix can be symmetrized according to

MA =
1
2
(M̂A + M̂⊤

A ),

where M̂A contains the experimentally data.

Dissipative forces

Different damping terms contribute to both linear and quadratic damping. These effects are
difficult to separate so the total hydrodynamic damping can be taken as the combination of linear
damping B𝑝 and quadratic (viscous) damping B𝑣 (𝝂) such that

B(𝝂) = B𝑝 + B𝑣 (𝝂). (2.71)

The linear damping is defined as

B𝑝 ≜ −

©«

𝑋𝑢 𝑋𝑣 𝑋𝑤 𝑋𝑝 𝑋𝑞 𝑋𝑟
𝑌𝑢 𝑌𝑣 𝑌𝑤 𝑌𝑝 𝑌𝑞 𝑌𝑟
𝑍𝑢 𝑍𝑣 𝑍𝑤 𝑍𝑝 𝑍𝑞 𝑍𝑟
𝐾𝑢 𝐾𝑣 𝐾𝑤 𝐾𝑝 𝐾𝑞 𝐾𝑟
𝑀𝑢 𝑀𝑣 𝑀𝑤 𝑀𝑝 𝑀𝑞 𝑀𝑟

𝑁𝑢 𝑁𝑣 𝑁𝑤 𝑁𝑝 𝑁𝑞 𝑁𝑟

ª®®®®®®®¬
. (2.72)

Restoring matrix

Denote the matrix 𝐺 as

G ≜ −

©«

𝑋𝑥 𝑋𝑦 𝑋𝑧 𝑋𝜙 𝑋\ 𝑋𝜓
𝑋𝑥 𝑌𝑦 𝑌𝑧 𝑌𝜙 𝑌\ 𝑌𝜓
𝑍𝑥 𝑍𝑦 𝑍𝑧 𝑍𝜙 𝑍\ 𝑍𝜓
𝐾𝑥 𝐾𝑦 𝐾𝑧 𝐾𝜙 𝐾\ 𝐾𝜓
𝑀𝑥 𝑀𝑦 𝑀𝑧 𝑀𝜙 𝑀\ 𝑀𝜓

𝑁𝑥 𝑁𝑦 𝑁𝑧 𝑁𝜙 𝑁\ 𝑁𝜓

ª®®®®®®®¬
, (2.73)

which is the linear restoring force 𝝉hs = −G𝜼.
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Wave forces

The first order wave forces causing oscillatory motion may be described by a superposition over
wave frequencies 𝜔𝑛 by the components 𝝉wave1,𝑛 of the following equation

𝝉wave1 =

∞∑︁
𝑛=1

𝝉wave1,𝑛 cos(𝜔𝑛𝑡 + 𝜖𝑛), (2.74)

where 𝜖𝑛 is the phase angle. In this work, forcing functions 𝝉0, or force response amplitude
operators (force RAOs) 𝝉0 from the wave amplitude Za are used, for instance in Sect. 3.3:

𝝉wave1 =

∞∑︁
𝑛=1

𝝉0Za,𝑛 cos(𝜔𝑛𝑡 + 𝜖𝑛). (2.75)

Wind forces

For a marine craft moving with forward speed, the 6-DOF wind forces and moments according
to Fossen in the chapter “Environmental Forces and Moments” [4] are

𝝉wind =
1
2
𝜌a𝑉

2
rw

©«

𝐶𝑋 (𝛾rw)𝐴Fw
𝐶𝑌 (𝛾rw)𝐴Lw
𝐶𝑍 (𝛾rw)𝐴Fw

𝐶𝐾 (𝛾rw)𝐴Lw𝐻Lw
𝐶𝑀 (𝛾rw)𝐴Fw𝐻Fw
𝐶𝑁 (𝛾rw)𝐴Lw𝐿oa

ª®®®®®®®¬
, (2.76)

where 𝜌a is the air density, 𝑉rw is the relative wind speed and the parameters 𝐴Fw, 𝐻Fw and
𝐴Lw, 𝐻Lw is the frontal and lateral projected areas and heights above water.

Remark 30. For longitudinal and lateral symmetrical vehicles, the wind coefficients in degrees
of freedom {1, 2, 6} can be approximated by [4]

𝐶𝑋 (𝛾) ≃ −𝑐𝑥 cos(𝛾), 𝐶𝑌 (𝛾) ≃ 𝑐𝑦 sin(𝛾), 𝐶𝑁 (𝛾) ≃ 𝑐𝑛 sin(2𝛾). (2.77)

Wave-propulsion

According to Definition 11, oscillatory wave excitation forces on the marine craft do not serve
any purpose for the maneuvering characteristics of the craft. However, by the addition of spring-
loaded hydrofoils, the first order wave forces can be converted to directional second order forces,
resulting in an overall green propulsion of the marine craft.

The treatment of an expression for the wave-propulsion force is given in Sect. 2.6.6 in which
the theory of foils given in Sect. 2.6 should be read first.
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2.4.5 Slender body theory
Slender body theory in fluid mechanics is a simplification technique applied to long and slender
objects, like an aircraft wing or along a slender marine craft. The assumption is that the
cross-sectional dimensions are small compared to the overall length. This allows to integrate
any known sectional characteristic along the length of the object, approximating the overall
effect but neglecting certain three-dimensional effects. Crude approximations from strip theory
calculations can be found in Journée 1992 [41].

In strip theory, the marine craft is divided into a finite number of strips where each strip is
considered two-dimensional under the slender body approximation. Hydrodynamic coefficients
for the whole marine craft can thus be found by summarising the contributions from the lone
strips. [42]

One might compare strip theory applied to slender bodies with slices of a bread where the
length of the bread is much greater than the width. The overall characteristic of the bread
can be approximated by summing up each slice of bread along the length. Here, the sectional
characteristics is e.g. a function of the crisp of the bread.

An application of strip theory is found in MARINTEK’s ShipX-VERES software, where
strip theory is used to determine the coefficients [21].

Fossen, 2005 [39] states that traditional strip theory, developed by Salvesen et al. 1970 [43],
is valid up to Froude number of about Fn < 0.25 − 0.3, where the characteristic length is the
length of the ship. From the definition of Froude number in Sect. 2.3.1, this suggest that for
useful purposes of strip theory is applicable for marine craft speeds up to

𝑈max = 0.3
√︁
𝑔𝐿. (2.78)

In the article of Clarke et al. 1982 [44], slender body strip method is employed to find the
hydrodynamic derivatives in sway and yaw. See Sects. 2.4.4 and 2.4.4 for these definitions. By
using the horizontal added mass coefficient𝐶H for sections along the hull, the non-dimensionless
hydrodynamic derivatives was found. This method assumes that the zero-frequency added mass
coefficient at the non-dimensional position 𝑥′ = 𝑥/𝐿 from midships is known. An example of
practical use of slender body theory from Clarke et al. [44] is the calculation

𝑌 ′¤𝑣 = −𝜋
(
𝑇

𝐿

)2 ∫ Stern

Bow
𝐶H(𝑥′) d𝑥′. (2.79)

The method of slender body theory is advantageous when the dimensions of the marine craft
is known in advance, in which case Eq. (2.79) and similar found in [44], with the definition
of the prime normalization method in Sect. 2.1.1, can be used to find numerical or analytical
expressions.

Remark 31. In the general case for a commercially available wave-propelled USV, the vehicle’s
dimensions and shapes might not be known and empirical equations might be the correct method
to use instead of slender body theory.
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2.5 Complete marine craft model
The complete vessel dynamics is described by the equation

MRB ¤𝝂 + CRB(𝝂)𝝂 = 𝝉RB, (2.80)

which accounts for the vessel’s inertia MRB and attitude dynamics from the Coriolis and cen-
tripetal matrix CRB. The forces and moments applied to the vessel are all fluid mechanical forces
of some sort:

𝝉RB = 𝝉hs + 𝝉hyd + 𝝉wind + 𝝉rudd + 𝝉foil + 𝝉wave + 𝝉prop. (2.81)

Where the rigid body forces 𝝉RB is given as the summation of hydrostatic forces 𝝉hs, hydro-
dynamic forces 𝝉hyd, wind forces 𝝉wind, rudder forces 𝝉rudd, foil-propulsion forces 𝝉foil, wave
forces 𝝉wave and propeller forces 𝝉prop.

The forces applied to the vessel can be split into low frequency components and their
perturbations, 𝝉RB = 𝝉RB, LF + 𝛿𝝉RB.

2.5.1 Maneuvering and seakeeping models
From Fossen 2005 [39] and Fossen 2021 [4], the following description distinguishing maneu-
vering -and seakeeping models is used in the model architecture:

In maneuvering, the vessel is assumed to be moving in restricted calm water without interfer-
ence of waves. The dynamical model might be nonlinear, and usually derived for a ship moving
at a nominal speed 𝑈. The theory for the dynamics thus utilizes a zero-frequency assumption
from the effects of waves.

In seakeeping analysis however, the effects of waves are usually investigated at a given speed
(including stationkeeping with𝑈 = 0) in irregular seaways or for a given heading for sinusoidal
regular waves. The analysis is employed for adopting operability criteria in different sea-states.
It also includes frequency-dependent terms describing the dynamics in the time-domain. These
perturbations are zero-mean oscillations from an equilibrium state, defined by a ship moving
with constant heading and speed.

Remark 32. According to Fossen [4], the maneuvering motion of a craft is commonly modeled
on a 3-DOF dynamic model for the horizontal-plane motion defined by the 2D-position in the
North-East directions (𝑥𝑛, 𝑦𝑛) and cardinal heading 𝜓. A standard for ship motions in surge,
sway and yaw is to use the zero-frequency added mass and damping coefficients, the motion
derivatives [40].

Remark 33. The wave motion in seakeeping mainly affects the 3-DOF system in heave, roll and
pitch [4]. As a consequence, first-order wave forces 𝝉wave1 are usually found in DOF {3, 4, 5}.

Let the frequency-dependent forces and moments be denoted by subscript 1

𝝉RB1 := 𝛿𝝉RB = 𝝉hs + 𝝉hyd + 𝛿𝝉foil + 𝝉wave1, (2.82)
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and let the low-frequency (slow motion) forces and moments be denoted by subscript 2

𝝉RB2 ≜ 𝝉RB, LF = 𝝉hyd(0) + 𝝉wind + 𝝉rudd + 𝝉foil + 𝝉wave2 + 𝝉prop. (2.83)
Hydrostatic forces is only a frequency dependent force and hence 𝝉hs1 ≡ 𝝉hs, likewise for wind,
rudder and propeller forces which are all slow motion forces.

The mean vessel dynamics can be written as

MRB ¤𝝂LF + CRB(𝝂LF)𝝂LF = 𝝉RB2, (2.84)
and with sea current and hydrodynamic forces, the equations will take the form

[MRB +MA(0)] ¤𝝂r + [Bp + Bv(0)]𝝂r + C(𝝂r)𝝂r = 𝝉wind + 𝝉rudd + 𝝉foil + 𝝉wave2 + 𝝉prop, (2.85)

or, written commonly as the maneuvering model

M¤𝝂r + B𝝂r + C(𝝂r)𝝂r = 𝝉RB, LF. (2.86)

From an inertial seakeeping frame, Newton’s law for the perturbed motion becomes

MRB ¥𝝃 = 𝝉hyd + 𝝉hs + 𝝉wave1 + 𝛿𝝉foil. (2.87)

When the hydrostatic and hydrodynamic coefficients are written out, the classical frequency-
domain equations for a wave-propelled USVs are thus[

MRB +MA, USV(𝜔)
] ¥𝝃 + [Bp + Bv, USV(𝜔)] ¤𝝃 + C𝝃 = 𝝉wave1 + 𝛿𝝉foil, (2.88)

the presence of the foils will alter the dynamical equations for the USVs, and they are assumed
to add a viscous damping Bv, foil(𝜔) and frequency-dependent added mass MA, foil(𝜔) on the
form

[
M +MA, USV(𝜔) +MA, foil(𝜔)

] ¥𝝃 + [Bp + Bv, USV(𝜔) + Bv, foil(𝜔)] ¤𝝃 + C𝝃 = 𝝉wave1. (2.89)

Remark 34. The presence of hydrofoils alter the equations of motion for the USV compared to
the USV without foils. This impose a challenge for employing standardized response amplitude
operators for wave-induced motions on such vehicles.

Summarized, the 6 DOF maneuvering model for the USV is

¤𝜼 = R𝑛
𝑚 (𝜓)𝝂, (2.90a)

M ¤𝝂r + C(𝝂r)𝝂r + [Bp + Bv(𝝂r)]𝝂r = 𝝉wind + 𝝉wave2 + 𝝉foil + 𝝉rudd, (2.90b)

and the 6 DOF seakeeping model for the USV is

[MRB +MA(𝜔)] ¥𝝃 + [Bp + Bv(𝜔)] ¤𝝃 + C𝝃 = 𝝉wave1. (2.91)
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2.5.2 Frequency-domain model
The classical frequency domain equations of motion for perturbations from the first order wave
forces is [4]

[M +MA(𝜔)] ¥𝝃 + B(𝜔) ¤𝝃 + C𝝃 = 𝝉wave1, (2.92)
where it is recognized that the form is a mass-spring-damper system where linear restoring
forces 𝝉hs = −C𝝃 are included in the model. The equation is only valid under linear theory and
for harmonicacally forced oscillations under steady-state. [4]

According to Fossen [4], the representation of Eq. (2.92) is an abuse of notation since both
frequency and time is present. A correct way of describing the frequency-motion is by the
Fourier transformation of Eq. (2.92). Assuming zero initial conditions, then[

−𝜔2 [M +MA(𝜔)] − 𝑗𝜔B(𝜔) + C
]
𝝃 ( 𝑗𝜔) = 𝝉wave1( 𝑗𝜔) (2.93)

describes the dynamics with the transfer function H( 𝑗𝜔) in 𝝃 ( 𝑗𝜔) = H( 𝑗𝜔)𝝉wave1( 𝑗𝜔) as

H( 𝑗𝜔) =
[
−𝜔2 [M +MA(𝜔)] − 𝑗𝜔B(𝜔) + C

]−1
. (2.94)

Here, the imaginary unit is 𝑗 .

2.5.3 Time-domain model
The former representation of a frequency-domain model describes ship motion only under the
influence of frequency-dependent coefficients. When the sea state is represented by a wave
spectrum, a Fourier analysis finds the proper frequency-modes, but would lead to a large number
of equations to capture the frequency components. For this reason, a time domain dynamic
model is desirable, who encourage Cummins, 1962 [38] to publish a fundamental report on a
linear time-domain model for ship motion.

Cummins’ equations of motion

The original phrasing of Cummin stated:

“But what happens when we don’t have a well defined frequency? The mathematical model
becomes almost meaningless. True, a Fourier analysis of the exciting force (or encountered
wave) permits the model to be retained, but physical reality is almost lost in the infinity of
equations required to represent the motion.” – Cummins, 1962

The crucial points of the work of Cummins was to

• have a time-domain model of ship motions in 6-DOF without frequency-dependent coef-
ficients,

• separate and identify explicitly the factors governing the response, both for the transient
and stationary scenario.

41



2.5. Complete marine craft model Chapter 2. Theory

A derivation of Cummins’ equations can be found in the original literature [38], which states
that the radiation-induced hydrodynamic forces 𝝉rad = 𝝉hyd in an ideal fluid can be written as

𝝉hyd = −MA(∞) ¥𝝃 − B(∞) ¤𝝃 −
∫ 𝑡

−∞
K(𝑡 − 𝜏) ¤𝝃 (𝜏) d𝜏, (2.95)

where the hydrodynamic added mass and the damping matrix is evaluated at infinite frequency,
and the matrix K(𝑡) is known as the matrix of retardation. The inertia of the fluid causes a
certain delay to the change of the hull’s motion, which is expressed by the fluid memory term
in the convolution. Hence the integral incorporates the energy dissipation due to the radiated
waves.

Ogilvie’s transformation

A transformation proposed by Ogilvie, 1964 [45] suggest that the matrix of retardation is given
by either

K(𝑡) ≡ 2
𝜋

∫ ∞

0
[B(𝜔) − B(∞)] cos(𝜔𝑡) d𝜔, (2.96a)

or

K(𝑡) ≡ 2
𝜋

∫ ∞

0
𝜔[MA(𝜔) −MA(∞)] sin(𝜔𝑡) d𝜔. (2.96b)

When dealing with a causal system, the limits in Eq. (2.95) can be changed [4], resulting in the
linear time-domain model for Cummins’ equation:

[M +MA(∞)] ¥𝝃 + B(∞) ¤𝝃 +
∫ 𝑡

0
K(𝑡 − 𝜏) ¤𝝃 (𝜏) d𝜏 + C𝝃 = 𝝉wave1. (2.97)

State space representation of fluid memory effects

According to Perez and Fossen [46], the convolution integral representing the fluid memory
effects is unsuited for simulation and analysis for control system design. Kristiansen and Ege-
land [47] developed a state-space approximation to the convolution term in Eq. 2.97, and further
discussion for the time-domain realization for a vessel with frequency-dependent hydrodynamic
coefficients is found in Kristiansen et al. [48]. The fluid memory effect is

𝝁(𝑡) ≜
∫ 𝑡

0
K(𝑡 − 𝜏) ¤𝝃 (𝜏) d𝜏 ≡ (K ∗ ¤𝝃) (𝑡). (2.98)

Since convolution in the time domain equals a multiplication in the frequency domain, the
corresponding Laplace transformation

𝝁(𝑠) = K(𝑠) ¤𝝃 (𝑠), (2.99)
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can be implemented by the following state space formulation:

¤x = Arx + Br ¤𝝃,
𝝁 = Cr ¤𝝃 .

(2.100)

This system approximates the convolution integral with transfer function K(𝑠) = Cr(𝑠I−Ar)−1Br.
The matrices (Ar,Br,Cr) can be identified by frequency-domain identification algorithm

proposed by Perez and Fossen, explained further in [46]. The algorithm is a part of the Marine
Systems Simulator (MSS) developed for MATLAB, available online [49].

Cummins’ equations for a single degree of freedom

An uncoupled dynamics in a single degree of freedom may be described by

𝑚(𝜔) ¥b + 𝑏(𝜔) ¤b + 𝑐b = 𝜏, (2.101)
where the frequency-dependent mass is 𝑚(𝜔), damping 𝑏(𝜔), restoring element 𝑐 and the
forcing function is 𝜏. Cummin’s equation from Eq. (2.97) for the causal system in Eq. (2.101) is

𝑚(∞) ¥b + 𝑏(∞) ¤b +
∫ 𝑡

0
𝑘 (𝑡 − 𝜏) ¤b d𝜏︸               ︷︷               ︸

`(𝑡)

+𝑐b = 𝜏, (2.102)

where the retardation function can be approximated by

𝑘 (𝑡) = 2
𝜋

∫ ∞

0
[𝑏(𝜔) − 𝑏(∞)] cos(𝜔𝑡) d𝜔, (2.103)

and the fluid memory effect is the convolution integral

`(𝑡) =
∫ 𝑡

0
𝑘 (𝑡 − 𝜏) ¤b d𝜏 ≡ (𝑘 ∗ ¤b) (𝑡), (2.104)

which is approximated by

�̂� (𝑠) = `(𝑠)/ ¤b (𝑠) = Cr(𝑠I − Ar)−1Br, (2.105)

where the matrices Ar, Br and Cr is the state-space realization.

Remark 35. Stability considerations for the time-domain system in Eq. (2.101) with the state-
space realization for the fluid memory effects in Eq. (2.105) is found by an effective system with
states [ ¤b, ¥b, ¤x⊤𝑟 ]⊤ on the form

©«
¤b
¥b
¤xr

ª®¬ =
©«

0 1 0
− 𝑐
𝑚

0 − 1
𝑚

Cr
0 Br Ar

ª®¬︸                 ︷︷                 ︸
Aeff

©«
b
¤b

xr

ª®¬ + ©«
1
𝑚

0
0

ª®¬ 𝜏, (2.106)

where the effective system matrix Aeff can be analyzed to interpret the stability properties.
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2.6 Foil theory
This section describes the necessary semi-empirical equations developed for the governing
forces on foils due to the surrounding fluid velocity field. The foils are typically mounted on
wave-propelled USVs, as illustrated in Fig. 2.10. Regarding position, the following assumptions
are made:

Assumption 11. The foils are mounted symmetrically on the midline of the USV with the wing
span in port/starboard direction.

Assumption 12. The foils can rotate by an angle 𝜗𝑖 along 𝑦𝑏-direction at the pivot position.

Remark 36. From Assumption 11, the constant pivot position for the foils are r𝑏
𝑝,𝑖

= [𝑥𝑝,𝑖, 0, 𝑧𝑝,𝑖]⊤.

The dynamics of the foils will be given in Sect. 3.4, whereas the geometry of the foils and
their forces are derived here.

𝑦𝑏

𝜗1

𝑈1

𝜗2

𝑧𝑏

𝑥𝑏

𝑈2

Figure 2.10: Typical foil (in red) placement on a wave-propelled USV. The forces
on the foils depend on the relative velocity inflow𝑈.

2.6.1 Geometry
The vast literature on foils is related to airfoils developed for the aircraft industry. Most of the
literature can be adopted for hydrofoils as well, which is the equivalent description for foils that
are submerged in water.

In order to proceed with the physical principles for the dynamics of the foils, the following
assumptions about the geometry of the foils, as illustrated in Fig. 2.11, are made:

Assumption 13. The foils are assumed to have zero dihedral angle. This means that the foils
do not have a “V”-shape seen from the front.

Assumption 14. The foils are assumed to have no curvature.

Assumption 15. The foils are assumed to have constant cross-sectional shape.
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Γ𝑑

UAV front Wing section with camber

Figure 2.11: Dihedral angle Γ𝑑 shown to left for an uncrewed aerial vehicle (UAV)
and camber line is shown dashed to right at a wing section, commonly called foil.

Furthermore, there is no general assumption on the geometry along the span of the wing,
which is the wing seen from above. The span is denoted by 𝑆 = 2𝑏, where 𝑏 is the half span.
If one knows the foil section and span, the foil shape is completely determined. A couple of
remarks to the above assumptions are made before the span shape and section is described:

Remark 37. Assumptions 13 and 14 can be considered valid for wave-propelled USVs since
the foils operate symmetrically with both positive and negative attack angles during sinusoidal
wave-induced motion.

Remark 38. A consequence of Assumption 14 is that the camber value is zero, and that the
camber line equals the chord line.

Remark 39. Assumption 15 is also common in propeller theory [50]. As a consequence, the
cross-sectional shape scales with the chord length. This is illustrated with the dashed line over
the span of the wing in Fig. 2.11.

Span shape

The author did not find any standard equations relating to the shape of wings along the span.
Therefore, the following equations can serve as an empiric description.

When the maximum chord width 𝑐max appears at the midline, the span shape can be approx-
imated by super-elliptic functions 2 characterized by the span 𝑆, the maximum chord width 𝑐max
and the endpoint 𝑥𝑒 ∈ [0, 𝑐max]. The characteristics is illustrated in Fig. 2.12.
The suggested equations for leading edge (LE) and trailing edge (TE) was found to be

𝑥TUFTE
LE = 𝑥𝑒 + (𝑐max − 𝑥𝑒)

[
1 − 𝑦𝑞𝑙

(𝑆/2)𝑞𝑙

]1/𝑞𝑙
, (2.107a)

and

𝑥TUFTE
TE = 𝑥𝑒 − 𝑥𝑒

[
1 − 𝑦𝑞𝑡

(𝑆/2)𝑞𝑡

]1/𝑞𝑡
, (2.107b)

where 𝑞𝑙 and 𝑞𝑡 are tuning parameters with higher values describing a more rectangular shape.
The chord length over the span is the difference between Eqs. (2.107a) and (2.107b):

2Super elliptic meaning on the form [(𝑥 − 𝑥0)/𝑎]𝑛 + [(𝑦 − 𝑦0))/𝑏]𝑛 = 1, where min(𝑎, 𝑏) is the semi-minor
axis and max(𝑎, 𝑏) is the semi-major axis
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𝑥

𝑦

𝑥𝑒
𝑐max

𝑥LE

𝑥TE

𝑏

Figure 2.12: Simplified span shape characteristics over the half span 𝑏 = 𝑆/2.

𝑐(𝑦) = 𝑥LE − 𝑥TE = (𝑐max − 𝑥𝑒)
[
1 − 𝑦𝑞𝑙

(𝑆/2)𝑞𝑙

]1/𝑞𝑙
− 𝑥𝑒

[
1 − 𝑦𝑞𝑡

(𝑆/2)𝑞𝑡

]1/𝑞𝑡
. (2.108)

In this work, suggested values are 𝑞𝑙 , 𝑞𝑡 ∈ [2.0, 3.0]. However, these values have not been tested
thoroughly, but should serve as a good approximation at an early stage.

Remark 40. The suggested shape of Eqs. (2.107a) and (2.107b) can be used with slender body
theory from Sect. 2.4.5 when the forces along the span is known.

Remark 41. The span shape discussed can further be simplified as a rectangular shape.
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Standardized foil sections

According to Hoerner, several families of practical foil sections have been developed by sys-
tematic variation of their geometry to establish some order for foil sections [6]. To achieve an
efficient control surface, which can generate sufficient lift with minimum drag, National Advi-
sory Committee for Aeronautics (NACA) published a 4-digit series in 1933 [13]. The 4-digit
NACA series was intended for practical design and construction of airplane wings.

For our case, only the symmetrically 4-digit NACA airfoils is of interest. The formula for
such shapes of foil sections is on the form NACA00xx. The latter “xx” represents the thickness
in percentage of 𝑡max/𝑐. According to Jacobs et al. [13], the NACA sections are described by

±𝑦′NACA(𝑡
′) = 𝑡′ · 5 [0.2969𝑥0.5 − 0.1260𝑥 − 0.3516𝑥2 + 0.2843𝑥3 − 0.1015𝑥4], (2.109)

where prime denotes the normalized measure along the normalized chord length 𝑐′ = 1, and the
normalized thickness is 𝑡′ = 𝑡max/𝑐. Eq. (2.109) describes the thickness from leading edge to
trailing edge.

Remark 42. The expression in Eq. (2.109) introduces a nonzero trailing edge thickness of
0.0105𝑡. If one requires a zero trailing edge thickness, the last term in Eq. (2.109) can be
switched to 0.1036. This augmentation introduces an overall small change to the foil section.

Remark 43. By default, the NACA series has a maximum thickness appearing at 30 % along
the chord length. Thus the NACA series do not properly describe all the variations one might
encounter in the model design of wave-propelled USVs.

Eq. (2.109) do not describe sections when the point of maximum thickness do not lie at
exactly 30 %. In order to describe a wide range of foil sections, the following part proposes to
characterize the foil section through a leading edge ellipse and a trailing edge constant slope.

Proposed foil section

As found in the “Control” chapter in Hoerner 1985, [6], a straight and thin trailing edge improves
the maximum lift of hydrofoil sections. This insight might lead to commercial development of
hydrofoils generating higher thrusts for wave-propelled USVs by altering the foil section from
the standardized NACA series, which was developed for airplane wing sections. One might
expect that not all manufactures for wave-propelled USVs will give a detailed description of the
foil section.

This motivates the development of a simple foil section where the location and maximum
thickness is arbitrarily given. Additionally, with the description of the span shape in Sect. 2.6.1,
such a simple model enables to calculate moments of inertia, and finding the governing forces
on the foils employed.

From the literature on foil sections, a section consisting of a leading edge ellipse followed by
a constant slope for the trailing edge is motivated to approximate a range of foil sections. This
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corresponds to practice as about 5 % of the lift is lost when making the leading edge sharp [6].

Denote the chord length by 𝑐 and the point of maximum thickness 𝑥𝑚 with thickness 𝑡.
One can approximate the leading edge as an ellipse with semi-major axis 𝑥𝑚 and semi-minor
axis 0.5𝑡𝑐. The trailing edge is approximated by a constant slope. Solving for this scenario by
demanding a smooth parametric surface everywhere except at the trailing edge, the section

±𝑦TUFTE =


𝑡 · 0.5𝑐

[
1 − (𝑥−𝑥𝑚)

2

𝑥2
𝑚

]0.5
, 0 ≤ 𝑥 ≤ 𝑐𝑥𝑚

𝑐−𝑥𝑚 , (elliptic part)
𝑡 · 0.5
(1−2𝑥𝑚/𝑐)0.5

[𝑐 − 𝑥], 𝑐𝑥𝑚
𝑐−𝑥𝑚 < 𝑥 ≤ 𝑐, (constant slope)

(2.110)

is proposed as an early design analysis. A comparison with the section from the author in
Eq. (2.110), and NACA0012 from Eq. (2.109) is shown in Fig. 2.13. The proposed model
is “thinner” than that of the NACA section, but the advantage is that the point of maximum
thickness can be chosen freely.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Ellipse + slope

NACA0012

Figure 2.13: Proposed section compared to the NACA section. The maximum
thickness is 12 % and appears at 30 % of the chord length from leading edge.

Remark 44. Eq. (2.110) is analytical and smooth everywhere except at the trailing edge and
has zero trailing edge thickness.
Remark 45. The leading edge radius is given by the semi-minor axis 0.5𝑡𝑐 and semi-major axis
𝑥𝑚 as 𝑟 = (0.5𝑡𝑐)2/𝑥𝑚.

The non-dimensional version of Eq. (2.110) is found as:

±𝑦′TUFTE(𝑡
′, 𝑥′𝑚) =


𝑡′ · 0.5

[
1 − (𝑥−𝑥

′
𝑚)2

𝑥′2𝑚

]0.5
, 0 ≤ 𝑥 ≤ 𝑥′𝑚

1−𝑥′𝑚 , (elliptic part)

𝑡′ · 0.5
(1−2𝑥′𝑚)0.5

[1 − 𝑥], 𝑥′𝑚
1−𝑥′𝑚 < 𝑥 ≤ 1, (constant slope)

(2.111)
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2.6.2 Foil characteristics
A flat plate inclined in steady flow has three forces: suction force 𝑆, lift force 𝐿 and drag force
𝐷, illustrated in Fig. 2.14. Under the assumption that the flow is attached, the leading edge
suction force arise since the flow must accelerate around the plate creating a lower pressure
at the leading edge. It can be shown that the component of the suction force 𝑆 parallel to the
inflow is equal in magnitude to 𝐷, resulting in a free-stream cancellation of the drag force for a
stationary flow in inviscid and incompressible fluid [51].

The continued analysis neglects the impact of the suction force 𝑆 and considers a flat plate
with induced normal force. According to Steen [50], the normal force can be decomposed into
a lift force and a drag force according to the following definitions:

Definition 15. (Lift)
Force component perpendicular to the mean fluid inflow.

Definition 16. (Drag)
Force component parallel to the mean fluid inflow.

𝑆

𝑈

𝐿 𝑁

𝐷

Figure 2.14: Lift 𝐿, drag 𝐷 and suction 𝑆 forces on a foil in steady flow.

The lift force 𝐿 and drag force 𝐷 on a foil can be expressed analytically via linear foil theory.
The forces are found per unit span on an infinite wing, were the flow is assumed to be attached
to the plate. The resulting forces on the foils are usually written in terms of the non-dimensional
lift- and drag coefficients:

𝐶′𝐿 ≜
𝐿′

1
2𝜌𝑈

2𝑐
, (2.112a)

𝐶′𝐷 ≜
𝐷′

1
2𝜌𝑈

2𝑐
, (2.112b)

𝐶′𝑁 ≜
𝑁′

1
2𝜌𝑈

2𝑐
. (2.112c)

Here, 𝜌 is the density of water, 𝑈 is the relative inflow velocity and 𝑐 is the chord length. The
prime denotes that the forces is per unit span.
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Linear foil theory

According to state-of-the-art results in linear foil theory, which e.g. can be found in Anderson
2001 [16], Fossen 2021 [4] or Steen 2014 [50], the lift coefficient for flat plates is found as

𝐶′𝐿 = 2𝜋𝛼, (2.113)

where 𝛼 is the attack angle, defined according to Definition 17. For turbulent flow, model
experiments suggest that the viscous drag 𝐶𝐷𝑣 depends on the thickness 𝑡′ as

𝐶′𝐷𝑣 = 2 · (1 + 2𝑡′) · 𝐶𝐹 , (2.114)

where 𝐶𝐹 is the International Towing Tank Conference (ITTC) friction line

𝐶𝐹 =
0.075

[log(Re) − 2]2
, (2.115)

where the Reynolds number from Eq. (2.31) is evaluated with chord length 𝑐 as characteristic
length [50]. An alternative model for viscous drag on a foil profile is Migeotte’s method [52]
with

𝐶′𝐷𝑣 = 2 ·
(
1 + 2/3𝐶′2L

)
· 𝐶𝐹 . (Migeotte’s method)

Remark 46. For a nominal motion of a wave-propelled USV with speed𝑈 ∼ 1 [m/s] and chord
length 𝑐 = 0.2 [m], then 𝐶′

𝐷𝑣
= 0.018 and 𝐶′

𝐷𝑖
= 0.127 . Thus the induced drag dominates

the viscous drag when the attack angle is not close to zero. Therefore, viscous drag is not a
dominating force, and can be neglected in the dynamic model.

The definition of the attack angle is based on Fossen [4], applied for the case of foils mounted
on wave-propelled USVs:

Definition 17. (Angle of attack on propulsion foils for USVs)
The angle 𝛼 from the relative fluid velocity vector to the chord line, in direction from the

leading edge to the trailing edge of the foil, positive rotation into the paper in Fig. 2.14 by the
right-hand screw convention.

Remark 47. From Definition 17, when the foils are attached to the USV by angle 𝜗 in the
𝑦𝑏-direction of the body (wing span in port/starboard direction), and the mean relative velocity
fluid vector field at the foil is U𝑏 = [𝑢r, 𝑣r, 𝑤r]⊤, the angle of attack is

𝛼 = arctan(𝑤r, 𝑢r) + 𝜗. (2.116)

In order for the linear foil theory to be considered accurate, the following definition composed
freely from Steen [50] is used:

Definition 18. (Prerequisite for linear foil theory)
Linear foil theory requires that camber, thickness and angle of attack is small compared to

the chord length. A rule of thumb is that their respective lengths should not exceed 10 % of the
chord lengths when measured normal to the chord line.
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Remark 48. According to Definition 18, linear foil theory is applicable for attached flow around
foils when the thickness 𝑡′ = 𝑡/𝑐 < 0.1. Assumption 14, which assumes no curvature of the foils,
already complies with the requirement in Definition 18.

When foils are used for propulsion in the case of wave-propelled USVs, the prerequisite of
linear foil theory in Definition 18 is not fulfilled since the attack angles are not guaranteed to
be “small”. For small attack angles, Eq. (2.113) can be considered valid. However, when the
angle of attack increases, the flow around the foils separate, and the phenomena of stall occurs.
This is treated in the next section. The interested reader can look into thickness effects on stall
characteristics in Sarraf et al. [53].

Characteristics above stall

The characteristics of foils operating at angles of attack above stall are of importance in analyzing
wave-propelled USVs. For large attack angles, the boundary layer flow around a foil is separated,
see Fig. 2.15, and the phenomena of stall occurs [50]. Stall can be defined according to:

Definition 19. (Stall)
The sudden reduction of lift by increasing angle of attack.

Physically, upon increasing the angle of attack above the stall angle, the flow detaches, or
separates, more or less suddenly from the suction side of the foil. This results in a sudden drop
in lift until a combination of impact pressure on the pressure side, together with a scavenging
effect in the wake, causes a slight increase in lift until about 45◦ of attack angle. Beyond the
stall angle, the resultant force on the foil is essentially normal to the chord line. [6]

Attached flow Separated flow

Figure 2.15: Attached flow below stall angle to the left and detached (separated)
flow beyond stall angle to the right.

According to Anderson [16], two major consequences of the flow separating over a foil are:

1. A drastic loss of lift. This is called stall.

2. A major increase in drag. This is caused by pressure drag due to flow separation.

Most literature in the field explores the forces on foils only for small attack angles, giving
lift and drag curves for angles below stall. As far as the author is concerned, there is no simple
expressions for the forces present beyond the stall angle, in which case an interested reader is
referred to dynamic stall conditions, for instance by Johnston 2004 [51] or Bøckmann 2014 [2].

In Hoerner’s handbook on lift [6], only a single chapter of about one page is denoted to
this phenomena throughout the book. It is treated briefly in the chapter “Airfoil characteristics
above stall” at pp. 4-23. This is the only literature the author found to give semi-empirical
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equations for lift and drag through 0◦–180◦ degrees attack angle. Hoerner [6] describes this as
“Correlation of Theory” which account for the loss of circulation (defined in Sect. 2.6.3) due to
separation. Hoerner propose to use the coefficients

𝐶′𝐿,HOERNER = (1.8 to 2.0) sin(𝛼) cos(𝛼), (2.117a)
𝐶′𝐷,HOERNER = (1.8 to 2.0) sin(𝛼)2, (2.117b)
𝐶′𝑁,HOERNER = (1.8 to 2.0) sin(𝛼). (2.117c)

Additional information about drag on fully submerged foils is explained at length in chapters
X and XI in the book “Fluid-Dynamic Drag” by Hoerner 1965 [15].

2.6.3 Circulatory forces
In determining semi-empirical equations for the governing forces on foils, a modification of
linear foil theory is employed, which was shown by Tufte [17]. The material here is based
on this approach since the original material is not intended for publication. The method here
assumes that the flow around a flat plate is attached beyond the stall angle, before a correction
of the equations are performed. The equations were developed without the knowledge of the
semi-empirical relations given by Hoerner in Eq. (2.117).

The method is based on modeling a flat plate, a line similar to that in Fig. 2.14, in which a
quote from Hoerner is appropriate:

“Foil sections, as used in wings or anything similar in flatness such as a plate for example,
are not lines; in fact, only a mathematician can produce lift by means of a line.” – Hoerner, 1985

Vortex distribution

In order to determine the forces on a foil, one may use Bernoulli’s equations from Eq. (2.37)
and place a vortex distribution along the chord length. Anderson discussed the use of vortex
distributions as a method to analyze foils [16]:

“It was first espoused by Ludwig Prandtl and his colleagues at Göttingen, Germany, during
the period 1912–1922. However, no general analytical solution for 𝛾 = 𝛾(𝑠) exists for an
airfoil of arbitrary shape and thickness. Rather, the strength of the vortex sheet must be found
numerically, and the practical implementation (...) had to wait until the 1960s with the advent
of large digital computers”

Excluding viscous forces, the resultant induced pressure force on a flat plate is normal to the
face of the plate as shown in Fig. 2.16 with the normal force 𝑁 pointing in the direction from
the pressure side to the suction side, acting in the center of pressure 𝑥c.p..

Evaluating Bernoulli’s equation, as stated in Eq. (2.37), upstream in the free-stream flow
with velocity𝑈 and pressure 𝑃0 and comparing to the foil surface, the pressure distributions are
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𝑈

𝑁

𝑈 + �̃� (𝑥)𝑥 = 0

𝑥 = 𝑐

𝑈 − �̃� (𝑥)
Figure 2.16: Perturbed velocity profile on the pressure side 𝑈 − �̃� (𝑥) and on the
suction side𝑈 + �̃� (𝑥).

𝑃pres.(𝑥) = 𝑃0 +
1
2
𝜌[𝑈2 − (𝑈 − �̃� (𝑥))2], (2.118a)

𝑃suct.(𝑥) = 𝑃0 +
1
2
𝜌[𝑈2 − (𝑈 + �̃� (𝑥))2] . (2.118b)

The normal force 𝑁 is found by integrating the pressure distribution over the chord length

𝑁′ =

∫ 𝑐

0
Δ𝑃(𝑥) d𝑥 = 𝜌𝑈

∫ 𝑐

0
2�̃� (𝑥) d𝑥 := 𝜌𝑈

∫ 𝑐

0
𝛾(𝑥) d𝑥, (2.119)

where Δ𝑃(𝑥) = 𝑃pres.(𝑥) − 𝑃suct.(𝑥) = (2.118a) − (2.118b) and 𝛾(𝑥) is a vortex distribution.

The vortex 𝛾(𝑥) is introduced in order to draw similarity to Kutta-Joukowski’s theorem [32].
Firstly, the definition of circulation is given:

Definition 20. (Circulation)
In physics, circulation is the path integral of a vector field around a closed curve. For fluid

mechanics, this vector field is the fluid velocity.

Definition 20 is illustrated in Fig. 2.17 where the integration of an arbitrary velocity field
is shown. Conversely, the inverse problem where the tangential velocity 𝑉⊥ is found from a
circulation source Γ is shown to the right, analogous to Biot-Savart’s law in electrodynamics,

𝑉⊥(𝑟) =
1

2𝜋𝑟
Γ. (Biot-Savart’s law for velocity circulation) (2.120)

Theorem 1. (Kutta-Joukowski’s theorem)
The two-dimensional lift on a submerged body is 𝐿 = 𝜌𝑈Γ, where 𝜌 is the fluid density, 𝑈

is the inflow velocity and Γ is the fluid circulation around the body.

Remark 49. In Theorem 1, the circulation Γ is related to the vortex distribution 𝛾(𝑥) by
Γ =

∫ 𝑐

0 𝛾(𝑥) d𝑥.
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Γ
𝑉⊥(𝑟)Γ

𝛾(𝑡)

Figure 2.17: Circulation around an arbitrary closed curve 𝛾(𝑡) in a velocity field
to the left. To the right, the inverse problem of finding the tangential velocity 𝑉⊥
at radius 𝑟.

Remark 50. If the vortex distribution 𝛾(𝑥) is known along the chord length, the induced lift and
drag forces can be found with the components

𝐿′ =

∫ 𝑐

0
𝛾(𝑥) d𝑥 cos(𝛼), 𝐷′ =

∫ 𝑐

0
𝛾(𝑥) d𝑥 sin(𝛼). (2.121)

For linear foil theory, it is customary to define the lift simply as the integral given by the
normal force in Eq. (2.119), which is the method employed by Steen [50]. In order to find
semi-empiric equations for the lift and drag force through 0◦–180◦, the definition for the normal
force given here is used.

Determining the vortex distribution

In order to determine the vortex distribution 𝛾(𝑥) to find the forces acting on a flat plate, an
impermeable condition and the infamous Kutta condition needs to be addressed.

The impermeability condition simply means that the solution of 𝛾(𝑥) needs to be physically
feasible, such that the surrounding water do not simply flow straight through the foil. The
definition is:

Definition 21. (Impermeability condition)
There is no fluid flow through the foil surface.

Remark 51. A consequence of Definition 21 is that the normal velocity, which can be found from
the integral of the continuous vortex distribution in Biot-Savart’s law in Eq. (2.120), cancel
the normal component 𝑈 sin(𝛼) of the surrounding velocity field. The proper mathematical
statement is that

1
2𝜋

∫ 𝑐

0

𝛾(𝜎)
𝜎 − 𝑥d𝜎 = 𝑈 sin(𝛼). (2.122)

When considering inviscid flow around an object, D’Alembert’s principle states that the lift
on the object is exactly zero [4]. In reality, viscous effects like skin friction and other specific
boundary layer effects are present. In the study on the forces on a flat plate, the flow was
assumed inviscid. This will in general result in infinite solutions for the vortex distribution 𝛾(𝑥).
However, the Kutta condition enforces a viscous effect in the flow pattern around flat plates by
restricting the flow around sharp trailing objects [6]:
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Definition 22. (Kutta condition)
There cannot be an infinite change of velocity at the trailing edge.

A visualization of Kutta condition in for viscous flow around foils compared to ideal fluid
flow is illustrated in Fig. 2.18.

(a) Zero-lift flow 𝛾(𝑐) → ∞ 𝛾(𝑐) ≡ 0(b) Kutta condition

Figure 2.18: Kutta condition impose a viscous constraint on the circulation dis-
tribution such that 𝛾(𝑐) ≡ 0 for steady flow in (b). The zero-lift flow (a) complies
with D’Alembert’s principle of zero lift for a submerged body moving in an ideal
(inviscid) fluid. From Tufte [17].

Remark 52. As a consequence of Definition 22, the flow at the trailing edge is tangential with
the chord line and the circulation at this point is zero. This means that

𝛾(𝑥)
��
𝑥=𝑐

= 0. (2.123)

From the impermeability condition given in Eq. (2.122) and Kutta condition in Eq. (2.123),
Steen [50] states that the solution is

𝛾(𝑥′) = 𝑘 ·
√︂

1 − 𝑥′
𝑥′

, (2.124)

where the constant is 𝑘 = 2𝛼𝑈 and 𝑥′ is the non-dimensional chord position 𝑥/𝑐.
Tufte [17] showed that the proper circulation distribution for attached flow on flat plate is

𝛾(𝑥) = 2 sin(𝛼)𝑈
√︂
𝑐 − 𝑥
𝑥

, (2.125)

by using the form of Eq. (2.124), which satisfies Definition 22, and solving for Definition 21.

Uncorrected foil forces in attached flow

From Eq. (2.121) and Eq. (2.125), the uncorrected lift force is calculated as

𝐿′uncorr. = 𝜌𝑈

∫ 𝑐

0
2 sin(𝛼)𝑈

√︂
𝑐 − 𝑥
𝑥

d𝑥 · cos(𝛼),

and the uncorrected drag force for attached flow is

𝐷′uncorr. = 𝜌𝑈

∫ 𝑐

0
2 sin(𝛼)𝑈

√︂
𝑐 − 𝑥
𝑥

d𝑥 · sin(𝛼).
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Since the integral
∫ 1

0

√︃
1−𝑥
𝑥

d𝑥 = 𝜋/2, the uncorrected lift, drag and normal forces are

𝐿′uncorr. = 𝜌𝜋𝑈
2𝑐 sin(𝛼) cos(𝛼), (2.126a)

𝐷′uncorr. = 𝜌𝜋𝑈
2𝑐 sin(𝛼)2, (2.126b)

𝑁′uncorr. = 𝜌𝜋𝑈
2𝑐 sin(𝛼), (2.126c)

with coefficients 𝐶𝐿,uncorr. = 2𝜋 sin(𝛼) cos(𝛼) ≃ 2𝜋𝛼 and 𝐶𝐷,uncorr. = 2𝜋 sin(𝛼)2 ≃ 2𝜋𝛼2.

Corrected foil forces

Tufte proposed to correct the magnitude of the foil forces in Eq. (2.126) according to the gains
�̄�𝐿 = 2.4

𝜋
and �̄�𝐷 = 2

𝜋
, based on experimental results for flat plates standing orthogonal to inflow.

This results in the following force coefficients 𝐶′
𝐿
= 𝐶′𝐿,uncorr.�̄�𝐿

𝐶′𝐿,TUFTE = 2.4 sin(𝛼) cos(𝛼), (2.127a)
𝐶′𝐷,TUFTE = 2.0 sin(𝛼)2, (2.127b)
𝐶′𝑁,TUFTE ≃ 2.0 sin(𝛼). (2.127c)

This result was independently found to be almost identical to that of Hoerner given in Eq.
(2.117), except that Hoerner properly corrected the drag coefficient with a lower drag than that
of flat plates, which has 𝐶𝐷 = 2.0 at orthogonal inflow [36]. The lift coefficient in Eq. (2.127)
is more correct for small angles than Hoerner, but is less correct at greater angles.

Remark 53. The forces in Eq. (2.127) shows an expected qualitative behavior with drag forces
always opposing the inflow velocity, and the lift force is twice periodic in the attack angle through
a complete revolution. Drag is zero at 𝛼 = {0, 𝜋} and lift force is zero at 𝛼 = {0, 𝜋/2, 𝜋, 3𝜋/2}.

Stall considerations was not investigated in [17], but an empiric equation is proposed in the
next section as a continuation on the work.

Stall considerations

The equations for attached flow is accurate until the flow detaches from the suction side of the
foil. Characteristics through 180 degrees is rare, but can for instance be found from Sheldahl
1981, Sandial National Laboratories, NACA [54]. The lift for NACA0012 section, which was
shown in Fig. 2.13, is given in Fig. 2.19.

A closer study of the lift coefficient in Fig. 2.19 suggest that the correction parameter𝐶𝐿𝑛 (𝛼)
for the uncorrected flat plate forces in Eq. (2.126) can be approximated by

1. 𝐶𝐿𝑛 (𝛼) ≃ 1, during attached flow until middle of the stall transition,

2. 𝐶𝐿𝑛 (𝛼) ≃ 1 −𝐶𝐿𝑠 where 0 < 𝐶𝐿𝑠 < 1, during separated flow, beyond the stall transition.
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Figure 2.19: Lift coefficient for NACA0012 through 0◦–180◦ attack angles. Fac-
simile from [54].

A couple of remarks can be made:

Remark 54. For suggestion 1, this corresponds to about 0◦–13◦ and 167◦–180◦ for the
NACA0012 section in Fig. 2.19.

Remark 55. For suggestion 2, this corresponds to about 13◦–167◦ in Fig. 2.19, assuming
symmetry through 0–180◦. According to suggestion 2, (the amplitude determined by the peak at
45◦ in Fig. 2.19)

Remark 56. If one denote the middle of the stall transition for the angle 𝛼𝑠, then Remark 54
and 55 can be summarised as

𝐶𝐿𝑛 (𝛼) ≃


1, 0 ≤ 𝛼 < 𝛼𝑠, (attached flow)
1 − 𝐶𝐿𝑠, 𝛼𝑠 ≤ 𝛼 ≤ 𝜋 − 𝛼𝑠, (detached flow)
1, 𝜋 − 𝛼𝑠 < 𝛼 ≤ 𝜋, (attached flow)

In order to smooth the stall transitions such that the lift force approximates the form in
Fig. 2.19, a Sigmoid function can be introduced. Let a Sigmoid function with step from 0 to 1
at 𝑥0 be denoted as

𝜎𝑘 (𝑥, 𝑥0) ≜
1

1 + exp(−10
𝑘
(𝑥 − 𝑥0))

, (2.128)

where 𝑘 approximates the width of the step as shown in Fig. 2.20.
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Figure 2.20: Sigmoid function as defined in Eq. (2.128). The width is approxi-
mately 𝑘 , covering 1–99 % transient.

With the smoothing Sigmoid function in Eq. (2.128) and Remark 56, the corrected lift
coefficient 𝐶𝐿𝑛 (𝛼) can be approximated with

𝐶𝐿𝑛 (𝛼) ≜ [1 − 𝐶𝐿𝑠𝜎𝑘𝑠 ( |𝛼 |, 𝛼𝑠) + 𝐶𝐿𝑠𝜎𝑘𝑠 ( |𝛼 |, 𝜋 − 𝛼𝑠)] . (2.129)

Drag forces can be corrected as well by noting that when the flow detaches, the sudden
decrease in lift force corresponds to a sudden increase in the drag force such that

𝐶𝐷𝑛 (𝛼) ≜ 𝐶𝐷𝑠 [1 + 𝐶𝐿𝑠𝜎𝑘𝑠 ( |𝛼 |, 𝛼𝑠) − 𝐶𝐿𝑠𝜎𝑘𝑠 ( |𝛼 |, 𝜋 − 𝛼𝑠)], (2.130)

where the coefficient 𝐶𝐷𝑠 approximates the effect of decreasing drag as a result of leading edge
suction force 𝑆 and the overall amplitude of the drag force.

Assembling the governing forces on a foil with the approximations in this section, the
corrected steady lift and drag forces can be written as

𝐶′𝐿,corr. = 2𝜋𝐶𝐿𝑛 (𝛼) sin(𝛼) cos(𝛼), (2.131a)
𝐶′𝐷,corr. = 2𝜋𝐶𝐷𝑛 (𝛼) sin(𝛼)2, (2.131b)

𝐶′𝑁,corr. = 2𝜋
√︁
𝐶𝐿𝑛 (𝛼)2 + 𝐶𝐷𝑛 (𝛼)2 sin(𝛼), (2.131c)

where the nonlinear corrections 𝐶𝐿𝑛 (𝛼) and 𝐶𝐷𝑛 (𝛼) are given by Eqs. (2.129) and (2.130).
An example of the correction for a given foil profile is shown in Fig. 2.21. Here, the

program Xfoil, a software program developed by Massachusetts Institute of Technology, was
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used to analyse a given foil section. The program uses panel method and a fully coupled
viscous/inviscid interaction to evaluate drag, boundary layer transition, and separation on two-
dimensional foils. The program can find lift and drag coefficients until slightly above the stall
angle. [55]
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(a) Correction without smoothing function.

-80 -60 -40 -20 0 20 40 60 80
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Lift coefficient Xfoil

Theory

(b) Correction with smoothing function.

Figure 2.21: Example of correction to the lift coefficient beyond stall angle. The
thickness was set to 15% appearing at 20% of the chord line with the foil section
determined by Eq. (2.110), and the Reynolds number was set to Re = 106. The lift
force was found with Xfoil.

Center of pressure for attached flow

The center of pressure, or the hydrodynamic center on a submerged body, denoted by location
®𝑟c.p., can be defined according to the following definition:

Definition 23. (Center of pressure)
The center of pressure is the point where the combined pressure forces on a body is located,

resulting in a single resultant force exerted through that point.

The center of pressure on a submerged body can be calculated with the surface integral of
the pressure force d ®𝐹 = −𝑃d ®𝐴, where d ®𝐴 is the normal vector. The minus sign is needed since
the convention is that the force is considered towards the surface of the body, while d ®𝐴 points
outward of the body. The location of the center of pressure is found by integrating

®𝑟c.p. =
−

∯
𝜕𝐵
𝑃®𝑟 · d ®𝐴

−
∯
𝜕𝐵
𝑃 d ®𝐴

, (2.132)

where 𝜕𝐵 denotes the body surface and the pressure 𝑃 is the local pressure at the surface 𝜕𝐵.
For a flat foil with chord length 𝑐, the center of pressure can be calculated with Eq. (2.132) as
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𝑥c.p. =

∫ 𝑐

0 𝑥Δ𝑃(𝑥) d𝑥∫ 𝑐

0 Δ𝑃(𝑥) d𝑥
=

∫ 𝑐

0 𝑥𝛾(𝑥) d𝑥∫ 𝑐

0 𝛾(𝑥) d𝑥
= 0.25𝑐. (exact) (2.133)

The calculations are not shown here, but by inserting the vortex distribution in Eq. (2.125),
the center of pressure is shown to lie at exactly the quarter-chord position of the foil when the
flow is attached and Kutta condition (Def. 22) applies.

A common assumption in modeling foils is that the center of pressure is constant at
𝑥′c.p. = 0.25. This assumption is valid for modeling e.g. wings. However, this assumption has
wrongfully been used in similar cases for wave-propulsion, for instance in an earlier report that
models foil propulsion system [21]. Therefore, care is taken to ensure that the empiric model is
sufficiently accurate with this model.

Center of pressure for separated flow

The author did not find any general empiric equations for the center of pressure beyond the stall
angle. For small attack angles typically less than 30 degrees, the experimental position for center
of pressure for 78 foil shapes can be found in Jacobs et al. pp. 7–45 [13], for Reynolds number
Re = 3.2 · 106. These values lie at approximately the quarter-chord position for symmetrical
foils for small attack angles, in accordance with linear foil theory. An example is shown for the
NACA0015 profile in Fig. 2.22.

In order to determine an empiric equation for the center of pressure, one can argue in the
following manner. Denote Δ𝑃′ as the contributing part from the pressure Δ𝑃 determining the
position 𝑥′c.p. in Eq. (2.133). The vortex distribution in Eq. (2.125) is accurate at attached flow
around 𝛼 = 0, and the inverse (letting 𝑥′← 1− 𝑥′) around 𝛼 = 𝜋. When the flat plate is standing
orthogonal to the inflow, at 𝛼 = 𝜋/2, the center of pressure should be 𝑥′c.p. = 0.5 because of
symmetry. The following should be correct from a physical insight:

Δ𝑃′u :


Δ𝑃′u(𝑥′) ∼ sin(𝛼)

(
1−𝑥′
𝑥′

)1/2
, 𝛼 ≃ 0,

Δ𝑃′u(𝑥′) ∼ symmetrical about 𝑥′ = 0.5, 𝛼 ≃ 𝜋/2,

Δ𝑃′u(𝑥′) ∼ sin(𝛼)
(
𝑥′

1−𝑥′
)1/2

, 𝛼 ≃ 𝜋.

(2.134)

From Eq. (2.134), one can argue that a certain monotonic function on the form

𝜎(𝑥) =


−1, 𝑥 ≪ 0,
0, 𝑥 = 0,
1, 𝑥 ≫ 0,

(2.135)

can be used as a substitute for the exponent in Eq. (2.134) on the form

Δ𝑃′(𝑥) ∼
(𝑐 − 𝑥
𝑥

)− 1
2𝜎(ssa(𝛼− 𝜋2 ))

, (2.136)
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Figure 2.22: Experimental airfoil results with NACA0015 profile showing a vari-
ation of the center of pressure with attack angle. Facsimile from NACA [13].

where ssa(·) is the smallest signed angle used for wrapping angles to the set (−𝜋, 𝜋] [4].
Expression for Δ𝑃′ in Eq. (2.136) do in fact satisfy Eq. (2.134), even when 𝛼 = 𝜋/2.
Calculations show that when using Δ𝑃′ in Eq. (2.136), then

𝑥c.p. =

∫ 𝑐

0 𝑥Δ𝑃′(𝑥) d𝑥∫ 𝑐

0 Δ𝑃′(𝑥) d𝑥
≃ 𝑐

[
1
2
+ 1

4
𝜎(𝑥)

]
(2.137)

agrees within 1% accuracy of the numerical value when 𝜎(·) is the monotonic function charac-
terized by Eq. (2.135), not to be confused by the Sigmoid function in (2.128).

Remark 57. Even though this approach is somewhat non-physical, the reasoning shows that
the center of pressure is expected to start at around the quarter-chord, and move through the
half-chord point when the attack angle is at 90 degrees.

Remark 58. If one can find a suitable approximation for 𝜎(𝑥), then a closed-form expression
is found for the center of pressure given by Eq. (2.137).

Interestingly, an experimental test showcasing the center of pressure was indeed found in the
literature. In the report by, Mirzaeisefat 2011, pp. 27 [56], the center of pressure was found for
flat plates in uniform current. Here, the center of pressure was fitted into two linear segments
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with a reasonable agreement with experiments and numerical simulation. The experiments were
performed at Reynolds number Re = 1.17 · 105, and Mirzaeisefat found the relation

0.5 − 𝑥′c.p. =

{
0.1012\, \ ≤ 55◦

0.381\ − 0.2745, \ > 55◦

where \ = 𝜋/2 − 𝛼. The above expression can be transferred to

𝑥′c.p. =

{
0.1760 + 0.3810𝛼, 𝛼 ≤ 35◦

0.3410 + 0.1012𝛼, 𝛼 > 35◦
. (experimental fit) (2.138)

Remark 59. There are numerical issues with Eq. (2.138) since the numerical approximations
introduces discontinuous jumps at 𝛼 = 35◦.

Inspired by the experimental and numerical results in [56], the following model for the center
of pressure is proposed:

𝑥′c.p.
TUFTE

=


1
4 , |𝛼 | ≤ 0.05𝜋
1
5 +

1
𝜋
|𝛼 |, 0.05𝜋 < |𝛼 | ≤ 0.2𝜋

1
3 +

1
3𝜋 |𝛼 |, 0.2𝜋 < |𝛼 | ≤ 0.8𝜋

−1
5 +

1
𝜋
|𝛼 |, 0.8𝜋 < |𝛼 |

. (2.139)

A comparison for the proposed model for center of pressure and the expermental one found
in [56] is illustrated in Fig. 2.23. Some remarks follow.

Remark 60. Eq. (2.139) is continuous, but not differentiable. A smoother empiric equation
might increase the accuracy of the model.

Remark 61. Eq. (2.139) ensures that the center of pressure lies at the quarter-chord position
for small attack angles and follows the experimental model in [56] for 𝛼 > 11◦. Additionally,
the center of pressure is at 𝑥′c.p. = 0.5 for 𝛼 = 𝜋/2.
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Figure 2.23: Approximation of the center of pressure from Eq. (2.139) for flat
plate in Reynold number Re = 1.17 · 105. The fitted slope is obtained from [56].
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Three-dimensional corrections of circulatory forces

The lift and drag coefficients that was found in the last sections are correct for two-dimensional
flow. Correcting for finite span on the foils involves accounting for the three-dimensional effects
of the foil geometry, considering variations in lift and induced drag along the span. Empiric
formulae exist in the literature, for instance in [6], [16], [50] and [57]. The three-dimensional
effects are incorporated by defining the aspect ratio

ΛF ≜
𝑆

𝑐𝑚
=

2𝑏
𝑐𝑚

=
𝑆2

𝐴𝑝
, (2.140)

where 𝑆 = 2𝑏 is the span and 𝐴𝑝 is the projected area 𝐴𝑝 = 𝑆𝑐𝑚, as defined in Sect. 2.6.1. Here,
the mean chord length 𝑐𝑚 is used. The subscript “F” for foil is conveniently dropped for the rest
of the section, Λ = ΛF.

The three-dimensional lift can be found from strip method by the slender body theory in
Sect. 2.4.5. However, it is common to express the lift and drag forces according to

𝐿 =
1
2
𝜌𝑈2𝐴𝑝𝐶𝐿 , (2.141a)

𝐷 =
1
2
𝜌𝑈2𝐴𝑝𝐶𝐷 , (2.141b)

where it is understood that the lift and drag coefficients in this expression are the corresponding
three-dimensional coefficients which are related to the two-dimensional one by

𝐶𝐿 = 𝐶′𝐿 (𝛼)𝐶3D(Λ), 𝐶𝐷 = 𝐶′𝐷 (𝛼)𝐶3D(Λ).

Prandtl’s lifting line theory predicts corrections to the forces in linear foil theory by assuming
an elliptic circulation distribution along the span [50]. For this scenario, the lift is corrected
according to

𝐶Prandtl
3D (Λ) = Λ

Λ + 2
. (2.142)

Prandtl’s lifting line is valid for foils with elliptic span shape, which is the optimal shape to
reduce drag. Anderson however, suggests that a modification to Prandtl’s lifting line should be
implemented to account for a finite wing with general planform with

𝐶Anderson
3D (Λ) = Λ

Λ + 2(1 + 𝜏) , (2.143)

where the induced factor for lift slope 𝜏 is introduced. Anderson reports the usual values for this
value as 𝜏 ∈ [0.05, 0.25] [16]. For larger aspect ratios, Hoerner introduces a practical factor ¥𝑎
such that

𝐶Hoerner
3D (Λ) = ¥𝑎Λ

Λ + 2 ¥𝑎 , (2.144)

where the factor should be on the order of ¥𝑎 = 0.9 [6].
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An experimental value on rudders was found by Fujii et al. [57]. Adopting to the framework
in this report, the correction is readily

𝐶
Fujii
3D (Λ) =

6.13
2𝜋

Λ

Λ + 2.25
. (2.145)

Lastly, Du Cane [58] proposed to use the following correction, valid for Λ > 3

𝐶Ducane
3D (Λ) = Λ

Λ + 2

(
1 − 2

Λ2

)
. (2.146)

A few remarks for the three-dimensional corrections follow:

Remark 62. The correction from Prandtl in Eq. (2.142) and from Anderson in Eq. (2.143) has
the benefit that the when the span becomes infinite, Λ → ∞, the values tend to the theoretical
values since the correction approaches 1.

Remark 63. Both the correction from Hoerner in Eq. (2.144) and Anderson in Eq. (2.143) can
be tuned by the parameters ¥𝑎 and 𝜏, respectively.

Remark 64. The correction from Du Cane given by Eq. (2.146) is only valid for aspect ratios
above 3 and will hence not be considered.

In the following, the asymptotic benefits and tuning option indicates that one should use
Anderson’s correction. In order to simplify the correction parameter used for modeling the
forces on the foils for wave-propelled USVs, it was decided to combine the asymptotic behavior
with the experimental denominator of Fujii such that the following correction was used:

𝐶TUFTE
3D (Λ) = Λ

Λ + 2.25
. (three-dimensional correction) (2.147)

A comparison of the empiric correction methods is illustrated in Fig. 2.24. The benefit of
using Eq. (2.147) is that it is in agreement with other empiric methods and do not need any
additional tuning.

2.6.4 Non-circulatory forces
The non-circulatory force – the added mass force – is described in this section. This is the same
force as described in Sect. 2.4.4 applied for the foils present in wave-propelled USVs. In the
following, flat plates will be considered to approximate the forces on a real foil.

Added mass force

According to Pettersen [36], the added mass force on a flat plate due to linear acceleration is

𝐴′ =
1
4
𝜌𝜋𝑐2

𝑚
¤𝑈𝑛, (2.148)
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Figure 2.24: Comparison of three-dimensional reduction coefficients 𝐶3D(Λ).
The expression for Anderson show suggested bounds, and the expression from
Hoerner use ¥𝑎 = 0.9.

where 𝜌 is the density of water, 𝑐 is the chord length and ¤𝑈𝑛 is the relative acceleration normal
to the plate. The force is per span, and acts through the center of the plate.

Expressions for the analytical correction for three-dimensional plates can be found in a dense
mathematical report by Meyerhoff [59]. In the report, Meyerhoff calculated the added mass on
10 aspects ratios for flat plates, listed in Tab. 2.4. The added mass on a rectangular wing with
width 𝑐 and span 𝑆, can be found by

𝐴 = 𝐴′𝑆𝐶𝑎 (Λ). (2.149)

Remark 65. The reduction coefficients from Meyerhoff for the calculations of added mass needs
to be interpolated in order to use it on arbitrary aspect ratios.

The results of Meyerhoff is similar in nature to the three-dimension correction coefficients
given in Sect. 2.6.3. In investigating the expression from Meyerhoff, a simple formula on the
form 𝐶a(Λ) = Λ

Λ+𝑎 did unfortunately not represent the coefficients in Tab. 2.4 sufficiently.
However, a simple least squares optimization for the expression

𝐶a(Λ) =
Λ̃

Λ̃ + 𝑎
, (2.150)

with Λ̃ = Λ − Λ0 was used with great results. When 𝐶a and Λ are known from the listing in
Tab. 2.4, the parameter 𝑎 = 𝑎(Λ0) was calculated as

𝑎(Λ0) =
Λ̃ − Λ̃𝐶a
𝐶a

= (Λ − Λ0) ·
(

1
𝐶a
− 1

)
, (2.151)
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Table 2.4: Added mass reduction coefficient for flat plate with chord length 𝑐 and
span 𝑆. Obtained from analytical values from Meyerhoff [59].

Aspect ratio Added mass coefficient
Λ = 𝑆/𝑐 𝐶a(Λ)

1.0 0.579
1.25 0.642
1.59 0.704
2.0 0.757
2.5 0.801
4.0 0.872
5.0 0.897
8.0 0.934
10.0 0.947
∞ 1.000

which should be constant if Eq. (2.150) is valid. Therefore, the variance Var [𝑎(Λ0)] was
minimized. A reasonable agreement was found for a small number of significant digits. The
suggested interpolation is

𝐶TUFTE
a (Λ) = Λ − 0.26

Λ + 0.29
, (2.152)

when incorporating three-dimensional added mass forces for a plate with aspect ratioΛ. Fig. 2.25
shows the coefficients from Meyerhoff compared to the empiric relation in Eq. (2.152).

Remark 66. The coefficient in Eq. (2.152) is zero for Λ = 0.26. In case Λ approaches below 1,
the added mass force can accordingly be found by switching the length and width of the plate.

Denote the angle of attack for acceleration according to the following definition:

Definition 24. (Angle of attack for acceleration on propulsion foils for USVs)
The angle 𝛼a from the relative fluid acceleration vector to the chord line, in direction from

the sharp nominal trailing edge to the round leading edge of the foil, positive rotation into the
paper in Fig. 2.14 by the right-hand screw convention.

Remark 67. From Definition 24, when the foils are attached to the USV by angle 𝜗 in the
𝑦𝑏-direction of the body (wing span in port/starboard direction) and the mean relative velocity
fluid vector field at the foil is ¤U𝑏 = [ ¤𝑢r, ¤𝑣r, ¤𝑤r]⊤, the angle of attack for acceleration is

𝛼a = arctan( ¤𝑤r, ¤𝑢r) + 𝜗. (2.153)

For a foil mounted for propulsion on a wave-propelled USV, the non-circulatory force is

𝐴 =
1
4
𝜌𝜋𝑐2

𝑚𝑆𝐶a(Λ)
√︃
¤𝑢2
r + ¤𝑤2

r sin(𝛼a), (2.154)
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Figure 2.25: Reduction coefficient for added mass in flat plates with aspect ratio
Λ. Cross marks the values found analytically by Meyerhoff [59], and the red line
indicates the empiric interpolation proposed by Eq. (2.152).

where the force acts normal to the chord line at the midpoint, the correction parameter 𝐶a is
given by Eq. (2.152) and the angle of attack for acceleration is given by Eq. (2.153).

Added moment of inertia

The author found an analytical expression for the added moment of inertia for flat plates given
in a table by Pettersen [36], where the source is from Hoarce Lamb [33]. In this analysis, only
rotations in the direction of the span are considered. The added moment of inertia for rotation
along the half point chord is

𝑀′¥𝜗r
=

1
128

𝜌𝜋𝑐4
𝑚
¥𝜗r. (2.155)

Remark 68. The added moment of inertia in Eq. (2.155) is evaluated at the half-chord point.

The added moment of inertia for a given point at the chord line can be found by adding the
moment of inertia of the rotation in Eq. (2.155) and the moment contribution from the linear
added mass force from Eq. (2.148) as

𝑀′¥𝜗r
(𝑑) = 1

128
𝜌𝜋𝑐4

𝑚
¥𝜗r + 𝑑 ·

1
4
𝜌𝜋𝑐2

𝑚
¤𝑈𝑛

=
1

128
𝜌𝜋𝑐4

𝑚
¥𝜗r +

1
4
𝜌𝜋𝑑2𝑐2

𝑚
¥𝜗r,

(2.156)

where 𝑑 is the distance from the half-chord position to the rotation axis.

Remark 69. The resultant added moment of inertia given by Eq. (2.156) should be considered
when finding the dynamics for the foils. However, it is probably sufficient to add the added force
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in Eq. (2.148) as a separate force or moment in the dynamics and only consider the added
moment of inertia contributed from Eq. (2.155).

The added moment of inertia for the complete foil is approximated by the strip method from
Sect. 2.4.5 by integrating the sectional added moment of inertia along the span 𝑆 such that

𝑀 ¥𝜗r
≃ 𝑀′¥𝜗r

𝑆. (2.157)

Damping

No general expression was found for both linear and rotational damping of foils in the literature.
Viscous damping, like drag forces, is already incorporated in the circulatory forces given in
Sect. 2.6.3. When the rotational dynamics of the foils is derived later in Sect. 3.4, additional
damping, which is not yet captured in the analysis, can be taken into account by adding a tuneable
rotational damping as shown in this section.

Consider a general mass-spring-damper system on the form

𝑚 ¥𝑥 + 𝑏 ¤𝑥 + 𝑐𝑥 = 𝐹 sin(𝜔𝑡), (2.158)

where 𝐹 sin(𝜔𝑡) drives the dynamics. According to Fossen [4], the combined viscous and
non-viscous damping 𝑏 is estimated according to relative damping ratio Z as

�̂� = 2Z
√
𝑚𝑐. (2.159)

Details about the relative damping ratio can be found in any standard textbook on differential
equations.

Remark 70. A practical use for the estimation of damping from Eq. (2.159) is only useful when
both the mass 𝑚 and the spring constant 𝑐 is known and unchanging. In the general case for
wave-propelled USVs, this method is not optimal as the springs of such USVs should be switched
according to the sea state at the operational area.

An alternative method for estimating the damping is through a damping period 𝑇foil. The
damping can be estimated from the total foil inertia 𝑀foil = 𝐽𝜗 + 𝑀 ¥𝜗r

according to

𝐵foil =
𝑀foil
𝑇foil

, (2.160)

where 𝑇foil is the damping period to be tuned. Alternatively, by dimensional analysis, the
damping moment can be added by the expression

𝐵′𝜗 =
1

128
𝜌𝜋𝑐4

𝑚

𝑇𝜗
¤𝜗r, (2.161)
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where the proportional constant 1
128𝜋 is chosen from the added moment of inertia in Eq. (2.155).

Here, the damping period is tuned relative to the added inertia from the water, not the foil inertia.
The velocity derivative from Eq. (2.161) is 𝑄 ¤𝜗 = − 1

128
𝜌𝜋𝑐4

𝑚

𝑇
.

The total damping is found by integrating Eq. (2.161) along the span such that

𝐵𝜗 = 𝐵′𝜗𝑆. (2.162)

2.6.5 Unsteady forces
The circulatory forces derived in Sect. 2.6.3 applies to stationary flow around foils. When there
is a step or change in the inflow velocity, there is a delay until the stationary forces is established.
This realization lead to the development in classical unsteady foil theory. The Küssner effect
looks at the step response in the inflow velocity. Otherwise, the equivalent results from Wagner
function in time domain is related to the Theodorsen function in the frequency domain via a
Laplace-transformation [2].

In this work, the similar procedure as Lopes et al. [20] was employed. They stated that:
“Recall that the Theodorsen function is only applicable for 2D foils, while the potential

lift-drag relation is given for a 3D steady foil where time lag is not taken in consideration.
Introducing the Theodorsen function in the drag definition is simply a result of the engineering
approach combining 2D and 3D foil theory, and is not meaningful with regard to the phase. It
is therefore simply assumed that the drag is in phase with the lift, as this will fulfill the lift-drag
relation at all instants in time. Note that since the drag oscillates with double the frequency of
the lift, the phrase “in phase with” has the meaning that the drag maxima are in phase with the
lift extrema.”

A motivation for the need for unsteady thin foil theory can be accompanied with Kelvin’s
theorem [16]:

Theorem 2. (Kelvin’s circulation theorem)
In a barotropic, ideal fluid subject to conservative body forces, the circulation along a closed

curve – tracing the same fluid elements – remains constant in time.

Remark 71. The statement in Theorem 2 is simply that the material derivative of circulation is

DΓ

D𝑡
= 0.

According to the Theorem 2, one can follow the fluid particles sliding along the surface of
the foil. Since the circulation for this amount of fluid is constant, the overall circulation for the
foil experience an “inertia”.

If the steady forces are used directly, this will be referred to as quasi-steady forces according
to the definition:

Definition 25. (Quasi-steady forces)
When the stationary forces are applied directly without accounting for transient effects, the

forces are referred to as quasi-steady forces.
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Theodorsen showed that unsteady circulatory forces on foils depend on the reduced frequency

𝑘f ≜
𝑐𝑚

2
𝜔

𝑈
, (2.163)

which is non-dimensional and amounts to the frequency of oscillation of the foil 𝜔 multiplied
with half the chord length divided by the inflow velocity 𝑈 [14]. The unsteady forces are
accounted for by multiplying the complex correction 𝐶Th(𝑘f) – the Theodorsen function – into
Eq. (2.141):

𝐿 =
1
2
𝜌𝑈2𝐴𝑝𝐶

′
𝐿 (𝛼)𝐶3D(Λ)𝐶Th(𝑘f), (2.164a)

𝐷 =
1
2
𝜌𝑈2𝐴𝑝𝐶

′
𝐷 (𝛼)𝐶3D(Λ)𝐶Th(𝑘f). (2.164b)

Remark 72. In Eq. (2.164), it is understood that the complex correction 𝐶Th(𝑘f) adds an
attenuation gain and a phase to the forces. It will be shown that this gain is in the range of
[0.5, 1] and the phase is [0, 15] deg.

When unsteady forces are introduced, an effective angle of attack is experienced:

Definition 26. (Effective angle of attack on foils)
The effective angle of attack 𝛼𝑒 is the angle of attack present in Eq. (2.164) as a consequence

of the introduced phase from Theodorsen function.

Remark 73. From Definition 26 and inspired from [2], the effective angle of attack can be
calculated as the real value of the attack angle multiplied by the Theodorsen function

𝛼𝑒 = Re{𝛼𝐶Th(𝑘f)}. (2.165)

Theodorsen function 𝐶Th(𝑘f) is given by

𝐶Th(𝑘f) =
𝐻
(2)
1 (𝑘f)

𝐻
(2)
1 (𝑘f) + 𝑗𝐻 (2)0 (𝑘f)

, (2.166)

where 𝐻 (2)𝛼 (𝑘f) are Hankel functions, e.g. found in the mathematical handbook [60], that is

𝐻
(2)
𝛼 (𝑥) = 𝐽𝛼 (𝑥) − 𝑗𝑌𝛼 (𝑥), (2.167)

where

𝐽𝛼 (𝑥) =
1
𝜋

∫ 𝜋

0
cos(𝛼\ − 𝑥 sin(\)) d\, (2.168a)

𝑌𝛼 (𝑥) =
1
𝜋

∫ 𝜋

0
sin(𝑥 sin(\) − 𝛼\) d\ − 1

𝜋

∫ ∞

0
(e𝛼𝜏 + (−1)𝛼e−𝛼𝜏) e−𝑥 sinh(𝜏) d𝜏. (2.168b)
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Remark 74. The second integral in Eq. (2.168b) should be evaluated until infinity, but the
integral was truncated to the upper bound 𝑀∞ = 10 because of fast convergence properties.

Remark 75. The complex correction coefficient of Theodorsen function in Eq. (2.166) is not
suited for simulation purposes or for developing a real-time model for wave-propelled USVs.

Because of Remark 75, an approximation for the unsteady effects of the forces on the
foils should be investigated. In [2], an analytical approximation which agreed to within 1 %
was stated for the frequency domain. However, that transfer function approximation was not
rational, thus causing an issue for practical implementation. This issue can be resolved by Padé-
approximation, where the real transfer function can be approximated by an increasing degree of
rational polynomials [61].

A rational transfer function for Theodorsen function was motivated by a method proposed
in [21], where a rational transfer function approximation can be found by least-square fitting by
built-in MATLAB [62] functionality with the function invfreqs. The degree of the numerator
and the denominator can be specified, and the function finds the polynomial coefficients.

An approximated rational transfer function in reasonable agreement with Eq. (2.166) was
found with the second order transfer function with the constraint 𝐶Th(0) = 1 as

𝐶2nd
Th (𝑠f) =

0.5 𝑠2
f + 0.549 𝑠f + 0.095

𝑠2
f + 0.848 𝑠f + 0.095

, (2.169)

where the Laplace variable is 𝑠f = 𝑗 𝑘f. In terms of the frequency 𝜔 = 2𝑈𝑘f/𝑐𝑚, then

𝐶2nd
Th (𝑠) =

0.5
( 𝑐𝑚

2𝑈
)2
𝑠2 + 0.549

( 𝑐𝑚
2𝑈

)
𝑠 + 0.095( 𝑐𝑚

2𝑈
)2
𝑠2 + 0.848

( 𝑐𝑚
2𝑈

)
𝑠 + 0.095

(2.170)

describes a velocity-dependent transfer function. The effects of unsteady circulatory forces on
a foil can thus be approximated with

𝐶Th(𝑠) ≃
0.250

(
𝑈
𝑐𝑚

)
𝑠 + 0.190

(
𝑈
𝑐𝑚

)2

𝑠2 + 1.696
(
𝑈
𝑐𝑚

)
𝑠 + 0.380

(
𝑈
𝑐𝑚

)2 + 0.500. (2.171)

A Bode plot comparison of the analytical Theodorsen function and the approximation from
Eq. (2.169) is illustrated in Fig. 2.26. The approximation approximates the magnitude well, but
adds additional phase at 𝑘f = 0.2. A better overall frequency-domain approximation can be
found when the constraint 𝐶Th(0) = 1 is relaxed or higher order polynomials are used. The
constraint is kept in order to make sure that the steady forces has unity gain.

Remark 76. When the frequency tends to infinity, Theodorsen’s gain correction tends to exactly
half. Physically, this predicts that any instantaneous inflow on the foils will cause an immediate
non-zero effect.
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Figure 2.26: Bode plot of Theodorsen function and the approximation given by
Eq. (2.169). The plot shows the magnitude and phase of the transfer function from
quasi-steady circulatory forces to the unsteady circulatory forces on a thin foil
expressed at the non-dimensional frequency 𝑘f.

Remark 77. By studying the step response of Eq. (2.171), the simple expression

𝐶Th(𝑠) ≃
0.636𝑈/𝑐𝑚

𝑠 + 0.636𝑈/𝑐𝑚
(low frequency approximation) (2.172)

was found to approximate the step response by minimizing the error between Eq. (2.171) and
Eq. (2.172), illustrated in Fig. 2.27. By this simplification, this suggest that the effect of unsteady
flow is approximated by the time constant 𝑇f = 1.57𝑐𝑚/𝑈, or the non-dimensional time constant
𝑇 ′f = 3.14. Physically, this means that the faster the relative inflow𝑈 acts on the foils, the faster
the steady forces are reached.

By the gross simplification found in Remark 77, one can infer that the effective circula-
tory forces and the effective angle of attack on the foils will approximately follow a decaying
exponential with the non-dimensional time constant 𝑇 ′f ≃ 3.14.

Practical realization of Theodorsen function

For a time domain implementation, the approximation of Theodorsen function from Eq. (2.171)
can be implemented by the method in Appendix A.1 by Eq. (A.4) on the form

¤x = A(𝑡)x + B(𝑡)𝑢,
𝑦 = C(𝑡)x + 𝐷𝑢,

(2.173)

where the transfer function is 𝐶Th(𝑠) = C[𝑠I − A]−1 + 𝐷 with matrices
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Figure 2.27: Magnitude of the step response of unsteady circulatory forces due to
Theodorsen’s function at the non-dimensional time 𝑡′ = (2𝑈/𝑐)𝑡. The first order
step response lags behind Theodorsen’s function until about 𝑡′ = 5.

A(𝑈) =
(
−1.696

(
𝑈
𝑐𝑚

)
−0.380

(
𝑈
𝑐𝑚

)2

1 0

)
, B =

(
1
0

)
, C(𝑈) = ©«

0.250
(
𝑈
𝑐𝑚

)
0.190

(
𝑈
𝑐𝑚

)2
ª®¬
⊤

, 𝐷 = 0.5.

(2.174)

Remark 78. The system matrix A(𝑈) is Hurwitz, or stable, for any given𝑈 = 𝑈0 > 0 since the
real part of the eigenvalues are non-positive. However, the filter cannot be proven to be bounded
since the matrix depend on the environment, and hence is time-variant.
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2.6.6 Wave-propulsion force
The foils considered follow Assumptions 11, 12, 13, 14 and 15. The hydrodynamic forces on the
foils are the non-circulatory forces in Sect. 2.6.4, given by the added mass force 𝐴 in Eq. (2.154)
and the circulatory forces, given by the normal force 𝑁 from Sect. 2.6.5. These forces act normal
to the chord line of the foils such that only their magnitude is written.

Denote 𝐴𝑖 and 𝑁𝑖 as the hydrodynamic forces on foil 𝑖. The force contributions from a single
foil will be shown first. From Newton’s law of motion in Eq. (2.13), the forces acting on a foil
are

®𝑁𝑖 + ®𝐴𝑖 + ®𝐺𝑖 + ®𝐵𝑖 + ®𝐹𝑐,𝑖 = 𝑚 ¥®𝑟foil,𝑖, (2.175)

where ®𝑟foil is the position of the center of mass for the foil, ®𝑁 is the circulatory normal force, ®𝐴
is the added mass force, ®𝐺 is gravitational force, ®𝐵 is buoyancy force and ®𝐹𝑐 is the constraint
force acting from the vehicle to the foil. The propulsion forces from the foils are of interest
in the forward direction of the USV. The forward-component of Eq. (2.175) when the vehicle
pitches with angle \, is

(𝑁𝑖 + 𝐴𝑖) sin(\ + 𝜗𝑖) + 𝑋c = 𝑚 ¥𝑥foil,𝑖 ≃ 0, (2.176)

where the acceleration is negligible at approximately constant forward speed. From Newton’s
third law of motion, the foil acts on the vehicle with the quasi-steady constraint force −𝑋𝑐,𝑖

−𝑋𝑐,𝑖 = 𝑋foil,𝑖 = (𝑁𝑖 + 𝐴𝑖) sin(\ + 𝜗𝑖).

Inspired by the literature in rudder theory, the foil propulsion force in surge, sway and yaw is

𝝉foil,𝑖 =
©«
(𝑁𝑖 + 𝐴𝑖) (1 − 𝑡F,𝑖) sin(\ + 𝜗𝑖)

0
0

ª®¬ , (2.177)

where the parameter 𝑡F is introduced as a resistance factor incorporating added resistance due
to deflection in the foil angle. In rudder theory, this resistance factor is in the order of 𝑡F = 0.2.

Total foil propulsion force

The total propulsion force from all of the foils present on the wave-propelled USV can be found
by summing the contributions from each foil in Eq. (2.177) such that

𝝉foil =

#foils∑︁
𝑖=1

©«
(𝑁𝑖 + 𝐴𝑖) (1 − 𝑡F,𝑖) sin(\ + 𝜗𝑖)

0
0

ª®¬ . (2.178)

Remark 79. If a foil wing is separated such that the each half-span is free to rotate, the foil can
be modeled as a single wing since this configuration mainly affects the roll damping.
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2.7 Rudder theory
Rudders are vertical control surfaces that produces a steering moment on a marine craft, usually
placed at the stern of the vehicle as illustrated in Fig. 2.28. This enables the control of the
vehicle’s course through water. Experimental values can be found in Fujii et al. [57] and empiric
formulae in Kĳima et al. [63]. An overview of common models is presented in the chapter
“Control Forces and Moments” in the marine craft handbook of Fossen [4]. The article from
Liu et al. [64] discuss the impact of the rudder profile on maneuvering characteristics. In the
following, the rudder profile is not considered.

In the case of wave-propelled USVs, the rudder is the main control input to steer the vehicle,
since the foils mounted underneath or by the side of the hull is passively controlled by springs.

𝑦𝑏

𝑧𝑏

𝑥𝑏

𝑈R

𝛿R

Figure 2.28: Typical rudder position and the rudder control angle 𝛿R.

The rudder is a foil under the assumptions in thin foil theory, see Sect. 2.6. It will experience
both circulatory and non-circulatory forces with the rudder inflow velocity 𝑈R. However, it is
common to only regard the quasi-steady normal force, commonly expressed as

𝐹NR =
1
2
𝜌𝑈2

R𝐴R𝐶N(ΛR) sin(𝛼R), (2.179)

where 𝐴R is the area of the rudder, the coefficient 𝐶N(ΛR) is the force slope incorporating
three-dimensional effects, ΛR is the rudder aspect ratio and 𝛼R is the effective rudder angle [4].
The rudder coefficient 𝐶N equals

𝐶N(Λ) = 2𝜋 · 𝐶Fujii
3D (Λ) =

6.13Λ
Λ + 2.25

. (2.180)

The convention is that the rudder angle 𝛿 is defined according to:

Definition 27. (Rudder angle)
A positive rudder angle 𝛿 results in a positive turning rate.

Remark 80. Per Definition 27, the actual rudder angle 𝛿R, illustrated in Fig. 2.28, is 𝛿R ≡ −𝛿.
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The following definition for the effective rudder angle can be made:

Definition 28. (Effective rudder angle)
The angle 𝛼R from the rudder velocity inflow 𝑈R to the rudder chord line, in direction from

the trailing edge to the leading edge of the rudder, positive rotation about 𝑧𝑏-direction, by the
right-hand screw convention.

Assumptions about the rudder inflow is made:

Assumption 16. The rudder inflow is assumed equal to the relative velocity.

Remark 81. From Remark 80, Definition 28 and Assumption 16, when the rudder is attached
with rudder angle 𝛿 and the mean relative rudder inflow is U𝑏 = [𝑢r, 𝑣r, 𝑤r]⊤, the effective
rudder angle is

𝛼R = 𝛿 − arctan(𝑣r, 𝑢r) = −𝛿R − arctan(𝑣r, 𝑢r). (2.181)

The rudder force and moments in surge, sway and yaw present on a wave-propelled USV
can be expressed by

𝝉rudder =
©«

𝐹NR(1 − 𝑡R) sin(𝛿R)
𝐹NR(1 + 𝑎H) cos(𝛿R)

𝐹NR sin(𝛼R) (𝑥R + 𝑎H𝑥H) cos(𝛿R)
ª®¬ , (2.182)

where 𝑡R represents a coefficient for additional drag, 𝑥R is the longitudinal coordinate of the
rudder, 𝑎H is a rudder force increase factor and 𝑥H is the longitudinal coordinate of the additional
force [4]. According to Kĳima et al. [63], the coefficient for additional drag can be approximated
according to the method proposed by Matsumoto and Suemitsu [65] with

𝑡R = 0.45 − 0.28𝐶B, (2.183)

where 𝐶B is the USV block coefficient and the non-dimensional interaction force coefficients
𝑎H and 𝑥′H is determined according to Fig. 2.29. A rough estimate was found by the author as

𝑎TUFTE
H ≃ −0.7 + 1.8𝐶B, 𝐶B ∈ [0.5, 0.8], 𝑥′H

TUFTE ≃ −5.9 + 7.0𝐶B, 𝐶B ∈ [0.6, 0.8] .
(2.184)

Figure 2.29: Interaction force coefficients 𝑎H and 𝑥H where 𝑥′H = 𝑥H/𝐿pp.
Facsimile from Kĳima et al. [63]
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Chapter 3

Method to model wave-propelled USVs

This chapter describes the developed and proposed method of describing the motion of wave-
propelled USVs based on the background theory presented in Chapter 2. The work is based
on describing the mean position with a maneuvering model at low frequency (𝜔 = 0) and a
seakeeping model for wave-induced motions (𝜔 = 𝜔e). A unified time-domain architecture is
presented in Sect. 3.1, where the foils are excited by the wave-induced motions. The architecture
is presented to comply with more advanced control methods for later investigations.

Fig. 3.1 illustrates the wave-propelled USV AutoNaut on a field trip in Trondheim Fjord.
This USV is a case study explored in Chapter 4. The next sections will however describe the
general model which should be applicable for a wide range of wave-propelled USVs.

Figure 3.1: Example of a wave-propelled USV in near calm sea. The body frame
(denoted by white arrows) follows the wave-induced motion of the USV – the
seakeeping motion – where the mean position is given by the maneuvering model.
The dominating forces by the sea waves can be approximated by a single wave-
component (dashed orange lines) with a wave-direction (black arrow).
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An overall tuned model of a wave-propelled USV may be expressed by the model Σ by a
parameter vector 𝜶, illustrated in Fig. 3.2. The model is a frequency-dependent linear mass-
damper-spring system with nonlinear forces which is the function

Σ(𝜶)
��
𝜶=𝜶∗ : X→ X

{
motion of wave-propelled USV given an environmental state E .

(3.1)

Here, the setX denotes the set of state-space configuration of the wave-propelled USV, including
both general positions and velocities of the vehicle body and foils. For sufficient performance,
the parameters 𝜶 is optimized to 𝜶∗ ∈ H𝛼 according to a scalar objective function

𝜶∗ = arg min
𝜶∈H𝛼

𝑓 (𝜶), (optimization problem) (3.2)

where the parameters are assumed bounded in the predetermined set H𝜶. This is the validation
part of the model. The next section shows how the model given by Eq. (3.1) and Fig. 3.2 can be
separated into three separate sub-parts using a unified architecture.

Wave-propelled USV model Σ
by parameters 𝜶 ∈ H𝛼

Wind,
current,
waves

Forces

E:

Nonlinear terms:
Coriolis,
viscous damping,
fluid memory,
foil dynamics

Linear mass-damper-spring
with memory effects (𝜔 ≥ 0)

Path
reference

Steering
control

USV motion

USV configuration in X

Figure 3.2: Overall wave-propelled USV model is denoted by Σ and the model
parameters is given by the vector 𝜶. The model is a frequency-dependent lin-
ear mass-damper-spring system with nonlinear forces including Coriolis, viscous
damping, fluid memory effects and unsteady effects in the foil dynamics. The
environmental state is given by the set E, which includes wind, current and waves.
The model can furthermore be simulated by a steering controller in order for the
USV to follow a desired path.
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3.1 Overview of model
The proposed model is a unified state-space model in which the maneuvering part and seakeeping
part is decoupled from what might be interpreted in Fig. 3.2. The decoupled system is given
in Fig. 3.3, which propose to use a superposition of a maneuvering model Σ1 and a seakeeping
model Σ2. In addition, the foil propulsion system Σ3 is excited by the joint USV seakeeping
motion. The unified model (enclosed by dashed lines in Fig. 3.3) is inspired by the unified state-
space model presented by Fossen [39]. The different sub-parts of the model will be described
shortly in the next sections. Before the parts are elaborated, a couple of remarks follow.

Wave foil
propulsion

Maneuvering model Σ1 (low frequency motion)
by parameters 𝜶1

Wind,
current,
wave drift

Nonlinear terms:
Coriolis,
viscous damping

Linear mass-damper
with hyd. derivatives (𝜔 = 0)

Wave
encounter

Seakeeping model Σ2 (RAOs incl. foil viscous damping)
by parameters 𝜶2

Waves

USV seakeeping
motion

Path
reference Forces

Linear mass-damper-spring
with memory effects (𝜔 ≥ 0)

Fluid memory effects:
transfer function

Force
transfer
function

Unified model

Reference frame
correction

Steering
control, rudder

USV maneuvering
motion

Current,
waves

Propulsion model Σ3 (foils excited by USV motion)
by parameters 𝜶3

Foil motion

Linear mass-damper-spring
with constrained motion

Unsteady effects:
Circulatory forces
transfer function

Non-circulatory,
inertia and
spring forces

Figure 3.3: Proposed linear superposition of maneuvering model and wave fre-
quency model with foil propulsion. Architecture inspired by Fossen [39].
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Remark 82. Physical system is conveniently described by an energy-flow description. However,
the proposed method illustrated in Fig. 3.3 has an architecture based on the signal-flow formu-
lation. The signal flows in the direction of the arrow, such that the description has unilateral
interconnections. Definitions of flow systems can be found in Egeland and Gravdahl [30].

Remark 83. In a simplified form, the proposed model can be described by a cascade architecture
of block-models Σ1–Σ3, see Fig. 3.4.

Σ1 Σ2 Σ3

Figure 3.4: By the proposed model architecture, wave-propelled USVs may be
described by a cascade system as a simplification from Fig. 3.3. A maneuvering
model Σ1 determines the encountered wave direction 𝛽 and wave encounter fre-
quency 𝜔e, which drives the wave-induced motion in model Σ2 (including viscous
foil damping). The joint motion of Σ1 and Σ2 excites the motion of foils in model
Σ3, which causes a wave-propelled thrust fed back to the maneuvering model Σ1.

The benefits of the developed model architecture is that

1. the governing equations is written with closed-form semi-empiric expressions,

2. non-dimensional expressions is identified to describe a general wave-propelled USV,

3. the equations can be simulated in time-domain supporting further time-domain analysis,

4. the computational cost is reduced in the models by finding and utilizing optimal transfer
functions based on non-dimensional expressions.
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3.2 Maneuvering model in surge, sway and yaw
The maneuvering model is a mass-damper system driven by the Coriolis and centripetal forces
and viscous damping shown in Fig. 3.3. The vehicle maneuvering model is denoted as Σ1 and
the vector 𝜶1 the parameters in this model.

The mean position of the wave-propelled USV can solely be described by the slow motion
dynamics with hydrodynamic derivatives given in Sects. 2.5.1 and 2.4.4 at motion components

𝝂slow motion ≃ [𝑢, 𝑣, 0, 0, 0, 𝑟]⊤. (3.3)

Here, the forces acting on the degrees of freedom {1, 2, 6} is second-order forces identified in
Sect. 2.4.1. A great analogy for this model is a box sliding on top of a flat surface as illustrated
in Fig. 3.5. The box is only able to move with a forward speed 𝑢, sideways speed 𝑣 and a yaw
rate 𝑟.

Figure 3.5: Maneuvering model as a “box-on-a-table” analogy. The vehicle may
slide along a manifold (with friction) given by a flat surface with 3 degrees of
freedom for motion given by the arrows. The frame attached to this body is the
seakeeping frame since the actual vehicle body oscillates around this frame.

From the equations of motion given in Sect. 2.2.3 and inspired by Fossen [4], a 3 DOF
dynamical model for the horizontal-plane motion is expressed. Let the position and cardinal
heading in this context be denoted by the vector 𝜼 ≜ [𝑥𝑛, 𝑦𝑛, 𝜓]⊤ such that the model Σ1 is

¤𝜼 = R𝑛
𝑠 (𝜓)𝝂,

M ¤𝝂r + C(𝝂r)𝝂r + [B𝑝 + B𝑣 (𝝂r)]𝝂r = 𝝉wind + 𝝉wave2 + 𝝉foil + 𝝉rudd.
(3.4)

Here, 𝝂 = 𝝂r + 𝝂c ≜ [𝑢, 𝑣, 𝑟]⊤ is the body velocity, 𝝂c = [𝑢𝑐, 𝑣𝑐, 0]⊤ is the sea current, 𝝂r is the
relative motion through the water, M is the mass matrix including zero-frequency hydrodynamic
added mass MA(0), C is the Coriolis and centripetal matrix for relative velocities, B𝑝 is the
linear damping matrix, B𝑣 is viscous damping matrix and 𝝉(𝑡) ≜ [𝑋2(𝑡), 𝑌2(𝑡), 𝑁2(𝑡)]

⊤ denotes
second-order body forces and moments in degrees of freedom {1, 2, 6} caused by wind, waves,
foil propulsion system and steering control from rudder, respectively. The rotation matrix is an
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active rotation from NED to the seakeeping frame {𝑠} following the rotation R𝑧 in Sect. 2.2.1 as

R𝑛
𝑠 (𝜓) =

©«
cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

ª®¬ . (3.5)

Maneuvering model matrices

It is common to decouple the surge dynamics from the sway-yaw system since the surge motion
has no effect on the transverse motion of the vehicle under linear theory [44]. The mass matrix
including added mass terms written in terms of Bailey et al. [40] and SNAME notation [29], see
Sect. 2.4.4, is according to Fossen [4]

M ≜ ©«
𝑀11 0 0

0 𝑀22 𝑀26
0 𝑀62 𝑀66

ª®¬ =
©«
𝑚 − 𝑋 ¤𝑢 0 0

0 𝑚 − 𝑌¤𝑣 𝑚𝑥g − 𝑌¤𝑟
0 𝑚𝑥g − 𝑁 ¤𝑣 𝐽𝑧 − 𝑁 ¤𝑟

ª®¬ . (3.6)

The linear damping matrix is

B𝑝 ≜
©«
𝐵11𝑝 0 0

0 𝐵22𝑝 𝐵26𝑝
0 𝐵62𝑝 𝐵66𝑝

ª®¬ = − ©«
𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟
0 𝑁𝑣 𝑁𝑟

ª®¬ , (3.7)

and the viscous damping is for simplicity taken as a diagonal matrix as

B𝑣 (𝝂r) ≜ ©«
𝐵11𝑣 |𝑢𝑟 | 0 0

0 𝐵22𝑣 |𝑣𝑟 | 0
0 0 𝐵66𝑣 |𝑟 |

ª®¬ = − ©«
𝑋|𝑢 |𝑢 |𝑢𝑟 | 0 0

0 𝑌|𝑣 |𝑣 |𝑣𝑟 | 0
0 0 𝑁 |𝑟 |𝑟 |𝑟 |

ª®¬ . (3.8)

The Coriolis and centripetal matrix is calculated is

C(𝝂r) ≜ ©«
0 −𝑚𝑟 −𝑚𝑥𝑔𝑟 + 𝑌¤𝑣𝑣r + 𝑌¤𝑟𝑟
𝑚𝑟 0 −𝑋 ¤𝑢𝑢r

𝑚𝑥𝑔𝑟 − 𝑌¤𝑣𝑣r − 𝑌¤𝑟𝑟 𝑋 ¤𝑢𝑢r 0

ª®¬ . (3.9)

In the matrices, 𝑚 is the vehicle mass, 𝐽𝑧 is the moment of inertia in yaw and 𝑥𝑔 is the
longitudinal position of the center of gravity.

Remark 84. According to Fossen [4]: “It is recommended to use different damping models
depending on the regime of control system. In many cases, it is important to include both linear
and quadratic damping, since only quadratic damping will cause oscillatory behavior at low
speed. The main reason is that linear damping is needed for exponential convergence to zero.
For marine craft operating in waves, linear damping will always be present due to potential
damping and linear skin friction.”

Quadratic damping with an exponential blend from linear term can be added on the form

𝐵 ∼ 0.5𝑢 · e−0.5𝑢2 + 0.05|𝑢 |𝑢, (Blending function for damping) (3.10)

where 𝑢 is the velocity.
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Maneuvering forces and moments

The forces and moments considered in the maneuvering model is the forces and moments
identified in Sect. 2.4.2 for degrees of freedom {1, 2, 6}. The wind force model is described by
Eq. (2.76) and the simplification from Remark 30 is utilized to express the wind model

𝝉wind ≜
©«
𝑋wind
𝑌wind
𝑁wind

ª®¬ =
1
2
𝜌a(𝑢2

rw + 𝑣2
rw)

©«
−𝑐𝑥 cos(𝛾rw)𝐴Fw

𝑐𝑦 sin(𝛾rw)𝐴Lw

𝑐𝑛 sin(𝛾rw)𝐴Lw𝐿oa

ª®¬ , (wind forces) (3.11)

where the tuning parameters are the wind coefficients 𝑐𝑥 , 𝑐𝑦, 𝑐𝑛 and the relative wind speed is
𝑉rw =

√︁
𝑢2

rw + 𝑣2
rw.

The steering forces and moments from the rudder was given in Sect. 2.7. The vector is

𝝉rudd ≜
©«
𝑋rudd
𝑌rudd
𝑁rudd

ª®¬ = 𝐹NR(𝛼R) ©«
−(1 − 𝑡R) sin(𝛿R)
−(1 + 𝑎H) cos(𝛿R)

− sin(𝛼R) (𝑥R + 𝑎HR𝑥HR) cos(𝛿R)
ª®¬ , (steering model) (3.12)

where the rudder normal force 𝐹NR(𝛼R) was given by Eq. (2.179), the added resistance is 𝑡R and
the interaction force parameters are 𝑥HR and 𝑎HR.

The foil propulsion force is an input from model Σ3 shown in Fig. 3.3. The force is only
considered in the forward direction, and the developed and proposed model of the foils was
derived in Sect. 2.6.6 as

𝝉foil ≜
©«
𝑋foil
𝑌foil
𝑁foil

ª®¬ =

#foils∑︁
𝑖=1

©«
(𝐹NF,𝑖 + 𝐴F,𝑖) (1 − 𝑡F,𝑖) sin(\ + 𝜗𝑖)

0
0

ª®¬ , (foil propulsion) (3.13)

where the foil normal force 𝐹NF is found from the normal force coefficient in Eq. (2.131)
applied to the unsteady lift and drag forces in Eq. (2.164), the added mass force is described
by Eq. (2.154), the resistance parameter 𝑡F,𝑖 should be tuned for each foil number 𝑖, pitch \ is
described in the wave-induced model Σ2 and the foil angle 𝜗𝑖 is found through the model Σ3.

For simplicity, the second-order wave forces is set directly to zero

𝝉wave2 ≜
©«
𝑋wave2
𝑌wave2
𝑁wave2

ª®¬ =
©«
0
0
0

ª®¬ , (wave drift forces) (3.14)

which is a constant estimate for the slow drift wave forces.
Remark 85. If one would like to add second-order wave-drift forces into the simulation to test
advanced steering control algorithms, a stable Gauss-Markov process can be implemented to
obtain a zero-mean random walk process

¤𝝉wave2 = −_wave2𝝉wave2 + wwave2, (3.15a)
(3.15b)

where 𝒘wave2 ∈ R3 is a zero-mean Gaussian white noise process and _wave2 > 0.
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3.2.1 Parameters in the maneuvering model
Some of the parameters in the maneuvering model Σ1 can be measured on the wave-propelled
USV, while other parameters cannot be measured directly. The nontrivial parameters needed to
describe the maneuvering model might be to naively estimate all the hydrodynamic codes

{𝑋 ¤𝑢, 𝑌¤𝑣, 𝑁 ¤𝑟 , 𝑌¤𝑟 , 𝑁 ¤𝑣}︸                  ︷︷                  ︸
added mass derivatives

, {𝑋𝑢, 𝑌𝑣, 𝑁𝑟 , 𝑌𝑟 , 𝑁𝑣}︸                  ︷︷                  ︸
linear damping derivatives

, {𝑋|𝑢 |𝑢, 𝑌|𝑣 |𝑣, 𝑁 |𝑟 |𝑟}︸                ︷︷                ︸
viscous damping

,

together with the force parameters

{𝑐𝑥 , 𝑐𝑦, 𝑐𝑛}︸       ︷︷       ︸
wind coefficients

, {𝑡R, 𝑥HR, 𝑎HR}︸            ︷︷            ︸
steering parameters

, {𝑡F,𝑖}︸︷︷︸
propulsion parameter

.

This leads to a high number of parameters needed to “tune” the model. A better alternative
is to estimate the force parameters directly and formulate an optimization problem for the
hydrodynamic derivatives implicitly, using empiric formulae found in the literature. The force
parameters can be estimated by:

• Added resistance parameter for rudder, 𝑡R is estimated by the empiric method by Mat-
sumoto and Suemitsu [65] recited in Eq. (2.183).

• Interaction force parameters 𝑥HR and 𝑎HR is estimated by the graphical method by Kĳima
et al. [63] by Fig. 2.29 or from this author’s proposed empirical formulae by Eq. (2.184).

• Wind coefficient parameters is estimated in a range suggested by Fossen, pp. 265 [4] as

𝑐𝑥 ∈ [0.50, 0.90], 𝑐𝑦 ∈ [0.70, 0.95], 𝑐𝑛 ∈ [0.05, 0.20] . (3.16)

It should be noted that these parameters has been estimated on a case-study on a 5
meter long version of the wave-propelled USV AutoNaut by using the lower limit in
Eq. (3.16) [3]. There was no explanation given for this choice. However, this might
be reasonable since wave-propelled USVs are small in size, often encompassed as a
streamlined body. The following values might thus serve as a rough estimate for the wind
coefficients

𝑐𝑥 ≃ 0.50, 𝑐𝑦 ≃ 0.70, 𝑐𝑛 ≃ 0.05. (3.17)

• Added resistance parameter for the foils, 𝑡F,𝑖 is estimated in the range similar to that found
in the rudder literature [57] such that

𝑡F ∈ [0.1, 0.3],

which is equivalent to a direct 10–30 % energy loss from the horizontal force components
from the foils into propulsive thrust of the vehicle body.
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Estimating hydrodynamic codes from empiric formulae

The hydrodynamic codes can be estimated by the method proposed by Clarke et al. [44] which
used a data-driven method to estimate empiric formulae for the lateral hydrodynamic codes
of a ship’s maneuvering model. Here, the Prime normalization system, which was defined in
Sect. 2.1.1, is employed.

The added mass matrix for the 3 DOF maneuvering model expressed with hydrodynamic
derivatives written with Prime normalization according to Tab. 2.2 is

MA = − ©«
𝑋 ¤𝑢 0 0
0 𝑌¤𝑣 𝑌¤𝑟
0 𝑁 ¤𝑣 𝑁 ¤𝑟

ª®¬ = − ©«
1
2𝜌𝐿

3𝑋′¤𝑢 0 0
0 1

2𝜌𝐿
3𝑌 ′¤𝑣

1
2𝜌𝐿

4𝑌 ′¤𝑟
0 1

2𝜌𝐿
4𝑁′¤𝑣

1
2𝜌𝐿

5𝑁′¤𝑟

ª®¬ , (3.18)

and the damping matrix is, for a forward speed 𝑢, readily

B𝑝 = − ©«
𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟
0 𝑁𝑣 𝑁𝑟

ª®¬ = − ©«
1
2𝜌𝐿

2𝑢𝑋′𝑢 0 0
0 1

2𝜌𝐿
2𝑢𝑌 ′𝑣

1
2𝜌𝐿

3𝑢𝑌 ′𝑟
0 1

2𝜌𝐿
3𝑢𝑁′𝑣

1
2𝜌𝐿

4𝑢𝑁′𝑟

ª®¬ . (3.19)

The hydrodynamic codes for the lateral maneuvering dynamics found in [44] is recited in
Tab. 3.2 together with crude strip theory approximations from Journée 1992 [41]. If one knows
the actual block coefficient 𝐶B, the hydrodynamic codes can be estimated by a set of main
particulars {𝐿d, 𝐵d, 𝑇d} ∈ {[0, 2𝐿], [0, 2𝐵], [0, 2𝑇]} ⊂ H𝛼,1,1 such that

{𝑌¤𝑣, 𝑁 ¤𝑟 , 𝑌¤𝑟 , 𝑁 ¤𝑣, 𝑌𝑣, 𝑁𝑟 , 𝑌𝑟 , 𝑁𝑣}∗ = empiric formulae from {𝐿d, 𝐵d, 𝑇d} in Tab. 3.2, (3.20a)
{𝐿d, 𝐵d, 𝑇d} = arg min

{𝐿d,𝐵d,𝑇d}∈H𝛼1,1

𝑓1,1({𝐿d, 𝐵d, 𝑇d}). (3.20b)

Here, the objective function 𝑓1,1({𝐿d, 𝐵d, 𝑇d}) should be a measure of how well the simulation
model Σ1 fits with experimentally obtained data, for instance by a “tow-and-release”-test.

Table 3.1: Lower and upper bounds for the fitting parameters 𝜶1 corresponding
to the set H𝛼,1 for the maneuvering model Σ1.

Element Parameter Bounds
𝜶1 [1] 𝐿d length of maneuvering design model [0, 2𝐿]
𝜶1 [2] 𝐵d breadth of maneuvering design model [0, 2𝐵]
𝜶1 [3] 𝑇d draft of maneuvering design model [0, 2𝑇]
𝜶1 [4] 𝑇1 surge period [0, 50] [s]
𝜶1 [5] 𝑇2 sway period [0, 10] [s]
𝜶1 [6] 𝑇6 yaw period [0, 10] [s]

Remark 86. The eight hydrodynamic derivatives above can be found by only adjusting three
design parameters {𝐿d, 𝐵d, 𝑇d}.
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Remark 87. One disadvantage with the method proposed above is that a forward operating
speed 𝑢 is needed. The linear derivatives can instead be estimated by time periods 𝐵𝑖𝑖 = 𝑀𝑖𝑖/𝑇𝑖.

Table 3.2: Empirical formulae for acceleration and velocity derivatives in the
maneuvering model. From Clarke et al. [44].

Prime derivative Crude strip theory Data-driven optimization
−𝑌 ′¤𝑣/𝜋

(
𝑇
𝐿

)2 1 1 + 0.16𝐶B
𝐵
𝑇
− 5.1

(
𝐵
𝐿

)2

−𝑌 ′¤𝑟/𝜋
(
𝑇
𝐿

)2 0 0.67𝐵
𝐿
− 0.0033

(
𝐵
𝑇

)2

−𝑁′¤𝑣/𝜋
(
𝑇
𝐿

)2 0 1.1𝐵
𝐿
− 0.41𝐵

𝑇

−𝑁′¤𝑟/𝜋
(
𝑇
𝐿

)2 1
12

1
12 + 0.017𝐶B

𝐵
𝑇
− 0.33𝐵

𝐿

−𝑌 ′𝑣/𝜋
(
𝑇
𝐿

)2 1 1 + 0.40𝐶B
𝐵
𝑇

−𝑌 ′𝑟/𝜋
(
𝑇
𝐿

)2 −1
2 −0.5 + 2.2𝐵

𝐿
− 0.080𝐵

𝑇

−𝑁′𝑣/𝜋
(
𝑇
𝐿

)2 1
2 0.5 + 2.4𝑇

𝐿

−𝑁′𝑟/𝜋
(
𝑇
𝐿

)2 1
4 0.25 + 0.039𝐵

𝑇
− 0.56𝐵

𝐿

In the case that a forward operating speed is unknown or perhaps zero for a wave-propelled
USV, the linear damping can be estimated by the linear time periods 𝑇𝑖 for 𝑖 = {1, 2, 6} for the
diagonal elements. Comparing with the damping matrix with Prime normalization in Eq. (3.19),
the diagonal as well as off-diagonal elements in the linear damping matrix Bp is proposed to be
estimated by

B𝑝 = − ©«
𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟
0 𝑁𝑣 𝑁𝑟

ª®¬ =
©«
𝑀11/𝑇1 0 0

0 𝑀22/𝑇2 𝐿 · (𝑀22/𝑇2) (𝑌 ′𝑟/𝑌 ′𝑣)
0 𝐿 · (𝑀22/𝑇2) (𝑁′𝑣/𝑌 ′𝑣) 𝑀66/𝑇6

ª®¬ . (3.21)

Here, 𝑀𝑖𝑖 is the diagonal mass elements from Eq. (3.6), 𝑇𝑖 is the linear time period and the prime
normalized ratios (𝑁′𝑣/𝑌 ′𝑣) and (𝑌 ′𝑟/𝑌 ′𝑣) is found from Tab. 3.2.

With the above estimation of linear dampingAn approximation for the surge added mass was
found in Brix 1993 [66] on the form

𝑋 ¤𝑢 =
𝑚

𝜋

√︃
𝐿3

∇ − 14
, (3.22)

where care should be considered when using this approximation on small USVs.

Tuning parameters

The maneuvering model can be described by the parameter vector

𝜶1 ≜ {𝐿d, 𝐵d, 𝑇d, 𝑇1, 𝑇2, 𝑇6},

and the optimization problem
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𝜶∗1 = arg min
𝜶1∈H𝛼,1

𝑓 (𝜶1). (3.23)

Remark 88. It is left as a future work to determine an appropriate objective function for
Eq. (3.23).

3.2.2 Wave encounter frequency
When the vehicles moves, the relative encounter speed between the surface waves and the vehicle
should be considered in order to proceed with seakeeping models. The appropriate method is
to utilize the wave encounter frequency 𝜔e found by a proper Doppler-shift calculated from the
speed of the vehicle𝑈 =

√
𝑢2 + 𝑣2 and the encounter angle 𝛽 as

𝜔e = |𝜔 − 𝑘𝑈 cos(𝛽) | =
����𝜔 − 𝜔2

𝑔

√︁
𝑢2 + 𝑣2 cos(𝛽)

���� , (wave encounter frequency) (3.24)

where the deep water relationship is utilized from Sect. 2.3.3. The absolute value is needed in
the general case if the speed of the vehicle exceeds the phase velocity of the waves [4].

The wave encounter frequency can also be defined by the non-dimensional number 𝛼 with

𝛼 : 𝜔e ≡ 𝛼𝜔, (3.25)

which will be used in the response amplitude operators in Sect. 3.3. The following remark
relates the parameter 𝛼 to the Froude number, wave number 𝑘 and the wave encounter angle 𝛽:

Remark 89. Given the Froude number Fn = 𝑈/
√
𝑔𝐿 defined in Eq. (2.32) and the Doppler shift

in Eq. (3.24), the parameter 𝛼, as defined in Eq. (3.25), is found to be

𝛼 ≜
���1 − Fn

√
𝑘𝐿 cos(𝛽)

��� . (3.26)
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3.3 Wave induced motion in heave, pitch and roll
Wave-induced perturbations, commonly denoted by 𝝃 in the seakeeping coordinates {𝑠}, is
often modeled as a linear mass-damper-spring system with frequency-dependent terms which
was shown in Sect. 2.5.1 [4]. In Fig. 3.3 the wave-induced model is denoted as Σ2. The model is
driven by wave elevation at the encounter frequency 𝜔e found from the Doppler shift calculated
from Eq. (3.24), which is found by the mean USV motion from model Σ1 given by Eq. (3.4).
The degrees of freedom for the wave-induced perturbations considered in this work is heave,
roll and pitch motion

𝛿𝝂wave frequency motion ≃ [0, 0, 𝑤, 𝑝, 𝑞, 0]⊤. (3.27)

The overall USV motion can be found by adding the slow motion components from Eq. (3.3)
and the wave frequency components from Eq. (3.27). A physical analogy for the wave-induced
motions is illustrated in Fig. 3.6.

heave

roll pitch

Figure 3.6: Wave-induced motion can be interpreted as a linear spring-damper-
system in the degrees of freedom heave, roll and pitch. Here, the motion is
illustrated with a rigid frame with both linear and torsion springs. The motions
can be interpreted somewhat decoupled.

Denote in this context the 3 DOF coordinates in heave, roll and pitch as 𝝃 ≜ [𝑧𝑛, 𝜙, \]⊤.
The wave-induced motion for a general wave-propelled USV will be shown in this section to be
described by the model

Mrao(∞) ¥𝝃 + Brao(∞) ¤𝝃 + 𝝁r + Crao𝝃 = 𝝉wave1,

¤x = Arxr + Br ¤𝝃,
𝝁r = Crxr,

(3.28)

which incorporates a state-space approximation for the fluid memory effects 𝝁r as described
in Sect. 2.5.3. Here, the mass matrix including added mass is Mrao(𝜔), the linear and viscous
damping matrix is Brao(𝜔) and the linear restoring matrix is Crao. Since this theory is linear,
there is no Coriolis and centripetal matrix. The matrices Ar, Br, Cr represents a state-space
approximation of the fluid memory effects. The equations of motion for Eq. (3.28) in the
frequency domain is
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Mrao ¥𝝃 + Brao(𝜔) ¤𝝃 + Crao𝝃 = 𝝉wave1. (3.29)

The response amplitude operator from wave elevation to wave-induced motion in heave, roll
and pitch for a wave-propelled USV is hard or perhaps impossible to predict analytically in the
general case. This is due to the presence of foils causing added mass and viscous damping.
Also, if numerical methods is used, foils need to be added if the response amplitude operators
(RAOs) is to be found by a numerical program, e.g. WAMIT.

Semi-empirical RAOs from monohull geometry

In this work approximations for the seakeeping model is found via monohull geometries accord-
ing to the method proposed by Jensen et al. [25]. Furthermore, the data-driven method proposed
by Mounet et al. [67] is used to determine the parameters for the monohull geometries based
on operational data in . A sketch of the simplified geometries is illustrated in Fig. 3.7 and the
main particulars for the simplified geometry is denoted with a tilde notation, e.g. �̃�, �̃�, 𝑇 . The
models should provide sufficient engineering accuracy to simulate the wave-induced motions
for a wave-propelled USV. In the following, the tilde notation is dropped until

(b) Heave and pitch,
simple monohull geometry

(b) Roll model,
altered monohull geometry

(a) Wave-propelled USV,
actual geometry

Figure 3.7: Simplified monohull geometries used to describe seakeeping motions.
Heave and pitch dynamics is captured by the model of a rectangular box, whereas
roll motion is described by a slightly more complex shape. Monohull geometries
inspired by Jensen et al. [25].

According to Jensen [23], heave and pitch motion is coupled and driven by the amplitude of
the encountered wave elevation Za cos(𝜔e𝑡). Here, the wave encounter frequency𝜔e is calculated
from the Doppler shift in Eq. (3.24). The coupled motion is, according to Jensen, in a regular
wave encounter frequency 𝜔e, wave number 𝑘 , wave amplitude Za and wave direction 𝛽

𝑀33 ¥𝑧𝑛 + 𝐵33(𝜔e) ¤𝑧𝑛 + 𝐶33𝑧
𝑛 + 𝐵35 ¤\ + 𝐶35\ = 𝑍0(𝑘, 𝛽)Za cos(𝜔e𝑡) − 𝑍 ¤𝑤 (𝜔e) ¤𝑤, (3.30a)

𝑀55 ¥\ + 𝐵55(𝜔e) ¤\ + 𝐶55\ + 𝐵53 ¤𝑧𝑛 + 𝐶53𝑧
𝑛 = 𝑀0(𝑘, 𝛽)Za sin(𝜔e𝑡) − 𝑀 ¤𝑞 (𝜔e) ¤𝑞. (3.30b)

Here, 𝑀𝑖𝑖 is the mass elements, 𝐵𝑖 𝑗 is the damping in DOF 𝑖 caused by motion in DOF 𝑗 and
𝑍0 = 𝑍0(𝑘, 𝛽) and 𝑀0 = 𝑀0(𝑘, 𝛽) is the forcing functions found in the block “Force transfer
function” in Fig. 3.3 which is driven by wave elevations Za cos(𝜔e𝑡) and Za sin(𝜔e𝑡) respectively.
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The roll motion is decoupled from the other motions and from the altered monohull geometry
in Fig. 3.7 on the form

𝑀44 ¥𝜙 + 𝐵44(𝜔e) ¤𝜙 + 𝐶44𝜙 = 𝐾0(𝑘, 𝛽)Za cos(𝜔e + 𝜖𝜙), (3.31)

where 𝐾0 = 𝐾0(𝑘, 𝛽) is the forcing function from wave elevation with the phase 𝜖𝜙.
The frequency response in heave and pitch can be derived analytically on a homogeneously

loaded box-shaped vessel by using strip theory methods discussed in Sect. 2.4.5. According
to Jensen et al. [25], one can decouple Eqs. (3.30a) and (3.30b) to simplify the analysis. By
enforcing these motions as a separate harmonic oscillator with common relative damping ratio
and natural frequency, Jensen et. al showed how heave and pitch can be expressed by neglecting
coupling terms and assuming a constant sectional added mass equal to the displaced water.
Written in terms of coordinates defined in Sect. 2.1.2, the dynamics of heave and pitch are

2
𝑘𝑇

𝜔2 ¥𝑧
𝑛 + 𝐴(𝜔e)2

𝑘𝐵𝛼3𝜔
¤𝑧𝑛 + 𝑧𝑛 = 𝑍0(𝑘, 𝛽)

𝐶33
Z𝑎 cos(𝜔e𝑡), (3.32a)

2
𝑘𝑇

𝜔2
¥\ + 𝐴(𝜔e)2

𝑘𝐵𝛼3𝜔
¤\ + \ = 𝑀0(𝑘, 𝛽)

𝐶55
Z𝑎 sin(𝜔e𝑡). (3.32b)

Here, the wave number is 𝑘 , the ratio between wave encounter frequency and the wave frequency
is defined by the parameter 𝛼 from Eq. (3.25) and the sectional hydrodynamic damping is
modelled by the ratio of incoming and diffracted waves through the following approximation

𝐴 ≜ 2 sin
(
1
2
𝑘𝐵𝛼2

)
exp

(
−𝑘𝑇𝛼2

)
, (3.33)

where 𝐵 is the breadth of the monohull box and 𝑇 is the draft of the box.
The sectional hydrodynamic damping for the box monohull geometry given in Fig. 3.7 is

according to Yamamoto et al. [68] and Jensen [23], rewritten to the notation in this report,

𝑏(𝜔) = 𝜌𝑔2

𝜔3

[
2 sin

(
𝜔2

2𝑔
𝐵

)
exp

(
−𝜔

2

𝑔
𝑇

)]2

, (3.34)

where the total damping for pitch and heave is related to the sectional damping in Eq. (3.34) by
a geometrical constant found by the strip method such that 𝐵33(𝜔) = 𝐶geo,3𝑏(𝜔) and 𝐵55(𝜔) =
𝐶geo,5𝑏(𝜔) by integrating the sectional damping along the hull.

Remark 90. The sectional damping from Yamamoto et al. [68] given in Eq. (3.34) is related to
the expression used in Jensen et al. [25] in Eq. (3.33) by the relation

𝑏(𝜔) = 𝜌𝑔2

𝜔3 𝐴(𝜔)
2. (3.35)

Remark 91. The RAOs in heave and pitch can be found by applying the Laplace transform.
Denote b̄𝑖 as either pitch or heave amplitude and 𝐹𝑖 the proportional gain. Let RAO𝑖 (𝑠) denote
the response amplitude operator between Za and b̄𝑖. From Eq. (3.32) the RAOs are

RAO𝑖 (𝑠) =
b̄𝑖

Za
(𝑠) = 𝐹𝑖

2 𝑘𝑇
𝜔2 𝑠

2 + 𝐴2

𝑘𝐵𝛼3𝜔
𝑠 + 1

, for 𝑖 = 3, 5 (3.36)
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where 𝜔 is the wave frequency and the Laplace variable should be evaluated at the wave
encounter frequency 𝜔e. The frequency response at the encounter frequency, 𝑠 = 𝑗𝜔e, is thus

RAO𝑖 (𝜔e) =
𝐹𝑖

1 − 2𝑘𝑇𝛼2 + 𝑗 𝐴2

𝑘𝐵𝛼2

, for 𝑖 = 3, 5, (3.37)

|RAO𝑖 (𝜔e) | =
𝐹𝑖√︂

(1 − 2𝑘𝑇𝛼2)2 +
(
𝐴2

𝑘𝐵𝛼2

)2
, for 𝑖 = 3, 5. (3.38)

Heave motion

The terms in heave equation of motion has been identified from Eq. (3.32a), freely written to
comply with the notation in this report as

𝑀33 ¥𝑧𝑛 + 𝐵33(𝜔e) ¤𝑧𝑛 + 𝐶33𝑧
𝑛 = 𝑍0Z𝑎 cos(𝜔e𝑡), (3.39)

where the elements was identified as

𝑀33 = 2∇𝜌, (3.40a)

𝐵33(𝜔e) = 𝐿𝑏(𝜔e) = 𝐿
𝜌𝑔

𝑘𝜔e

𝐴(𝜔e)2
𝛼2 , (3.40b)

𝐶33 = 𝜌𝑔𝐿𝐵. (3.40c)

Here, the displaced volume is ∇ = 𝐿𝐵𝑇 since the block coefficient for the simplified box
geometry is 𝐶B ≡ 1 and it is recognized that 𝐶geo,3 = 𝐿. The forcing function was identified
from Jensen et al. [25] on the form

𝑍0 = 𝐶33 sinc (𝜎) ^ 𝑓 , (3.41)

where sinc(𝜎) ≡ sin(𝜎)/(𝜎) is the sinc function with sinc(0) = 1. Here, 𝜎 ≜ 1
2 𝑘𝑒𝐿 is inspired

from the notation in Fossen [4], ^ ≜ e−𝑘e𝑇 is Smith’s correction factor and 𝑘e ≜ |𝑘 cos(𝛽) | is the
effective wave number. Also, the function

𝑓 =

√︄
(1 − 𝑘𝑇)2 +

(
𝐴2

𝑘𝐵𝛼3

)2
. (3.42)

According to Jensen [23], “. . . the Smith correction factor arises because the dynamic
pressure decays exponentially with respect to the vertical distance from the free surface contrary
to the linear increase of the hydrostatic pressure.” This can be inferred from the linear wave
potential developed in Sect. 2.3.3.

Remark 92. According to the simplified forcing function in Eq. (3.41), the force transfer function
from wave elevation to heave motion is zero when sin(𝜎) = sin( 12 𝑘e𝐿) = 0, or equivalently when
the argument is 1

2 𝑘e𝐿 = 𝐿
_e
𝜋 = 𝜋𝑛 where 𝑛 is a whole number. As a result, the forcing function

is zero whenever the box tuning length 𝐿 is a multiplum of the effective wave length _e.
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Pitch motion

The terms in pitch equation of motion has been identified from Eq. (3.32b), freely written to
comply with the notation in this report as

𝑀55 ¥\ + 𝐵55(𝜔e) ¤\ + 𝐶55\ = 𝑀0Z𝑎 sin(𝜔e𝑡), (3.43)

where the elements was identified according to

𝑀55 = 2𝜌∇𝑇GML, (3.44a)

𝐵55(𝜔e) = 𝐿𝑇GML𝑏(𝜔e) = 𝐿𝑇GML
𝜌𝑔

𝑘𝜔e

𝐴2

𝛼2 , (3.44b)

𝐶55 = 𝜌𝑔∇GML. (3.44c)

Here, the longitudinal metacentric height GML = 1
12
𝐿2

𝑇
for a box shaped vessel has been used

by assuming that the center of buoyancy and center of mass coincide [4]. The forcing function
has been rewritten to

𝑀0(𝑘, 𝛽) = 𝐶55
6
𝐿𝜎
[sinc(𝜎) − cos(𝜎)] ^ 𝑓 , (3.45)

with 𝜎, ^ and 𝑓 defined earlier. At 𝜎 = 0, the expression approach ∼ sin(𝜎) = 0 by the use of
L’Hôpital’s rule. A slightly simpler, equivalent version of the formula has also been found:

𝑀0(𝑘, 𝛽) =
𝐶33
𝑘e
[sinc(𝜎) − cos(𝜎)] ^ 𝑓 . (3.46)

Roll motion

The roll motion of the vehicle is significantly influenced by the hydrofoil structure beneath the
hull, enhancing stability and mitigating the risk of overturning [67]. The following derivation
for an approximated model of the roll motion of wave-propelled USVs is taken from Jensen
et al. [25] for the forcing function in roll, 𝐾0. The physics is based on strip theory on the
altered monohull geometry illustrated in Fig. 3.8 and the dynamics is written to comply with
the notation given in this report. A simplification on the roll forcing function is presented from
Fossen [4]. The transversal metacentric height GMT is estimated by empiric methods from the
International Maritime Organization (IMO) [10] and [9].

The vehicle is assumed to consist of two prismatic beams with fore and aft breadths 𝐵f and
𝐵a. The draft 𝑇 is the same and the cross sectional areas are 𝐴f and 𝐴a. From the model, the
main features in the roll motion is captured by a slight increase in complexity for the shape of
the monohull vehicle. The geometric parameter 𝛿 represents the ratio of the aft beam length to
the total vehicle length 𝐿. This parameter cannot be greater than the waterplane area coefficient
𝐶wp. The waterplane area coefficient enables to directly calculate the cross-sectional areas with
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𝐵a

𝛿𝐿

(1 − 𝛿)𝐿

𝑇

𝐵f

Figure 3.8: Altered vehicle geometry used to derive roll motion. The fore and aft
breadths are denoted 𝐵f and 𝐵a and is partitioned by the parameter 𝛿 ∈ [0, 1].

the block coefficient 𝐶B. The geometrical relations are

𝐵a = 𝐵, 𝐵f = 𝛾𝐵, (3.47a)

𝐴a =
𝐶B
𝐶wp

𝐵𝑇, 𝐴f = 𝛾𝐴a, (3.47b)

where 𝛾 ≜ 𝐶wp−𝛿
1−𝛿 fully covers the mathematical expressions necessary to descirbe the monohull

geometry in figure 3.8.
Neglecting coupling terms from other transverse motion, the equation of motion for roll was

found from [25], [4], [9] and [10] to be

𝑀44 ¥𝜙 + 𝐵44(𝜔e) ¤𝜙 + 𝐶44𝜙 = 𝐾0Za cos(𝜔e𝑡), (3.48)

where the mass moment of inertia including added mass is estimated by the natural period 𝑇4 by

𝑀44 =

(
𝑇4
2𝜋

)2
𝐶44, (3.49)

and the restoring coefficient is
𝐶44 = 𝜌𝑔∇GMT. (3.50)

The natural time period can be approximated by a geometric constant depending on the
main particulars 𝐿, 𝐵, 𝑇 and the transversal metacentric height GMT from the empiric method
proposed by IMO in resolution A.685(17) [10]. The natural period in roll is estimated by

𝑇4 =
2𝐵𝐶hull√

GMT
, (3.51)

where the geometric constant 𝐶hull was proposed in IMO resolution A.562(14) [9] to be

𝐶hull = 0.373 + 0.023𝐵/𝑇 − 0.00043𝐿,
≃ 0.373 + 0.023𝐵/𝑇.

(3.52)

Remark 93. For this project, the approximated geometric hull coefficient in Eq. (3.52) is used
(second line) since the contribution from the length 𝐿 is negligible for small USVs.
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The inviscid sectional damping are estimated through empirical calculations given in [25]
as functions of 𝐵a, 𝐵f, 𝐴a, 𝐴f and 𝑇 . The sectional damping is

𝑏44𝑝 (𝜔e,ΛT) = 𝜌𝐴𝐵2
√︂

2𝑔
𝐵
𝑎(ΛT)e𝑏(ΛT)𝜔−1.3

e 𝜔
𝑑 (ΛT)
e , (3.53)

where ΛT ≜ 𝐵/𝑇 in this report is defined as the transversal aspect ratio of the vehicle and the
cross-sectional area of the submerged part is 𝐴. According to Jensen et al. [25], the three
functions 𝑎, 𝑏, 𝑑 satisfy to a linear approximation

1 ≤ ΛT ≤ 3 :


𝑎(ΛT) = −3.94ΛT + 13.69,
𝑏(ΛT) = −2.12ΛT − 1.89,
𝑑 (ΛT) = 1.16ΛT − 7.97,

(rectangular shaped) (3.54a)

3 ≤ ΛT ≤ 6 :


𝑎(ΛT) = 0.256ΛT − 0.286,
𝑏(ΛT) = −0.110ΛT − 2.55,
𝑑 (ΛT) = 0.033ΛT − 1.419,

(wider vehicles) (3.54b)

The inviscid hydrodynamic damping is the strip integration 𝐵44𝑝 =
∫
𝐿
𝑏44𝑝 d𝑥 which equals

𝐵44𝑝 (𝜔e) = 𝐿 [𝛿𝑏44𝑝,a(𝜔e) + (1 − 𝛿)𝑏44𝑝,f(𝜔e)] . (3.55)

The total roll damping 𝐵44(𝜔e) = 𝐵44𝑝 (𝜔e) + 𝐵44𝑣 (𝜔e) is approximated as the sum of the
inviscid damping 𝐵44𝑝 from Eq. (3.55) and a portion of the critical damping

𝐵𝑐44 ≜
𝐶44𝑇4
𝜋

, (3.56)

such that viscous damping in roll motion is

𝐵44𝑣 = `𝐵𝐵
𝑐
44, 0 < `𝐵 < 1, (3.57)

and the total damping in roll is

𝐵44(𝜔) = 𝐵44𝑝 (𝜔e) + 𝐵44𝑣 . (3.58)

The excitation moment 𝐾0 was found in Jensen et al. [25] by use of the Haskind relation
expressed in terms of the sectional hydrodynamic damping 𝑏44𝑝 from (3.53). A derivation
following Jensen et al. is given in Appendix B.2 for the stationary case of the vehicle. The
excitation moment is given by Eq. (B.18) where the forward speed effect is approximately
included in the expression by substituting the frequency 𝜔 with wave encounter frequency 𝜔e.
This expression is rather long, and according to Fossen [4], the damping may instead be estimated
by the relative damping ratio Z4 as

𝐵44 = 2Z4

(
𝑇4
2𝜋

)
𝐶44, (3.59)
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with the relative damping factor Z4 and an estimate for the excitation moment 𝐾0 is

𝐾0 =

√︄
𝜌𝑔2

𝜔e
𝐵44 sin(𝛽). (3.60)

In this report, the damping from Jensen et al. [25] given by Eqs. (3.55) and (3.57) is employed
and the approximated forcing function from Eq. (3.60) is used.

Remark 94. Another possible method to model the roll physics can be found in Matsui [69].
Otherwise, roll damping may also be modeled according to the theory by Ikeda et al. [70].

Wave-induced motion matrices

The model Σ2 is the identified linear-mass-damper-spring model

Σ2 : Mrao ¥𝝃 + Brao(𝜔e) ¤𝝃 + Crao𝝃 = 𝝉wave1, (3.61)

where the force RAO is 𝝉wave1(𝑘, 𝛽) ≜ [𝑍0(𝑘, 𝛽), 𝐾0(𝑘, 𝛽), 𝑀0(𝑘, 𝛽)]⊤ found in Eqs. (3.41),
(3.60) and (3.45). The mass matrix including added mass or moment of inertia is

Mrao ≜
©«
𝑀33 0 0

0 𝑀44 0
0 0 𝑀55

ª®¬ =
©«
𝑚 − 𝑍 ¤𝑤 0 0

0 𝐽𝑥 − 𝐾 ¤𝑝 0
0 0 𝐽𝑦 − 𝑀 ¤𝑞

ª®¬ , (3.62)

where the elements𝑀𝑖𝑖 for 𝑖 = 3, 4, 5 for the effective model is found through Eqs. (3.40a), (3.49)
and (3.44a). The frequency-dependent damping matrix for the derivative in roll and oscillatory
derivatives in heave and pitch is

Brao(𝜔) ≜
©«
𝐵33(𝜔) 0 0

0 𝐵44 0
0 0 𝐵55(𝜔)

ª®¬ = − ©«
�̃�𝑤 (𝜔) 0 0

0 𝐾𝑝 0
0 0 �̃�𝑞 (𝜔)

ª®¬ . (3.63)

The elements 𝐵𝑖𝑖 for 𝑖 = 3, 4, 5 for the effective model is found in Eqs. (3.40b), (3.58) and (3.44b)
respectively. The restoring matrix Crao is

Crao ≜
©«
𝐶33 0 0
0 𝐶44 0
0 0 𝐶55

ª®¬ = − ©«
𝑍𝑧 0 0
0 𝐾𝜙 0
0 0 𝑀\

ª®¬ , (3.64)

where the elements 𝐶𝑖𝑖 for 𝑖 = 3, 4, 5 for the effective model is found in Eqs. (3.40c), (3.50) and
(3.44c).
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3.3.1 Parameters in the wave-induced motion model
The hydrodynamic codes of the physical USV model, is estimated by the semi-empirical method
in Sect. 3.3 which was inspired by Jensen et al. [25] and Fossen [4]. The oscillatory derivatives
present in the wave-induced motion model Σ2 is

{�̃� ¤𝑤, �̃� ¤𝑝, �̃� ¤𝑞}︸           ︷︷           ︸
added mass derivatives

, {�̃�𝑤, �̃�𝑝, �̃�𝑞}︸           ︷︷           ︸
damping derivatives

, {�̃�𝑧, �̃�𝜙, �̃�\}︸          ︷︷          ︸
restoring coefficients

,

and the terms in the force response amplitude operators are

{𝑍0, 𝐾0, 𝑀0}︸          ︷︷          ︸
force RAOs

,

which was all found for the effective monohull geometry in Sect. 3.3 by the main particulars
and characteristics �̃�, �̃�, 𝑇 , ˜GMT, �̃�wp, 𝛿geo and `𝐵. Denote the effective model parameters
by asterisk notation (·)∗. In the following, an estimate for the vehicle oscillatory derivatives is
found from the effective model by the following assumption and remark.

Assumption 17. The restoring forces are presumed unchanged by the presence of hydrofoils.

Remark 95. According to Assumption 17, a conversion factor from the effective model which
incorporates the foil propulsion structure to the physical model is obtained through the gain
(𝐶/�̃�) where 𝐶 is the restoring force in the physical model and �̃� is the restoring force in the
effective model.

Oscillatory derivatives in heave

According to Assumption 17 and the following Remark 95, the conversion gain for the dynamical
equation in heave is 𝑍𝑧/𝑍∗𝑧 = 𝐴wp/𝐴∗wp = 𝐶wp𝐵𝐿/(�̃��̃�). An estimate for the oscillatory
derivatives in heave is recognized as

−�̃� ¤𝑤 (𝜔) = −𝑍 ¤𝑤 = 2𝜌𝐶wp𝐵𝐿𝑇 − 𝑚,

−�̃�𝑤 (𝜔) =
(
𝐵

�̃�
𝐶wp

)
𝐿𝑏(𝜔),

−�̃�𝑧 (𝜔) = −𝑍𝑧 = 𝜌𝑔𝐶wp𝐵𝐿,

(3.65)

and the non-dimensional variants can be found through the conversion in Sect 2.1.1.

Oscillatory derivatives in roll

Applying the same logic for roll, an estimate for the oscillatory derivatives in roll is found
through the gain 𝐾𝜙/𝐾∗𝜙 = ∇GMT/∇̃ ˜GMT such that
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−�̃� ¤𝑝 (𝜔) = −𝐾 ¤𝑝 =
(
𝑇4
2𝜋

)2
𝜌𝑔∇GMT − 𝐽𝑥 ,

−�̃�𝑝 (𝜔) = −𝐾𝑝 = 2Z4

(
𝑇4
2𝜋

)
𝜌𝑔∇GMT,

−�̃�𝜙 (𝜔) = −𝐾𝜙 = 𝜌𝑔∇GMT.

(3.66)

Oscillatory derivatives in pitch

The conversion gain for pitch is 𝐾\/𝐾∗\ = ∇GML/∇̃ ˜GML such that

−�̃� ¤𝑞 (𝜔) = −𝑀 ¤𝑞 = 2𝜌∇GML𝑇 − 𝐽𝑦,

−�̃�𝑞 (𝜔) =
(
𝐵

�̃�
𝐶B

)
· 𝑇GML𝐿𝑏(𝜔),

−�̃�\ (𝜔) = −𝑀\ = 𝜌𝑔∇GML.

(3.67)

Here, the objective function 𝑓1,1({𝐿d, 𝐵d, 𝑇d}) should be a measure of how well the simulation
model Σ1 fits with experimentally obtained data, for instance by a “tow-and-release”-test, for
instance by the method in [50].

Tuning parameters

Let the tuning parameters for the wave-induced model Σ2 be denoted by

𝜶2 ≜ {�̃�, �̃�, 𝑇, ˜GMT, �̃�wp, 𝛿geo, `𝐵}. (3.68)

The tuning parameters can be optimized according to the method proposed in Mounet et al. [67].
Denote a set of optimized variables by 𝜶∗2 such that

𝜶∗2 = arg min
𝜶2∈H𝛼,2

𝑓2(𝜶2), (3.69)

where the parameter set H𝛼,2 is given in Tab. 3.5 and the objective function 𝑓2 : R8 → R is

𝑓2(𝜶2) =
∑︁

𝑅=𝑧,𝜙,\

∫ ∞

0

[𝑆𝑅𝑅 (𝜔;𝜶2) − 𝑆𝑅𝑅 (𝜔)]2

𝑚2
0,𝑅

d𝜔, (3.70)

which serves to minimize the discrepancy between the measured response spectra, denoted by
𝑆𝑅𝑅 (𝜔e) obtained from in-situ operational measurements and the theoretical response spectra
estimates 𝑆𝑅𝑅 (𝜔e) from the model Σ2. The objective function is normalized by the variance of
the measured response by the factor 𝑚0,𝑅 =

∫ ∞
0 𝑆𝑅𝑅 (𝜔e) d𝜔e. More detail on the optimization

method is referred to the article [67].
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Table 3.3: Lower and upper bounds for the fitting parameters 𝜶2 corresponding
to the set H𝛼,2 for the wave-induced model Σ2. From Mounet et al. [67].

Element Parameter Bounds
𝜶2 [1] �̃� effective length [0, 2𝐿]
𝜶2 [2] �̃� effective breadth [0, 2𝐵]
𝜶2 [3] 𝑇 effective draft [0, 2𝑇]
𝜶2 [4] ˜GMT eff. transversal metacentric height [0, 2𝐵]
𝜶2 [5] �̃�wp eff. waterplane area coefficient [0, 1]
𝜶2 [6] 𝛿geo ratio of aft beam length to overall length [0, 1]
𝜶2 [7] `𝐵 ratio viscous damping to critical damping [0, 1]
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3.3.2 Identification of fluid-memory effects
The wave-induced motion model in Eq. (3.61) is frequency-dependent hence a proper time-
domain implementation model is found through the method by incorporating fluid memory
effects according to Cummin’s equation in Eq. (2.97). Since the dynamics is uncoupled in
heave, roll and pitch, the identified method in Sect. 2.5.3 is employed.

Retardation function in time-domain

This section shows the derivation for the simplest transfer function approximation for the fluid
memory effects on the simplified monohull geometry used as an effective model for wave-
propelled USVs. The frequency-domain identification of the function of retardation is performed
on a proper transfer function applicable for heave and pitch motions, inspired by . Recall the
sectional hydrodynamic damping from Newman [24] in Eq. (B.14)

𝑏(𝜔; 𝐵,𝑇) = 𝜌𝑔2

𝜔3

[
2 sin

(
𝜔2

2𝑔
𝐵

)
exp

(
−𝜔

2

𝑔
𝑇

)]2

, (sectional damping used in heave and pitch)

(3.71)
where the total damping in heave and pitch is related to this expression by a geometrical constant.
Introducing the dimensionless frequency 𝜔′ = 𝜔

√︃
𝐵
2𝑔 , then Eq. (3.71) reduces to

𝑏′(𝜔′;ΛT) =
𝑏

(
𝜔′

√︁
2𝑔/𝐵

)
𝜌𝐵

√︁
2𝐵𝑔

=
1
𝜔′3

sin
(
𝜔′2

)2
exp

(
−𝜔
′2

ΛT

)
. (3.72)

The retardation function is identified from a numerical integration by Eq. (2.103) with the
damping from Eq. (3.72). A change of variables, 𝜔 = 𝜔′

√︃
2𝑔
𝐵

such that d𝜔/d𝜔′ =
√︃

2𝑔
𝐵

, yields

𝑘 (𝑡;ΛT) =
2
𝜋

∫ ∞

0
𝜌𝐵

√︁
2𝐵𝑔𝑏′(𝜔′;ΛT) cos

(
𝜔′𝑡

√︁
2𝑔/𝐵

) √︂
2𝑔
𝐵

d𝜔′, (3.73)

where the dimensionless time 𝑡′ = 𝑡
√︃

2𝑔
𝐵

enables to find the non-dimensional retardation function

𝑘′(𝑡′;ΛT) =
𝑘 (𝑡)

2𝜌𝐵𝑔
=

2
𝜋

∫ ∞

0
𝑏′(𝜔′;ΛT) cos(𝜔′𝑡′) d𝜔′. (3.74)

Closed-form approximating of the retardation function

In this work, a closed form expression is found for the fluid memory effects inspired by the
identified properties in the identification method of fluid memory effects by Perez and Fossen
[39]. Denote 𝑘 (𝑠) the approximated proper transfer function for the retardation function.
According to [39], the transfer function satisfy prior information which enables to refine the
search for the appropriate model and its parameters. Tab. 3.4 summarizes the properties on the
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Table 3.4: Properties of the retardation function. Adapted from Perez and Fos-
sen [39], rewritten to an uncoupled single degree of freedom. Here,
�̂� ( 𝑗𝜔) = �̂� (𝑠)

��
𝑠= 𝑗𝜔

denotes frequency-domain and �̂� (𝑡) denotes time-domain.

Property Implication on parametric model �̂� (𝑠) = 𝑞(𝑠)/𝑝(𝑠)
lim
𝜔→0

�̂� ( 𝑗𝜔) = 0 There are zeros at 𝑠 = 0, i.e. 𝑞(0) = 0.

lim
𝜔→∞

�̂� ( 𝑗𝜔) = 0 Strictly proper, i.e. deg(𝑝(𝑠)) > deg(𝑞(𝑠)).
lim
𝑡→0+

�̂� (𝑡) ≠ 0 Relative degree 1, i.e. deg(𝑝(𝑠)) − deg(𝑞(𝑠)) = 1.

lim
𝑡→∞

�̂� (𝑡) = 0 Bounded-input-bounded-output stable.
The mapping ¤b → ` is passive. �̂� ( 𝑗𝜔) is positive real.

retardation function and its implications on the parametric model �̂� (𝑠) = 𝑞(𝑠)/𝑝(𝑠), where 𝑞, 𝑝
are polynomial in 𝑠.

According to the properties in Tab. 3.4, the simplest rational transfer function candidate to
approximate the non-dimensional retardation function in Eq. (3.73) is

�̂�′(𝑠′) =
𝑞′0𝑠
′

𝑠′2 + 𝑝′1𝑠′ + 𝑝
′
0
, (3.75)

where the small number of parameters are 𝑞′0, 𝑝′1 and 𝑝′0. The parameters in this work was found
through a least squares optimization in the time domain by the analytical solution. From the
derivation given in Appendix B.3, the inverse Laplace transformation of Eq. (3.75) is

�̂�′(𝑡′) = 𝑞′0e−
𝑝′1
2 𝑡
′
cos ©«

[
𝑝′0 −

(
𝑝′1
2

)2] 1
2

𝑡′
ª®¬ −

𝑞′0𝑝
′
1

2
[
𝑝′0 −

(
𝑝′1
2

)2
] 1

2
e−

𝑝′1
2 𝑡
′
sin ©«

[
𝑝′0 −

(
𝑝′1
2

)2] 1
2

𝑡′
ª®¬ .

(3.76)

Least squares optimization

Denote the set of parameters adjusting �̂�′ as 𝜽 ≜ {𝑞′0, 𝑝
′
0, 𝑝
′
1}. A least squares objective is to

find optimal values 𝜽∗ in order to minimize the squared discrepancy between Eq. (3.74) and
Eq. (3.76) for a given transversal aspect ratio ΛT = 𝐵/𝑇 . The least squares optimization

𝜽∗ = arg min
𝜽

∫ ∞

0
𝑤(𝑡′) · |𝑘′(𝑡′) − �̂�′(𝑡′) |2 d𝑡′, (3.77)

was employed by an approximate finite sum with weights 𝑤𝑖

𝜽∗ = arg min
𝜽

𝑁∑︁
𝑖=1

1
2
𝑤𝑖𝜖

2
𝑖 , (3.78)
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where 𝜖𝑖 ≜ 𝑘′(𝑡′[𝑖])− �̂�′(𝑡′[𝑖]) is the time-domain discretization of the discrepancy by the index 𝑖.
In this context the interval 𝑡′[1] = 0 to 𝑡′[𝑁] = 20 was chosen. Denoting 𝝐 = [𝜖1, . . . , 𝜖𝑁 ]⊤ and
the weights W = diag( [𝑤1, . . . , 𝑤𝑁 ]⊤), a gradient descent algorithm for

𝜽∗ = arg min
𝜽

1
2
𝝐⊤W𝝐 , (given ΛT) (3.79)

with the descent gain `𝜽 = 0.3 by

𝜽∗
𝑘+1 ← 𝜽∗

𝑘
− `𝜽∇𝜽

(
1
2𝝐

⊤W𝝐
) ����

𝜽=𝜽∗
𝑘

,

gave excellent convergence for 𝜽∗ for a small number of iterations 𝑘 . The optimal values for a
wide range of transversal aspect ratios ΛT are reported in Tab. C.3 in Appendix ??. Figs. 3.10
and 3.11 shows the numerical integration of the retardation function from Eq. (3.74) with the
approximated retardation function identified. A comparison to a typical retardation function is
shown in Fig. 3.12.

Closed form expression for the parameters in the retardation function was found empirically
by a least-squares fit. The estimates is proposed to follow the functions

𝑞′0(ΛT) ≃ 0.5696 · ΛT − 0.018
ΛT + 1.035

,

𝑝′0(ΛT) ≃ 0.5917 · ΛT − 0.245
ΛT + 0.612

,

𝑝′1(ΛT) ≃ 0.7376 · ΛT + 0.394
ΛT + 0.642

,

(3.80)

which is illustrated in Fig. 3.9. The figure shows that the empiric values agrees well the optimal
parameters for a wide range of values ΛT.

Remark 96. For simplicity, the first parameter estimate in Eq. (3.80) can be set as

𝑞′0(ΛT) ≃ 0.5696 · ΛT

ΛT + 1.035
. (3.81)

The conversion from the non-dimensional parameters in Eq. (3.80) to the parameters 𝑞0, 𝑝1
and 𝑝0 was found to be

𝑞0 = 2𝜌𝑔
√︁

2𝐵𝑔𝐶geo𝑞
′
0(ΛT), (3.82a)

𝑝1 =

√︂
2𝑔
𝐵
𝑝′1(ΛT), (3.82b)

𝑝0 =
2𝑔
𝐵
𝑝′0(ΛT). (3.82c)

The retardation function for heave and pitch can be interpreted by

�̂� (𝑠) =
2𝜌𝐵𝑔

√︃
2𝑔
𝐵
𝑞′0𝑠

𝑠2 +
√︃

2𝑔
𝐵
𝑝′1𝑠 +

2𝑔
𝐵
𝑝′0

𝐶geo, with 𝐶geo =

{
𝐿, (heave)
𝐿𝑇GML, (pitch)

(3.83)
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where the geometric constant 𝐶geo differ between the pitch motion and heave motion.

1 2 3 4 5 6 7 8 9 10

0.25

0.3

0.35

0.4

0.45

0.5
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0.6

0.65

0.7

0.75

Figure 3.9: Indices of �̂�′(𝑠) and their optimized values marked with cross. Dashed
line represents the asymptotic value for infinite 𝐵/𝑇-ratio, and the solid line
represents the empiric relations by Eq. (3.80).

Fluid memory effects in time-domain

According to Sect. 2.5.3, the fluid memory effects for a single degree of freedom given by the
dynamics in Eq. (2.101) can be approximated by the time domain dynamics

𝑚(∞) ¥b + ` + 𝑐b = 𝜏,
¤xr = Arxr + Br ¤b,
` = Crxr.

(3.84)

The transfer function �̂�′(𝑠) = 𝑞(𝑠)/𝑝(𝑠) = Cr [𝑠I − Ar]−1Br.
The seakeeping motion for the wave-propelled USV may be described by the fluid memory

effect in heave and pitch described in this section, while roll motion is considered without fluid
memory effects. The time-domain dynamics for the simplified monohull geometry is thus

Mrao(∞) ¥𝝃 + Brao(∞) ¤𝝃 + 𝝁r + Crao𝝃 = 𝝉wave1,

¤x = Arxr + Br𝛿𝝂r,

𝝁r = Crxr,

(3.85)
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Figure 3.10: Retardation function at infinite ratio.

where the matrices for fluid memory effects for heave, roll and pitch is

¤xr =
©«
Ar33 0 0

0 Ar44 0
0 0 Ar55

ª®¬︸                   ︷︷                   ︸
Ar

xr + ©«
Br33 0 0

0 Br44 0
0 0 Br55

ª®¬︸                  ︷︷                  ︸
Br

¤𝝃,

𝝁r =
(
Cr33 Cr44 Cr55

)︸                  ︷︷                  ︸
Cr

xr,

(3.86)

and xr = [x⊤r33, x
⊤
r44, x

⊤
r55]

⊤. The sub-matrices were identified as

Ar33 = Ar55 =

(
−
√︃

2𝑔
𝐵
𝑝′1(ΛT) −2𝑔

𝐵
𝑝′0(ΛT)

1 0

)
, Ar44 = 0, (3.87)

Br33 = Br55 =

(
1
0

)
, Br44 = 0, (3.88)

Cr33 = Cr55 =

(
2𝜌𝑔

√︁
2𝐵𝑔𝐶geo𝑞

′
0(ΛT) 0

)
, Cr44 = 0. (3.89)
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Figure 3.11: Retardation function at ratio 𝐵/𝑇 = 2.0.

Figure 3.12: Typical impulse response function 𝐾22(𝑡) in sway. Note the resem-
blance to the normalized heave and pitch approximation �̂�′(𝑡′) in Fig. 3.10 and
Fig. 3.11. Facsimile from Fossen [39].
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3.4 Hydrofoil excitation model for wave-propulsion
In this section the individual foil dynamics for each foil is derived for use in the wave propulsion
model Σ3 in the proposed model architecture in Fig. 3.3. The foil motion is driven by the joint
USV motion of the maneuvering position from model Σ1 given in Sect. 3.2 and the wave-induced
motion from model Σ2 given in Sect. 3.3, and the wave propulsion force 𝝉prop serves as an input
for the maneuvering model Σ1. Fig. 3.13, which is the same figure used in Sect. 2.6 shows that
the movement of the vehicle drags the foils through the water.

𝑦𝑏

𝜗1

𝑈1

𝜗2

𝑧𝑏

𝑥𝑏

𝑈2

Figure 3.13: The foils on the USV (in red) are driven by the joint motion of the
maneuvering and seakeeping motion affecting the local relative velocity inflow𝑈.

The geometry of the individual foils are assumed to comply with Assumptions 11 and 12
given in Sect. 2.6 relating to the position of the foils on the midline of the USV and rotation
along the 𝑦𝑏-axis of the vehicle. From Remark 36, the pivot position of foil 𝑖 in body is

r𝑏𝑝,𝑖 =
©«
𝑥𝑝,𝑖
0
𝑧𝑝,𝑖

ª®¬ . (3.90)

Remark 97. The foils pivot point should not be confused with a ship’s pivot point, definition
given in pp. 192 in Fossen [4].

In order to derive the dynamics for the foils, the following assumptions and remarks describes
necessary simplifications. This section shows that the foil model Σ3 can be written as

Σ3 : M𝜗
¥𝝑n + B𝜗 ¤𝝑n + C𝜗 (𝝑)𝝑n = C𝜗 (𝝑)L𝜗𝝃 +Qnon circ + Q̃circ +Qinertia,

¤xcirc = A(𝝂r)xcirc + BQcirc,

Q̃circ = C(𝝂r)xcirc + DQcirc,

(3.91)

where the system is identified as a mass-damper-system driven by the wave-induced motion 𝝃
from the USV with inertia correction Qinertia and driven by the added force moment Qnon circ and
filtered circulatory forces �̃�circ. The dimensions is of order R𝑚, where 𝑚 is the number of foils
in the wave-propulsion model.
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Model assumptions for foil dynamics

In this part assumptions about the foils are made to simplify the derivaton of equations of motion:

Assumption 18. The foils are neutrally buoyant.

Remark 98. Assumption 18 is common in underwater modeling of marine robots where the
effects of gravity and buoyancy cancels. However, the assumption can be relaxed as explained
in the next section by incorporating these forces. On the other hand, if the assumption is not
accurate, a change of variables �̃� = 𝜗 − 𝜗0, where 𝜗0 is the equilibrium point for the foil angle
due to the foils not being neutrally buoyant, approximately fullfils Assumption 18 anyway.

Assumption 19. The USV heading is slowly varying, meaning that ¤𝜓 = 𝑟 ≃ 0.

Remark 99. From Assumption 19, any Coriolis or centripetal forces due to change in heading
is ignored. This is a good approximation for wave-propelled USVs because of low vehicle speed
𝑈 =

√
𝑢2 + 𝑣2. During guidance operations, this will result in a slowly varying heading, e.g.

when the USV is following a straight line. Thus the contribution from 𝜓(𝑡) is a negligible part of
the dynamics for the foils. For any instance, the heading can be considered constant, 𝜓 = const.

Remark 100. During stationkeeping in waves where the wave-foil technology generates propul-
sion, the USV needs to keep circling in order to keep its position. Thus Assumption 19 might be
less accurate in those scenarios.

Assumption 20. The foils are symmetrical and placed on the midline of the USV and the effects
of roll 𝜙 is negligible to the foil dynamics.

Remark 101. When the vehicle rolls, dominant hydrodynamic forces is port-starboard anti-
symmetric, introducing a viscous damping moment for the USV vehicle, but do not alter the foil
angles to a considerable degree. Additionally, roll motion contributes to a spanwise relative
velocity field over the foils which is ignored in the analysis.

Remark 102. Contrary to Remark 101, only the hydrodynamic forces caused by relative veloc-
ities orthogonal to the foil span is included in the analysis of the foil dynamics. This means that
only surge, heave and pitch motion of the USV vehicle is of interest for the motion of the foils.

The dynamics for a single foil is derived in the next section, before the complete foil model
Σ3 is assembled with parameter vector 𝜶3.

Unconstrained foil dynamics without inertia correction

This sections shows the derivation of the governing dynamics for a single foil driven by the
forces identified in Sect. 2.6 with Assumptions 18–20. The variables in this derivation is written
without a subscript since it is understood that a subscript is needed to differentiate between the
different foils. Ignoring the effects of rolling 𝛿 ¤𝜙 ≃ 𝛿𝜙 ≃ 0 and assuming slowly-varying heading
𝛿 ¤𝜓 ≃ 0, then Euler’s equation of motion by Eq. (2.14) for the foils reduces to Newton’s Second
Law for rotation. Since this law is applicable in the inertial reference frame, then define the foil
angles relative to NED as
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𝜗𝑛 ≜ \ + 𝜗, (3.92)

where \ is the USV pitch angle and 𝜗 is the foil angle measured relative to the USV. The
foil angles given in Eq. (3.92) is the equivalence of measuring the hydrofoils relative to the
horizontal. Fig. 3.14 shows the sectional characteristics for a foil driven by the motion of the
USV. Newton’s second law for rotation – the torque acting on an object is equal to the product
of the moment of inertia and the angular acceleration – is applied on the pivot point

𝐽 ¥𝜗𝑛 =
∑︁
𝑖

𝑄pivot point,𝑖, (3.93)

where 𝐽 is the moment of inertia of the foil at the pivot point along 𝑦𝑏-axis and 𝑄pivot point,𝑖
is a moment contribution acting on the foil. The following remarks describe the benefit and a
drawback of employing Eq. (3.93):

Remark 103. The benefits of describing the dynamics of the foil around the pivot point is that
constraint forces between the USV and the foil is neglected in the analysis since the moment arm
for the constraint forces is zero since the constraint forces must act through the pivot point. As
a result, the contribution from constraint forces on the right hand side of Eq. (3.93) is exactly
zero.

Remark 104. Applying the rotational dynamics in Eq. (3.93) directly is only valid as long as the
pivot point do not undergo acceleration since the dynamical equation is only valid for inertial
reference frames. A correction to the dynamics may be found by adding inertia forces, which is
identified for instance by Euler-Lagrange method by Eq. (2.15) in Sect. 2.1.4.

𝜗𝑛

(𝑥𝑝, 𝑧𝑝)

𝛿𝑥 CG

Figure 3.14: Foil coordinates (𝑥𝑝, 𝑧𝑝) with angle 𝜗𝑛. The coordinates is such that
𝑥-axis point to left and 𝑧-axis point downwards.

The dominating forces acting on the foil was found as:

• Non-circulatory moment corresponding to the added moment of inertia −𝑄 ¥𝜗 ¥𝜗r in the
relative acceleration ¥𝜗𝑟 approximated by the flat plate moment from Lamb [33] given by
Eq. (2.155) evaluated at the mid-chord position.

• Added mass force 𝐴 according to Pettersen [36] by Eqs. (2.154) with the three-dimensional
analytical correction by Meyerhoff [59] by the proposed empiric Eq. (2.152).

• Hydrodynamic damping −𝑄 ¤𝜗 ¤𝜗r due to relative rotation ¤𝜗r in the water.
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• Spring forces by the passive incidence-control from the USV to the foil angle 𝜗, given by
Hook’s law −𝐶𝜗.

• Quasi-steady circulatory lift and drag forces found by the force coefficients in Eq. (2.131).
approximated by the normal force 𝑁 with the three-dimensional correction inspired by
Prandtl’s lifting line [50], empiric correction from Anderson [16] and experimental re-
sults from Fujii and Tuda [57] by Eq. (2.147). The unsteady circulatory forces are filtered
according to Theodorsen’s function [14] approximated by the state-space representation
in Eq. (2.169). The circulatory forces act at the center of pressure inspired by the ana-
lytical derivation from the vortex distribution and experimental and numerical results in
Mirzaeisefat [56] by the proposed empiric Eq. (2.139).

• Damping forces 𝐷 due to relative linear velocity of the foil through the water.

• Buoyancy force 𝐵 acts in the static center of pressure of the foil.

• Gravitational effect 𝐺 acts in the mass center of the foil.

Neglecting friction between the strut and the foil, the dynamics for a single foil according to
Eq. (3.93) was found as

𝐽p.p. ¥𝜗𝑛 = −𝑄 ¥𝜗 ¥𝜗r (added moment of inertia)
−𝑄 ¤𝜗 ¤𝜗r (relative rotational damping)
−𝑄𝜗 (𝜗)𝜗 (spring)
+ 𝑁 (𝑥c.p. − 𝑥p) (normal force)
+ 𝐴 sin(𝛼𝑎) (0.5𝑐𝑚 − 𝑥p) (added mass force)
+ 𝐷 sin(𝛼𝑣) (0.5𝑐𝑚 − 𝑥p) (damping force)
+ 𝐵 cos(𝜗𝑛) (𝑥c.b. − 𝑥p) (buoyancy)
− 𝐺 cos(𝜗𝑛) (𝑥c.g. − 𝑥p), (gravity)
(+ inertia force correction)

(3.94)

where the lengths are defined in Fig. 3.14 and the forces are defined in the list above and ex-
plained in parenthesis. The moment of inertia of the foil evaluated in the pivot point is 𝐽p.p..

An additional assumption about the mass density of the foils are also made:

Assumption 21. The foils have homogeneous mass density.

Remark 105. From Assumption 18, buoyancy force and gravity effect included in Eq. (3.94)
cancels completely for foils with homogeneous mass density, as assumed in Assumption 21. This
reduces the complexity in the wave propulsion model Σ2.

Furthermore, the relative rotation rate ¤𝜗r and acceleration ¥𝜗r through the water is needed in
the dynamics. The following assumption is necessary to express the dynamics of the foils as a
mass-damper-spring system:
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Assumption 22. Since the fluid is irrotational, see Sect. 2.3, the relative rotations of the foils
through the water may be sufficiently approximated by

¤𝜗r ≃ ¤𝜗𝑛, ¥𝜗r ≃ ¥𝜗𝑛. (3.95)

With the simplifications given in Assumptions 21 and 22, the foil dynamics reduces to

(𝐽p.p. +𝑄 ¥𝜗) ¥𝜗𝑛 +𝑄 ¤𝜗 ¤𝜗𝑛 + 𝐶 (𝜗)𝜗 = 𝐹NF(𝑥c.p. − 𝑥p) + 𝐴(0.5𝑐𝑚 − 𝑥p), (3.96)

which, by adding 𝐶 (𝜗)\ on both sides, a mass-damper-spring system is identified

𝑀𝜗
¥𝜗𝑛 + 𝐵𝜗 ¤𝜗𝑛 + 𝐶𝜗𝜗𝑛 = 𝐶 (𝜗)\ + 𝐹NF(𝑥c.p. − 𝑥p) + 𝐴(0.5𝑐𝑚 − 𝑥p), (3.97)

where the moments on right hand side relate to position 𝑄𝑥 , velocity 𝑄 ¤𝑥 and acceleration 𝑄 ¥𝑥 as

𝑄𝑥 ≜ 𝐶\, 𝑄 ¤𝑥 ≜ 𝐹NF(𝑥c.p. − 𝑥p), 𝑄 ¥𝑥 ≜ 𝐴(0.5𝑐𝑚 − 𝑥p). (3.98a)

The unconstrained foil dynamics for a single foil mounted on a wave-propelled USV with
passive spring incidence control 𝐶𝜗 (𝜗)𝜗 without inertia corrections are

𝑀𝜗
¥𝜗𝑛 + 𝐵𝜗 ¤𝜗𝑛 + 𝐶𝜗𝜗𝑛 = 𝑄𝑥 + �̃� ¤𝑥 +𝑄 ¥𝑥 . (3.99)

Foil dynamics with inertia forces

The inertia forces was found through Euler-Lagrange’s method in Appendix B.1, where the
inertia forces was recognized in Eq. (B.12), which includes the inertial acceleration of the pivot
point by Eq. (3.90)

𝑄inertia = −𝛿𝑥𝑚 ¥𝑧𝑝 cos(𝜗𝑛) − 𝛿𝑥𝑚 ¥𝑥𝑝 sin(𝜗𝑛), (3.100)

where 𝑚 in this context is the mass of the foil and 𝛿𝑥 > 0 is the distance from the pivot point to
the center of mass in the foil illustrated in Fig. 3.14. The equations of motion for a single foil is
the combination of Eq. (3.99)

𝑀𝜗
¥𝜗𝑛 + 𝐵𝜗 ¤𝜗𝑛 + 𝐶𝜗𝜗𝑛 = 𝑄𝑥 + �̃� ¤𝑥 +𝑄 ¥𝑥 +𝑄inertia. (3.101)

Foil dynamics with constrained motion

In most wave-propelled USVs the foil angles 𝜗𝑖 will be constrained to the maximum and
minimum deflections 𝜗max and 𝜗min, respectively. The constraints are given by the physical
attachment of the foils on the USV.
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Wave propulsion model

Assume that the wave-propelled USV has 𝑁 foils. Denote the vector of foil angles as

𝝑𝑛 ≜ [𝜗𝑛,1, . . . , 𝜗𝑛,𝑁 ]⊤ ⊂ T𝑁 , (3.102)

and by ¤𝝑𝑛 ∈ R𝑁 and ¥𝝑𝑛 ∈ R𝑁 the time differentiation’s of Eq. (3.102). The model Σ3 is

Σ3 : M𝜗
¥𝝑n + B𝜗 ¤𝝑n + C𝜗 (𝝑)𝝑n = C𝜗 (𝝑)L𝜗𝝃 +Qnon circ + Q̃circ +Qinertia,

¤xcirc = A(𝝂r)xcirc + BQcirc,

Q̃circ = C(𝝂r)xcirc + DQcirc,

(3.103)

where L𝜗 is a constant selection matrix such that C𝜗 (𝝑)L𝜗𝝃 = \I𝑛×1. And the matrices A, B, C
and D is chosen from the state-space representation of unsteady circulatory forces.

3.4.1 Parameters in the foil excitation model
The parameters 𝜶3 for the wave propulsion model Σ3 are

{𝑆, 𝑐𝑚, 𝑡′, 𝑥′𝑚}︸           ︷︷           ︸
foil geometry

, {𝛼𝑠, 𝑘𝑠, 𝐶𝐿𝑠, 𝐶𝐷𝑠}︸                 ︷︷                 ︸
lift and drag curves

, {𝑥′p, 𝛿𝑥′}︸    ︷︷    ︸
foil lengths

(3.104)

Table 3.5: Lower and upper bounds for the fitting parameters 𝜶3 corresponding
to the set H𝛼,3 for the wave-propulsion model Σ3.

Element Parameter Bounds
𝜶3 [1] 𝑆 span [0,∞)
𝜶3 [2] 𝑐𝑚 chord length [0,∞)
𝜶3 [3] 𝑡′ chord thickness [0, 1]
𝜶3 [4] 𝑥′𝑚 point of maximum thickness [0, 1]
𝜶3 [5] 𝛼𝑠 effective stall angle [0, 𝜋/4]
𝜶3 [6] 𝑘𝑠 stall transition length [0, 𝜋/2]
𝜶3 [7] 𝐶𝐿𝑠 detached lift coefficient [0, 1]
𝜶3 [8] 𝐶𝐷𝑠 detached drag coefficient [0, 1]
𝜶3 [9] 𝑥′p pivot point length [0, 1]
𝜶3 [10] 𝛿𝑥′ length to center of mass [0, 1]

Foil geometry

The foil geometry is determined by parameters span 𝑆, chord length 𝑐𝑚, thickness 𝑡′ and position
of thickness 𝑥′𝑚, maximum chord length 𝑐max,

{𝑆, 𝑐𝑚, 𝑡′, 𝑥′𝑚}︸           ︷︷           ︸
foil geometry

.
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If the cross-sectional shape of the foils is not provided by the manufactures of the wave-
propelled USV in study, a four-digit NACA-series, given by Eq. (2.109) can be chosen by
measuring the cross-sectional thickness 𝑡′ of the foil. Alternatively, the proposed sectional
shape by Eq. (2.110) can be chosen by measuring the thickness 𝑡′ and the position of maximum
thickness 𝑥′𝑚. The sectional area is used to estimate lift and drag curves and to determine the
foil’s moment of inertia.

A spanwise chord distribution is needed to determine an effective rectangular wing for the
foils and determine the position of this wing by positioning the wing according to the pivot
point. In this work, the effective wing by span 𝑆 and mean chord length 𝑐𝑚 is found by assuming
that the actual foil area 𝑆𝑐𝑚 = 𝐴F.

The position of the pivot point is found by assuming that the circulatory forces for small
attack angles – which acts through the quarter-chord position – coincides between the actual
wing geometry and the effective rectangular wing geometry. This is illustrated in Fig. 3.15
where the mean position of the quarter-chord positions coincide.

Effective wing geometry

Quarter-chord position

Actual wing geometry

Positive direction

Figure 3.15: The foils are modeled according to an effective wing geometry by
the span 𝑆 and mean chord length 𝑐𝑚. The mean quarter-chord positions along the
span coincide.

Lift and drag curves

Lift and drag curves for the foils through 180 degrees can be parameterized by the effective stall
angle 𝛼𝑠, the transition length 𝑘𝑠, detached lift coefficient𝐶𝐿𝑠 and detached drag coefficient𝐶𝐷𝑠
given in Sect. 2.6.3,

{𝛼𝑠, 𝑘𝑠, 𝐶𝐿𝑠, 𝐶𝐷𝑠}︸                 ︷︷                 ︸
lift and drag curves

.

The curves for a foil through 180 degrees may be found in a few sections by the experimental
results in Sheldahl [54]. In the general case, one may choose to use numerical programs when
the foil section geometry is determined. In this work the free software Xfoil [55] is suggested
to determine the parameters for closed-form empiric expressions for lift and drag that was
determined in Sect. 2.6.3. Denote the numerical lift and drag coefficients by 𝐶𝐿,num and 𝐶𝐷,num.
The parameters listed above can be determined, in order, by:
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1. 𝐶𝐿𝑠 is determined by the amplitude of 𝐶𝐿,num at 𝛼 = 45◦ which should be equal to the lift
coefficient𝐶𝐿 in Eq. (2.131) with the nonlinear correction𝐶𝐿𝑛 by Eq. (2.129). At 𝛼 = 45◦
the lift coefficient is (1 − 𝐶𝐿𝑠)𝜋 = 𝐶𝐿,num(45◦) which is solved for

𝐶𝐿𝑠 = 1 − 𝐶𝐿,num(45◦)
𝜋

. (3.105)

2. 𝐶𝐷𝑠 is determined by the parameter𝐶𝐿𝑠 by the numerical drag coefficient at𝛼 = 90◦. From
the drag coefficient 𝐶𝐷 in Eq. (2.131) with the nonlinear correction 𝐶𝐷𝑛 by Eq. (2.130),
the amplitude at 𝛼 = 90◦ is 2𝜋𝐶𝐷𝑠 (1 + 𝐶𝐿𝑠) = 𝐶𝐷,num(90◦) which is solved for

𝐶𝐷𝑠 =
𝐶𝐷,num(90◦)

2𝜋𝐶𝐷𝑠
. (3.106)

If numerical values for 𝐶𝐷,num(90◦) is not available, it can be estimated by the range
1.8–2.0 according to Hoerner [6].

3. 𝛼𝑠 can be set as the midpoint angle between the local lift maximum 𝛼max at the stall
angle and the following local minimum 𝛼min. This can be illustrated by referring to
Fig. 2.19 by the local maximum at about 𝛼max10◦ and the following local minimum at
about 𝛼min = 15◦. An estimate for the effective stall angle is

𝛼𝑠 ≃
𝛼max + 𝛼min

2
. (3.107)

4. 𝑘𝑠 should be chosen on the order slightly larger than the stall transition length

𝑘𝑠 > |𝛼min − 𝛼max |. (3.108)

Remark 106. For numerical stability in the simulation model, the parameter 𝑘𝑠 may safely be
increased in order to reduce the oscillatory effects of fluttering phenomena of the foil motion by
smoothing out the lift curve.
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3.4.2 Simulation of foil dynamics via a hybrid automata
The foils are subject to physical constraints by the connection to the struts and the foils must
then be modeled as a hybrid automata. A state diagram for this hybrid model is illustrated in
Fig. 3.16 with the definitions given below.

Let the state 𝑞 denote the case when 𝜗 < |𝜗max | which the dynamics of a single foil from
Eq. (3.99) with the correction given by Eq. (3.100) is

𝑞 : 𝑀𝜗
¥𝜗𝑛 + 𝐵𝜗 ¤𝜗𝑛 + 𝐶𝜗𝜗𝑛 = 𝐶𝜗\ +𝑄𝑥 + �̃� ¤𝑥 +𝑄 ¥𝑥 +𝑄inertia, (3.109)

and the states 𝑞min and 𝑞max represents the dynamics at the maximum deflection |𝜗 | = 𝜗max by

𝑞max or 𝑞min : 𝑀𝜗
¥𝜗𝑛 + 𝐵𝜗 ¤𝜗𝑛 + 𝐶𝜗𝜗𝑛 = 𝐶𝜗\ +𝑄𝑥 + �̃� ¤𝑥 +𝑄 ¥𝑥 +𝑄inertia +𝑄𝑐, (3.110)

with the addition that ¥𝜗𝑛 = ¥\, ¤𝜗𝑛 = ¤\ and 𝜗𝑛 = \ + 𝜗max:

𝑀𝜗
¥\ + 𝐵𝜗 ¤\ + 𝐶𝜗𝜗max = 𝑄𝑥 + �̃� ¤𝑥 +𝑄 ¥𝑥 +𝑄inertia +𝑄𝑐 (3.111)

Let 𝑄𝑐 ≜ 𝐶𝜗𝜗max − 𝑀𝑥 − 𝑄 ¤𝑥 − 𝑄 ¥𝑥 + 𝑀𝜗
¥\ + 𝐵𝜗 ¤\ be the constraint moment. The set of guard

conditions G and reset maps R describing the state diagram in Fig. 3.16 are:

• G(𝑞0, 𝑞max) : 𝜗𝑛 − \ > 𝜗max R(𝑞0, 𝑞max) : 𝜗+𝑛 = \ − 𝜗max, ¤𝜗+𝑛 = ¤\, ¥𝜗+𝑛 = ¥\

• G(𝑞0, 𝑞min) : 𝜗𝑛 − \ < 𝜗min R(𝑞0, 𝑞min) : 𝜗+𝑛 = \ − 𝜗min, ¤𝜗+𝑛 = ¤\, ¥𝜗+𝑛 = ¥\

• G(𝑞max, 𝑞0) : 𝑄𝑐 > 0 R(𝑞max, 𝑞0) : 𝜗+𝑛 = 𝜗−𝑛 , ¤𝜗+𝑛 = ¤𝜗−𝑛 , ¥𝜗+𝑛 = ¥𝜗−𝑛

• G(𝑞min, 𝑞0) : 𝑄𝑐 < 0 R(𝑞min, 𝑞0) : 𝜗+𝑛 = 𝜗−𝑛 , ¤𝜗+𝑛 = ¤𝜗−𝑛 , ¥𝜗+𝑛 = ¥𝜗−𝑛

Figure 3.16: The foil state diagram used to describe the dynamics of a single foil.
The foil is free to rotate in the state 𝑞0. When the foil angle is at the maximum
deflection angle, either by 𝑞max or 𝑞min, the velocity and acceleration of the foil
angle follows that of the pitch of the vehicle.
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Chapter 4

Case study: NTNU AutoNaut

The AutoNaut is a wave-propelled USV developed and made commercially available by the
British company AutoNaut Limited [71]. A case study is performed on a unique version of this
vehicle – NTNU AutoNaut illustrated in Fig. 4.1 – owned by the Department of Engineering
Cybernetics, NTNU. Steering is provided by a conventional rudder at the stern, and the vehicle
is equipped with a submerged passive propulsion system. The wave-propulsion system consists
of a hydrofoil placed at the bow and a pair of hydrofoils at the stern of the vehicle, both of which
are passive-incidence controlled by correcting springs. A publicly available onboard navigation,
communication and payload control system developed by NTNU is found online [28].

Figure 4.1: AutoNaut vehicle from the Department of Engineering Cybernetics,
NTNU, on field operations. From Mounet et al. [67].
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Propulsion system

The submerged hydrofoils transform wave-induced heaving and pitching motions into propulsive
thrust with some minor effects of roll as well. According to AutoNaut Limited [71], the hull is
designed to exploit waves that impinge on it from the side as well as on the bow and stern for
additional propulsion.

Calm sea conditions pose the only real issue for wave propulsion, so an auxiliary thrust for the
NTNU AutoNaut USV is an optional electric propulsion pod. The pod consists of a brush-less
electric motor and a propeller in a waterproof housing, and the propulsion pod attaches to the
stern strut that enables the vehicle to drive at up to 3 knots for short periods.

4.1 Physical dimensions
A technical illustration of the NTNU AutoNaut vehicle is shown in Fig. 4.2 with main particulars,
a few of the coordinates for the pivot points for the foils and the physical limitation for the foils
are shown. The model is not to scale.

𝑦𝑏
𝐵

𝐿

𝑥𝑝1

𝑥𝑝2,3

𝜗1,min

𝜗1,max

𝜗2,3,min

𝑇

𝑆1

𝑆2

𝑆3

𝑐𝑚

𝑐𝑚

𝑧𝑏

𝑥𝑏

𝜗2,3,max Heave and pitch model

𝑇tot

Roll model

Figure 4.2: Technical drawing of NTNU AutoNaut. The length is taken as the
overall length 𝐿 ≡ 𝐿oa = 5.0 [m], the breadth is 𝐵 = 0.8 [m] and the length
between perpendiculars is 𝐿pp = |𝑥p1 | + |𝑥p2,3 | = 4.7 [m]. The draft is 𝑇 = 0.3 [m]
and the total draft is 𝑇tot = 0.8 [m].
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4.1.1 Main particulars
The main particulars for the AutoNaut vehicle is reported in Tab. 4.1.

Table 4.1: Main particulars for the 5 [m] version of the wave-propelled USV
AutoNaut. Based on reported values from [3], [67] and [28].

Main particulars and vehicle parameters
Length, 𝐿 or 𝐿oa 5.0 [m]

Length between perpendiculars, 𝐿pp 4.6 [m]
Breadth at amidships, 𝐵 0.8 [m]

Draft, 𝑇 0.3 [m]
Total draft (with struts and foils), 𝑇tot 0.8 [m]

Displacement mass, Δ 250 [kg]
Block coefficient, 𝐶B 0.505 [-]

Waterplane area coefficient, 𝐶wp 0.8 [-] (estimated)
Transverse metacentric height, GMT 0.113 [m]

Radius of gyration, 𝑅66 0.25 𝐿pp [m]
CG longitudinal displacement, 𝑥𝑔 0 [m] (estimated)

4.1.2 Maneuvering model
The maneuvering model for this unique wave-propelled USV has been investigated by Dallolio
et al. [3]. Inspired by their choice of maneuvering matrices, the reported values used in this
report for model Σ1 are given in Tab. 4.7.

Table 4.2: Parameters 𝜶∗1 used for the maneuvering model Σ1.

Element Parameter Value
𝜶∗1 [1] 𝐿∗d length of maneuvering design model 4.6 [m] (5.0)
𝜶∗1 [2] 𝐵∗d breadth of maneuvering design model 0.8 [m] (0.8)
𝜶∗1 [3] 𝑇∗d draft of maneuvering design model 0.15 [m] (0.3)
𝜶∗1 [4] 𝑇∗1 surge period 2.0 [s]
𝜶∗1 [5] 𝑇∗2 sway period 4.0 [s]
𝜶∗1 [6] 𝑇∗6 yaw period 3.0 [s]

The inertia matrix was found by the design parameters given by Tab. 4.7, the empiric relations
by Clarke et al. [44] reported in Tab. 3.2 and the method for estimating the added mass in surge
by Eq. (3.22) from Brix [66]. In surge the total draft was used instead of the design draft. The
water density was set to 𝜌 = 1025 [kg/m3]. An estimate for the added inertia matrix MA and
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the total inertia matrix M was found as

M̂A =
©«
21.9 [kg] 0 0

0 212.7 [kg] 17.4 [kg m]
0 −0.0015 [kg m] 252.9 [kg m2]

ª®¬ , (4.1)

where the matrix was symmetrized by the method MA = 1
2 (M̂A +M̂⊤

A) stated in Remark 29 such
that the total inertia matrix was found (with 𝐽𝑧 = 𝑚𝑅2

66 + 𝑚𝑥
2
𝑔 = 330.6 [kg m2]),

M =
©«
271.9 [kg] 0 0

0 462.7 [kg] 8.7 [kg m]
0 8.7 [kg] 583.6 [kg m2]

ª®¬ . (4.2)

In Dallolio et al. [3], the off-diagonal elements were neglected and they used the values

M =
©«
277.7 [kg] 0 0

0 462.9 [kg] 0
0 0 593.4 [kg m2]

ª®¬ .
From the periods 𝑇∗1 , 𝑇∗2 and 𝑇∗6 , the damping matrix was estimated by Eq. (3.21)

B𝑝 =
©«
136.0 [kg/s] 0 0

0 115.6 [kg/s] 0
0 0 194.5 [m kg/s]

ª®¬ , (4.3)

which in [3] the following damping was used

B𝑝 =
©«
138.85 [kg/s] 0 0

0 115.73 [kg/s] 0
0 0 197.8 [m kg/s]

ª®¬ .
Remark 107. According to conversations with Øveraas [72], the reported values in the damping
matrix in [3] might be off by a factor of 10, as the surge damping coefficient might be as little
as 𝐵𝑝11 = 10 [kg/s].

The Coriolis and centripetal matrix C is calculated from Eq. (3.9), which is recomputed
during simulations is not.

In the simulation model, additional viscous damping B𝑣 is required for increased stability in
the maneuvering model. Viscous damping in surge and sway was used:

B𝑣 (𝝂r) = ©«
347.13|𝑢r | 0 0

0 289.33|𝑣r | 0
0 0 0

ª®¬ . (4.4)
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Current model

A constant ocean current with cardinal direction 𝛽𝑉c and magnitude 𝑉c is used in the simulation
– a 2D irrotational model – such that the relative velocity 𝝂r = 𝝂−𝝂c is calculated by the currents
given in the body frame with

𝝂c = R𝑧 (𝛽𝑉c − 𝜓)⊤𝝂𝑛c = [𝑢𝑐, 𝑣𝑐, 0]⊤. (4.5)

Table 4.3: Ocean current simulation settings.

Ocean current
Ocean current cardinal direction, 𝛽𝑉c [0◦, 360◦) [deg]

Ocean current magnitude, 𝑉c [0, 1] [m/s]
Ocean current constant in Gauss-Markov process, 𝑇c 0 [s]

Steering model parameters

The parameters in the steering model were identified in Dallolio et al. [3]. Reported values in
accordance with the notation and methods in Sect. 2.7 are listed in Tab. 4.4. The rudder force
vector 𝜏rudder is calculated by Eq. (2.182).

Table 4.4: NTNU AutoNaut steering model parameters. Obtained from Dallolio
et al. [3].

Steering parameters
Rudder area, 𝐴R 0.11 [m2]
Aspect ratio, ΛR 1.68 [-]

Longitudinal rudder position coordinate, 𝑥R -2.3 [m]
Rudder coefficient, 𝐶NR 1.56 [-]

Drag coefficient, 𝑡R 0.3 [-]
Force factor, 𝑎HR 0.2 [-]

Interaction coefficient, 𝑥HR -1.8 [-]

Steering machine dynamics

A simplified representation of the steering machine dynamics is suggested by Van Ameron-
gen [73] for simulation purposes, in which the maximum rudder angle 𝛿max, and rudder rate
¤𝛿max are specified according to Fig. 4.3. The rudder angle on the AutoNaut vehicle is limited
to 𝛿 ∈ [−45◦, 45◦] [3], and the rudder rate limit was set to 𝛿max = 5◦ [s−1]. According to
Fossen [4], for most commercial ships, the rudder rate limiter is ¤𝛿max ≥ 2.3◦ [s−1].

A simple transfer function from commanded rudder control to rudder was simulated by

𝛿(𝑠) = 1
1 + 𝑇𝛿𝑠

𝛿𝑐 (𝑠), (4.6)
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Steering machine

Rudder
control

𝛿𝛿max
𝛿𝑐

−
1
𝑇𝛿

¤𝛿max

Figure 4.3: Diagram of simplified rudder control loop. Based on Van Ameron-
gen [73] and Fossen [4] with the time constant 𝑇𝛿.

where the rudder time constant was set to𝑇𝛿 = 0.2 [s] in the simulation model with the constraints
shown in Fig. 4.3.

Wind model

The parameters in the wind model was identified in Dallolio et al. [3]. Reported values in
accordance with the notation in Sect. 3.2 are listed in Tab. 4.5. The wind force vector 𝜏wind is
calculated by Eq. (3.11) for air density 𝜌a = 1.25 [kg/m3]. In the simulation, a constant wind
direction 𝛽𝑉w and magnitude 𝑉w are used without gust.

Table 4.5: NTNU AutoNaut wind model parameters. From Dallolio et al. [3].

Wind parameters
Wind coefficient 𝑥-direction, 𝑐𝑥 0.50 [-]
Wind coefficient 𝑦-direction, 𝑐𝑦 0.70 [-]
Wind coefficient 𝑧-moment, 𝑐𝑛 0.05 [-]

Frontal projected area, 𝐴Fw 0.195 [m2]
Lateral projected area, 𝐴Lw 1.5 [m2]

Length over all, 𝐿oa 5.0 [m]

Table 4.6: Wind simulation settings.

Wind
Wind cardinal direction, 𝛽𝑉w [0◦, 360◦) [deg]

Wind magnitude, 𝑉w [0, 10] [m/s]
Wind constant in Gust process, 𝑇w 0 [s]
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4.1.3 Wave-induced motion parameters
Wave-induced motion was investigated by Mounet et al. [67] for the frequency-domain response
of the specific AutoNaut vehicle in study with medium spring stiffness. They found the weight-
averaged tuning parameters reported in Tab. 4.7 by data points obtained by the field trials shown
in Fig. 4.4.

(a) Area of study: Frohavet. (b) Frohavet.

Figure 4.4: AutoNaut field operations from March/April 2022. Facsimile from
Mounet et al. [67]

We see that the effective model of the AutoNaut vehicle is represented by main dimensions
that are slightly longer and wider than the actual dimensions, and the draft is about the same.

Fluid memory effects

The transversal aspect ratio of the effective model is Λ̃∗T = �̃�∗/𝑇∗ = 4.31. From the empiric
equations for the fluid memory effects parameters in Eq. (3.80), the parameters for the non-
dimensional transfer function for fluid memory effects in heave and pitch motion are

𝑞′0 = 0.459, 𝑝′0 = 0.489, 𝑝′1 = 0.701,

and the geometric constant 𝐶geo,3 = �̃�∗ for heave makes

𝑞0 = 27952, 𝑝0 = 7.76, 𝑝1 = 2.79, (parameters for heave) (4.7)

and the geometric constant 𝐶geo,5 = 𝐿𝑇GML for pitch makes

𝑞0 = 87986, 𝑝0 = 7.76, 𝑝1 = 2.79, (parameters for pitch) (4.8)

for the approximation GML = 1
12 �̃�
∗2/𝑇∗.
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Table 4.7: Parameters 𝜶∗2 used for the maneuvering model Σ2. Weight-averaged
tuning parameters from in-situ measurements of the NTNU AutoNaut vehicle from
the operations shown in Fig. 4.4. Optimal values obtained from Mounet et al. [67].

Element Parameter Value
𝜶∗2 [1] �̃�∗ effective length 6.146 [m] ( 5.0 )
𝜶∗2 [2] �̃�∗ effective breadth 1.236 [m] ( 0.8 )
𝜶∗2 [3] 𝑇∗ effective draft 0.287 [m] ( 0.3 )
𝜶∗2 [4] ˜GM∗T eff. transversal metacentric height 0.845 [m]
𝜶∗2 [5] �̃�∗wp eff. waterplane area coefficient 0.683 [-]
𝜶∗2 [6] 𝛿∗geo ratio of aft beam length to overall length 0.149 [-]
𝜶∗2 [7] `∗

𝐵
ratio viscous damping to critical damping 0.110 [-]

𝑑∗ longitudinal distance from IMU to CG 1.705 [m]

Table 4.8: Fluid memory effects parameters for the effective monohull geometry
for motions in pitch and heave.

Fluid memory effects
Parameter 𝑞0 27952 / 87986 pitch / heave
Parameter 𝑝0 7.76
Parameter 𝑝1 2.79

The matrices for the wave-induced motion was found with the parameters 𝜶2. The inertia
matrix with added inertia Mrao was from Eq. (3.62), the damping matrix Brao(𝜔e) was found
from Eq. (3.63) and the restoring matrix Crao was found from Eq.(3.64). In practical simulations,
the longitudinal metacentric height GML was not used, and the matrices was scaled accordingly.
The damping matrix was evaluated at the encounter frequency 𝜔e when simulated for a single
wave frequency, whereas the fluid memory filter should be added for a general simulation model
capable of simulating the vehicle response in irregular sea.
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4.1.4 Wave-propulsion model
The wave-propulsion model Σ3 was determined by measuring the position of the foils, approxi-
mating their geometry in order to assess the hydrodynamics forces involved, and by identifying
the variable spring stiffness on the USV.

Positions and deflection angles

According to AutoNaut Ltd. [28], the total draft of this wave-propelled USV is about 0.8 [m].
This depth should include the total length of the struts and the maximum depth of the foils when
the angles 𝜗𝑖 for 𝑖 = 1, 2, 3 are turned at maximum. The vertical length of the struts was however
measured below the hull line, marked by the line between the black and yellow paint on the
physical vehicle from Fig. 4.1, to about 0.6 [m]. With the maximum deflection of the foils, this
indicates a total draft of about 0.7 [m]. This length was however estimated as a measure from
the design draft length of 𝑇d = 0.15 [m]. In correspondence with Johansen [74], strut lengths
of 0.7 [m] – corresponding to vertical coordinate in the pivot positions – was employed in the
simulation model. The positions of pivot points for the foil at the bow and the pair of foils at the
stern, given in the body frame, are

r𝑏p,1 =
©«
2.4 [m]
0 [m]

0.7 [m]

ª®¬ , (foil mounted at bow), (4.9a)

r𝑏p,2 =
©«
−2.3 [m]
−0.3 [m]
0.7 [m]

ª®¬ , r𝑏p,3 =
©«
−2.3 [m]
0.3 [m]
0.7 [m]

ª®¬ . (pair of foils at the stern) (4.9b)

The lateral coordinate for the pair of foils at the stern is included for evaluation of the local fluid
velocity field for finding the forces on the foils. The longitudinal positions were found by setting
the distance 𝑥𝑏p [1] − 𝑥𝑏p [2] = 𝐿pp = 4.7 [m].

The physical limits in the deflection angles for the foils were measured by analyzing the
images given in Figs. 4.5 and 4.6, where the limits was determined by±50◦ and±45◦ respectively,

𝝑 =
©«
𝜗1
𝜗2
𝜗3

ª®¬ , 𝝑 ≤ 𝝑max =
©«
50◦
45◦
45◦

ª®¬ . (4.10)

123



4.1. Physical dimensions Chapter 4. Case study

𝜗min

(a) Measured angle 𝜗min = −51◦ ± 1◦.

𝜗max

(b) Measured angle 𝜗max = 49◦ ± 1◦.

Figure 4.5: The foil at the bow is limited to 𝜗1 ∈ [−50◦, 50◦]. The angles are
defined relative to the vehicle’s axis 𝑥𝑏. In the images, it was measured relative to
the vertical line of 𝑧𝑏 and converted. Adapted from Tufte [17].

𝜗min

(a) Measured angle 𝜗min = −46◦ ± 1◦.

𝜗max

(b) Measured angle 𝜗max = 44◦ ± 1◦.

Figure 4.6: The pair of foils at the stern is limited to 𝜗2,3 ∈ [−45◦, 45◦]. The
angles were measured relative to the vehicle’s axis 𝑥𝑏. Adapted from Tufte [17].
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Table 4.9: Parameters 𝜶∗3 used in the maneuvering model Σ3.

Element Parameter Value
𝜶∗3 [1] 𝑆∗ span 1.3 [m]
𝜶∗3 [2] 𝑐∗𝑚 mean chord length 0.192 [m]
𝜶∗3 [3] 𝑡′∗ chord thickness 0.15
𝜶∗3 [4] 𝑥′∗𝑚 point of maximum thickness 0.20
𝜶∗3 [5] 𝛼∗𝑠 effective stall angle 12◦
𝜶∗3 [6] 𝑘∗𝑠 stall transition length 10◦
𝜶∗3 [7] 𝐶∗

𝐿𝑠
detached lift coefficient 0.653

𝜶∗3 [8] 𝐶∗
𝐷𝑠

detached drag coefficient 0.286
𝜶∗3 [9] 𝑥′∗p pivot point length from LE 0.209
𝜶∗3 [10] 𝛿𝑥′∗ center of mass length from LE 0.370
𝜶∗3 [11] 𝑇∗

𝜗
damping period 0.05 [s]
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Span of the foils

The chord distribution along the span was found by sketching the contour of the foils on a sheet
of paper, included in Appendix ??. Data points from this measurement are available in Tab. D.1.
From the contour, the identified span of the foils were identical for the foil mounted at the bow
and for the total span of the pair of foils mounted at the stern with 𝑆 = 1.3 [m]. The maximum
chord length was measured directly as 𝑐max = 0.23 [m].

The projected area of the foils were estimated by the contours given in Fig. D.1, with

𝐴F 1 = 0.248 [m2], 𝐴F 2,3 = 0.127 [m2], (4.11)

from which the foil area 𝐴F = 0.250 [m2] was decided to be used for the foil at the bow and for
the combined area of the pair of foils at the stern. The mean chord length was found from the
area to be 𝑐𝑚 = 0.192 [m].

A non-dimensional parametrization of Eqs. (2.107a) and (2.107b) was found with the cur-
vature parameters 𝑞𝑙 = 2.0 and 𝑞𝑡 = 3.0. The tip of the wing from trailing edge was measured
at the distance 𝑥′𝑒 = 0.075, where the prime notation in this context denotes per half span. The
chord length was found to follow

𝑥′LE = 0.075 + 0.275
(
1.0 − 𝑦2

)1/2
, (4.12a)

𝑥′TE = 0.075 − 0.075
(
1.0 − 𝑦3

)1/3
, (4.12b)

and a comparison of the hand sketch and the model by Eq. (4.12) is illustrated in Fig. 4.7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
AutoNaut Model

Hand Drawing

Figure 4.7: Comparison of the projected foil shape to the identified model. The
simple super-elliptic curvature found in Eq. (4.12) approximated the shape to a
reasonable degree according to the hand sketch, which was found by the tabular
values in Tab. D.1.
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Sectional characteristics

The sectional shape of the foils is shown in Fig. 4.9 and were assumed identical for all of the
foils. The thickness was measured to 𝑡′ = 0.15 meaning that linear foil theory developed in
Sect. 2.6 indeed is applicable according to Def. 18 on NTNU AutoNaut. The shape however was
not a standardized NACA section, so the proposed method given in Sect. 2.6.1 was employed
where the position of maximum thickness was measured as 𝑥′𝑚 = 0.20.

From the section given by Eq. (2.111) and the assumption of homogeneous mass density
from Assumption 21, the center of mass was inspired by the calculation by Tufte [17] and found
to be

𝑥′g =
2
𝑎′F

∫ 1

0
𝑥′ · 𝑦′TUFTE(0.15, 0.20) d𝑥′ = 0.37, (4.13)

where 𝑎′F = 0.0854 is the cross sectional area.

(a) Physical section. Adapted from Tufte [17]. (b) Foil profile with 𝑡′ = 0.15 and 𝑥′𝑚 = 0.20.

Figure 4.8: Comparison of the physical foil section on NTNU AutoNaut to the left,
and identified section by Eq. (2.111) to the right. The physical section contains a
nonzero trailing edge.

Spring stiffness

The foil at the bow is attached by a linear spring, which can be seen in Fig. 4.5. For NTNU
AutoNaut, the available spring settings are listed in Tab. 4.10. The spring is assumed ideal by
Hooke’s law and acts with the force −𝑘𝛿𝑙, where 𝑘 [N/m] is the spring stiffness and 𝛿𝑙 [m] is
the perturbation distance representing a compression or stretch of the spring from equilibrium.
The spring was measured to be attached at the distance 𝑥𝑠 = 60 [mm] from the pivot point. The
linearized spring moment around 𝜗 = 0 is

−^𝜗 = 𝑥𝑠︸︷︷︸
arm

· (−𝑘𝑥𝑠𝜗)︸    ︷︷    ︸
moment

, =⇒ ^lin. = 𝑘𝑥
2
𝑠 .

The pair of foils mounted at the stern is passively controlled by a pair of closed wound
torsion springs, shown in Fig. 4.11.

The spring constant for the pair of springs at the stern was constant. The stiffness was
estimated by use of Castigliano’s method to find the deflection in radians in the body of a torsion
spring from an externally applied moment according to Timoshenko [75], see Appendix B.5.
The spring parameters are listed in Tab. 4.11 and found by Eq. (B.33) with
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Figure 4.9: Comparison of foil sections from the identified empiric model in
Eq. (2.110) of NTNU AutoNaut, compared to standardized NACA0015 section
given by Eq. (2.109). The foil thickness is 𝑡′ = 𝑡/𝑐 = 0.15 occurring at 𝑥′𝑚 = 0.20.
The actual section is slimmer with a straight trailing edge.

Table 4.10: Spring settings for the foil at the bow on NTNU AutoNaut.

Spring setting Lin. torsion stiffness
Soft spring stiffness, 𝑘soft (^f,soft) 1.226 [N/mm] 4.41 [Nm/rad]

Medium stiff spring stiffness, 𝑘med. 2.20 [N/mm] 7.92 [Nm/rad]
Stiff spring stiffness, 𝑘stiff 5.40 [N/mm] 19.4 [Nm/rad]

^a =
𝐸𝑑4

64𝐷𝑁a
,

with the result of ^a = 5.25 [Nm/rad].

Foil inertia

A sectional foil piece of length 0.44 [m] from NTNU AutoNaut was measured with mass of
1.240 [kg]. With the assumption of homogeneous mass density of the wings from Assump-
tion 21, an estimate of the total mass of the foil at the bow and the pair of foils at the stern is
about 3.5 [kg].

1The actual value was not measured. The approximate values was found from tables on steel characteristics. A
value of 200 GPa was employed in the simulation.

2The actual value was not measured. The values was approximated from studying Fig. 4.11b
3When the pair of foils at the stern is considered as a single foil, the equivalent spring stiffness is doubled
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Figure 4.10: The wing approximation used for NTNU AutoNaut in which the
rectangular shape was found by weighting the quarter-chord chord length from
leading edge (top edge). The pivot point is denoted by suspension axis and the
bounds for hydrodynamic center (HC), in dashed lines, represents the possible
positions for the center of pressure.

Remark 108. Calculations from the assumption of the wing being neutrally buoyant in Assump-
tion 18 indicates a foil mass of about 𝑚F = 𝑆𝜌𝑎′F𝑐

2
𝑚 = 4.19 [kg] where 𝜌 is the sea density.

Note that this calculation is based on the rectangular approximation, which overestimates the
volume since the rectangular section was determined through the projected wing area without
consideration of the volume. The assumption may however be considered valid for the foil
dynamics since the rough estimation only indicates about 15 % discrepancy.

From Remark 108 the actual foil density might be slightly buoyant with 𝜌F = 900 [kg/m3].
Since the foil moment of inertia scales with the square of the chord length, the slightly lower
mass density of 𝜌F = 500 [kg/m3] calculated on the rectangular foil resulted in the moment of
inertia

𝐽F = 0.109 [kg m2]. (4.14)
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(a) Spring wire diameter was measured to 4.7 [mm]. (b) Number of active turns is 𝑁a = 10.3.

Figure 4.11: Pair of closed-wound torsion springs attached at the stern. The
spring wire diameter is shown to the left and the number of active turns is shown
to the right.

Table 4.11: Parameters for the pair of closed wound torsion springs at the stern
on NTNU AutoNaut.

Spring parameter
Number of active turns, 𝑁a 10.3 [-]

Young’s modulus, 𝐸 180–210 [GPa] (assumed1)
Spring wire diameter, 𝑑 4.7 [mm]
Mean coil diameter, 𝐷 6𝑑 ± 1𝑑 [mm] (estimated2).

Spring stiffness, ^a 4.1–6.6 [Nm/rad] (uncertainty)
Spring stiffness in simulation, ^∗a 5.25 [Nm/rad]

Effective spring stiffness, ^a 10.5 [Nm/rad] (eff. foil3)
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List of geometrical parameters

In this work, the foil parameters listed in Tab. 4.12 has been identified by measuring the foils.

Table 4.12: NTNU AutoNaut geometric dimensions of the hydrofoil.

Hydrofoil parameters Value Unit
Foil span, 𝑆 1.30 [m]
Foil area, 𝐴F 0.250 [m2]

Mean chord length, 𝑐𝑚 0.192 [m]
Maximum chord length, 𝑐max 0.228 [m]

Tip distance from TE, 𝑥𝑒 0.05 [m]
Aspect ratio, ΛF 6.77 [-]

Pivot point from LE, 𝑥′𝑝 0.209 [-]
Center of mass from LE, 𝑥′g 0.37 [-]
Foil maximum thickness, 𝑡′ 0.15 [-]

Position of maximum thickness from LE, 𝑥′𝑚 0.20 [-]
Mass, 𝑚F 3.5 [kg] (estimated4)

Moment of inertia, 𝐽F 0.109 [kg m2] (estimated5)
Curvature parameter LE, 𝑞𝑙 2.0 [-]
Curvature parameter TE, 𝑞𝑡 3.0 [-]

Lift and drag curves

The program Xfoil with the identified section given by Eq. (2.111) with thickness 𝑡′ = 0.15 and
its position 𝑥′𝑚 = 0.20 were used to estimate numerically the lift curve. Lift, drag and normal
coefficients from Eq. 2.131 are plotted in Fig. 4.12. The effective stall angle 𝛼𝑠 = 12◦ and the
transition length 𝐿𝑠 was set to 10◦. The detached lift coefficient was found as 𝐶𝐿𝑠 = 0.653 and
the drag coefficient was determined according to the method in Sect. 3.4.1 by the drag coefficient
amplitude 1.8 such that 𝐶𝐷𝑠 = 0.286.

For practical reasons to avoid fluttering phenomena on the foil dynamics, the transition
length was increased five-fold to 𝐿𝑠 = 50◦. The lift, drag and normal coefficients used in the
simulation was therefor used with the curves in Fig. 4.13.

Kinematic considerations

The relative fluid velocities to evaluate the forces on the foils was found with the USV linear
motion v𝑏nb with the added kinematic relation from Eq. (2.6) with the position of the pivot points
by r𝑏p , from the velocity of the waves v𝑛waves = ∇Φ𝑛 from Eq. (2.47) where Φ𝑛 is the wave

4The total mass of the foil is estimated by a sectional piece, and the total mass was hence not measured.
5a mass density of 𝜌 = 500 [kg/m3] allowed calculation of moment of inertia from the sectional shape and mean

chord length along the span
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Figure 4.12: Approximation for lift, drag and normal coefficients identified for
the foil section on NTNU AutoNaut.
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Figure 4.13: Lift, drag and normal coefficients used in the simulation model for
NTNU AutoNaut to avoid fluttering phenomena.
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potential and the current velocity v𝑏c = v𝑏𝑐 = R𝑏
𝑛 (𝚯nb)𝝂𝑐. Since the body angular velocities is

not simulated directly, they were found from the Euler angles 𝚯nb with the assumption of zero
roll angle. From Eq. (2.18), the body angular velocities was found with 𝝎𝑏

nb = T(𝚯nb)−1 ¤𝚯nb.
The relative velocities used for calculating the circulatory forces on the vehicle was

v𝑏rp = v𝑏nb + S(r𝑏bp)
⊤T(𝚯nb)−1 ¤𝚯nb︸                             ︷︷                             ︸

motion of pivot point

−v𝑏c − R𝑏
𝑛 (𝚯nb) [∇Φ𝑛]

����
r=rp︸                            ︷︷                            ︸

- fluid motion

, (4.15)

where r𝑏bp is the position of the pivot points for the foil in consideration and the wave velocity is
evaluated at the pivot point rp.

For evaluations of non-circulatory forces, a time-differentiation of Eq. (4.15) can be em-
ployed. However, this acceleration should be evaluated at the midpoint of the foil for the linear
added mass force. For practical implementation of the simulation model, it was necessary
to find an analytical expression for the kinematic for twice homogeneous transformations to
be evaluated for the foils. A derivation for the use in the simulation model can be found in
Appendix B.4.

4.2 Complete model
A complete model of NTNU AutoNaut based on the method in this work is presented in this
section to showcase the

4.2.1 Equations of motion for unified model architecture
The USV model is split into a maneuvering part Σ1, with position denoted 𝜼𝑚 in this context, and
a seakeeping part Σ2 with the perturbation coordinates 𝝃. Fluid memory effects are incorporated
in the seakeeping model Σ2 by an approximate state-space and non-stationary circulatory effects
are incorporated in the foil dynamics Σ3 with a velocity-dependent state-space model. The foil
dynamics is driven by the joint motion of the maneuvering motion and the seakeeping motion,
corrected by inertia forces and simulated as a hybrid model according to Sect. 3.4.2.
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¤𝜼m = JΘ (𝜼m) [𝝂c + 𝝂r],
M¤𝝂r + C(𝝂r)𝝂r + B(𝝂r)𝝂r = 𝝉wind + 𝝉foil + 𝝉wave2 + 𝝉rudd (𝛿), (maneuvering Σ1)

Mrao (∞) ¥𝝃 + Brao (∞) ¤𝝃 + 𝝁r + Crao𝝃 = 𝝉wave1, (seakeeping Σ2)
¤x = Arxr + Br𝛿𝝂r, (fluid memory)
𝝁r = Crxr,

𝜼 = 𝜼m + 𝝃, (position)
𝝂 = 𝝂c + 𝝂r + ¤𝝃 (velocity)

M𝜗
¥𝝑n + B𝜗 ¤𝝑n + C𝜗 (𝝑)𝝑n = C𝜗 (𝝑)L𝜗𝝃 +Qnon circ + Q̃circ +Qinertia ( ¥𝜼) (foil model Σ3),

¤xcirc = A(𝝂r)xcirc + BQcirc, (fluid memory foils)
Q̃circ = C(𝝂r)xcirc + DQcirc,

4.2.2 Matrix-vector representation
If the 6-DOF vehicle states and the 3-DOF foil states are collected in a single state vector by

xAutoNaut ≜ [𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜙, \, 𝜓, 𝜗𝑛1, 𝜗𝑛2, 𝜗𝑛3]⊤, (4.16)

a matrix-vector representation of the USV dynamics is

M(x) + B( ¤x) ¤x + C(x, ¤x) ¤x +G(x)x = 𝝉. (4.17)

The equivalent inertia matrix including added inertia for the complete model is

MAutoNaut =



𝑀11
𝑀22 𝑀26

𝑀33 𝑀
[2]
35

𝑀44

𝑀
[2]
53 𝑀55

𝑀62 𝑀66

𝑀
[1]
71 𝑀

[1]
73 𝑀77

𝑀
[1]
81 𝑀

[1]
83 𝑀88

𝑀
[1]
91 𝑀

[1]
93 𝑀99



,

the damping matrix is
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BAutoNaut =



𝐵0
11

𝐵0
22 𝐵0

26
𝐵∞33 𝐵

[2]
35

𝐵44

𝐵
[2]
53 𝐵∞55

𝐵0
62 𝐵0

66
𝐵77 (·) [3] (·) [3]
(·) [3] 𝐵88 (·) [3]
(·) [3] (·) [3] 𝐵99


,

the Coriolis and centripetal matrix is

CAutoNaut =



0 𝐶12 𝐶16
𝐶21 0 𝐶26

0
0

0
𝐶61 𝐶62 0

0
0

0


,

and the restoring matrix with generalized forces are

GAutoNaut =



0
0

𝐺33 𝐺
[2]
35

𝐺44

𝐺
[2]
53 𝐺55

0
𝐺75 𝐺77
𝐺85 𝐺88
𝐺95 𝐺99


, 𝝉AutoN. =



𝑋 (2)

𝑌 (2)

𝑍 (1)

𝐾 (1)

𝑀 (1)

𝑁 (2)

𝑄
(1)
1

𝑄
(1)
2

𝑄
(1)
3


.

Remark 109. The matrices above is included to showcase that the overall model is a sparse
system.

4.3 Implementation environment

The commercially available software Matrix Laboratory (MATLAB®) and the simulation and
model-based design software Simulink® from MathWorks [62] was used for implementation
and numerical integration of the equations of motion of the wave-propelled USV.
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Parameters and functions in the simulation model are defined in a MATLAB-script. Here,
the symbolic library is used for defining symbolic representations of the matrices and functions
before they are transferred to numerical functions. A Simulink block diagram implementation
with the numerical functions, integrates the vehicle dynamics with a fixed step size of
Δ𝑡 = 0.01 [s], representing about 10–100 times higher order of magnitude than the fastest
dynamics in the simulation model. The developed files for a complete implementation for the
case study for NTNU AutoNaut can be found at the platform GitHub [76]. The code base was
approximately 1000 lines, and the block-diagram for the simulation in Simulink was contained
about 100 elements.
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Chapter 5

Simulation results and discussion

This chapter presents an analysis of the main results obtained from implementation of the case
study from Chapter 4. Simulation results are given in Sect. 5.1 followed by a discussion from
the findings of the wave-propelled USV and on the model architecture in general in Sect. 5.2.
The main contributions in this work are briefly summarized in Sect. 5.4.

5.1 Simulation results
The proposed model architecture with the parameters determined by Chapter 4 was simulated
in Simulink. An open-loop simulation illustrates the feasibility of the model, shown in Fig. 5.1.
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Figure 5.1: Simulation for NTNU AutoNaut over 𝑡 = 200 [s]. The wave height
was Za = 0.6 [m] with wave frequency 𝜔 = 2.5 [s−1] and direction 𝛽𝑘 = 40◦. Sea
currents 𝑉c = 0.2 [m/s] was directed to 𝛽𝑉c = 20◦. 𝑉w = 2.5 [m/s], 𝛽𝑉w = −45◦.
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5.1.1 Speed prediction
A distribution of forward speed prediction for NTNU AutoNaut is given in Fig. 5.2.

5.1.2 Course control
A classical or advanced line of sight (LOS) control algorithm can be used to compute the
desired course angle 𝜒d during path following for instance by choosing between the methods
described by Fossen [77]. The desired course angle is fed into a controller to formulate the
rudder command. For simulation purposes, a PI derivative controller (PID) was chosen as

𝛿d = sat𝜒
©«−𝐾𝑝𝜒 ssa(𝜒 − 𝜒d) − 𝐾𝑖𝜒

∫ 𝑡

0
if |𝛿d |<𝛿max

ssa(𝜒 − 𝜒d) d𝜏 − 𝐾𝑑𝜒𝑟
ª®®¬ , (5.1)

where 𝜒 is the course angle and 𝑟 is the yaw rate. The controller gains was chosen with trial and
failure – giving a satisfactory result with

𝐾𝑝𝜒 = 1.0, 𝐾𝑖𝜒 = 0.05, 𝐾𝑑𝜒 = 10. (5.2)

Integrator wind-up was prevented by activating the integration only when |𝛿d | < 𝛿max = 45◦.
The function sat𝜒 : R → [−𝜋/4, 𝜋/4] prevents the commanded rudder angle to succeed the
limits of 𝛿max. The unconstrained course angle error �̃� = 𝜒−𝜒d is mapped to the interval [−𝜋, 𝜋)
using the operator ssa : R → [−𝜋, 𝜋) representing the smallest signed difference between the
angles 𝜒d and 𝜒. The steering machine was introduced for

5.1.3 Spring stiffness
A comparison of spring stiffness is illustrated in Fig. 5.5.

5.1.4 Summary of results from the case study
A direct result of the case study analysis is showcasing the feasibility of a practical simulation
of the model architecture by the interconnected sub-models Σ1–Σ3. Possibly one of the most
influential benefit from the case study is the identification of the foil geometry listed in Tab. 4.12
as well the empiric equations for lift and drag curves.

Feasible motion predictions

The simulation model is feasible for prediction of 6-DOF motions of the vehicle in sea currents,
waves and wind. Open and closed-loop motion predictions for course control was simulated and
plotted in Figs. 5.1 and 5.3.
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(a) Wave amplitude Za = 0.2 [m]. (b) Wave amplitude Za = 0.3 [m].

(c) Wave amplitude Za = 0.4 [m]. (d) Wave amplitude Za = 0.5 [m].

(e) Wave amplitude Za = 0.6 [m]. (f) Wave amplitude Za = 0.7 [m].

(g) Wave amplitude Za = 0.8 [m]. (h) Wave amplitude Za = 0.9 [m].

Figure 5.2: Speed over ground in beam regular waves with medium spring stiffness
for a constant wave height. The shaded regions correspond to a 90 % interval. The
environmental configuration is the same as in Fig. 5.1.
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Figure 5.3: Closed loop course control simulation for NTNU AutoNaut over
𝑡 = 200 [s] with desired course 𝜒d = 0◦ (North heading).

Spring setting

The three spring settings was tested in a test-bed analysis given in Fig. 5.5. The soft, medium
and stiff spring settings are optimal for different wave-frequency characteristics in the area the
AutoNaut is to be operated. According to the simulation model, the soft spring is optimal for
𝜔 < 1.4 [s−1], the medium spring is best suited around 𝜔 ≃ 1.8 [s−1] and the stiff springs are
best for 𝜔 > 2.2 [s−1].

Table 5.1: Optimal spring stiffness in sea states given by wave frequencies based
on wave-propelled thrust. For long-crested waves, the soft springs are best option.
For short-crested waves, the stiffest spring is the best.

Wave frequency Optimal spring stiffness
𝜔 ≲ 1.4 [s−1] Soft spring
𝜔 ≃ 1.8 [s−1] Medium stiff spring
𝜔 ≳ 2.2 [s−1] Stiff spring

Strut lengths

Various lengths of the struts may be tested in the simulation to optimize the strut lengths of
the USV. However, the wave-induced motion model is designed for a specific strut length, thus
changing this parameter might lead to erroneous results as the validity of the model is not
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Figure 5.4: Commanded rudder control for the simulation plotted in Fig. 5.3.
Notice, that first-order wave oscillations are present in the desired rudder control.
To prevent this, a wave filter should be added to the control algorithm.

guaranteed. A study of optimal foil placement along a marine craft can is referred to the results
of Bøckmann [2].

5.2 Discussion
A small discussion on the simulation results follows.

Impinging waves on hull

Any propulsive thrust from impinging waves on the hull is ignored in this model.

Validity of linear wave theory

Linear wave theory is only valid for small wave amplitudes, or more precisely, to small wave
steepness. According to Krogstad and Arntsen [35] and Pettersen [36], this is limited to the

𝐻

_
=

1
7
. (5.3)

Division by zero for Prime normalization system

A disadvantage for the Prime normalization method is that it is unsuited for low-speed applica-
tions such as dynamic positioning and wave-propelled USVs. Normalization of the velocities 𝑢
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Figure 5.5: Simulation of forward speed prediction with 90 % variance interval on
NTNU AutoNaut for soft, medium and stiff spring setting. The Pierson-Moskowitz
spectrum, scaled by 10·𝑆(𝜔), is plotted with significant wave height of𝐻𝑠 = 1 [m].
The spring setting for the wave-propelled USV should be evaluated with respect
to the wave frequency distribution in the operational area of deployment. The
simulation suggest that the soft spring setting is most efficient with regards to
wave-propulsion for wave frequencies below 𝜔 = 1.4 [s−1], the medium setting is
efficient for 𝜔 = 1.4–2.2 [s−1] and the stiff spring is most efficient for short-crested
sea, typical found in fjords for 𝜔 > 2.2 [s−1].

and 𝑣 implies dividing by the speed𝑈, which can be zero.
The better approach for comparison of motion derivatives across different wave-propelled

USVs would be to use the Bis system [4]. That system is valid for zero speed as well as
high-speed applications since division by speed𝑈 is avoided.

Spring setting influence on RAOs

The optimization for the wave-induced motion model from Mounet et al. [67] was based on a
data set for NTNU AutoNaut with the medium spring setting. As a result, the model is only
validated for a single spring setting. For simulation purposes, the wave-induced motions are
thus less accurate when other spring settings are selected. A more accurate model would be
to incorporate the spring setting into the parameter vector 𝜶2. The following remark discuss
the use of different data sets and spring settings, where the two common operational areas for
NTNU AutoNaut is shown in Fig. 5.6 from Frohavet and Trondheim Fjord.

Remark 110. The data set used in Mounet et al. [67] from March/April 2022 used the medium
stiff springs, while an available data set from December 2022 used the stiffest settings. In both
cases the strut length was constant and the torsion spring stiffness at the stern was also constant.
Information about the data sets was retrieved from conversation with Øveraas [72].
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Figure 5.6: Field test sites Frohavet (in cyan) and Trondheim Fjord (in yellow)
for data sets available for NTNU AutoNaut.

Redundancy of roll motion

By the assumption for the wave-propulsion model Σ3 given in Sect. 3.3, the roll motion 𝜙 of the
USV is not considered to affect the foil motions. Since roll is uncoupled from heave 𝑧𝑛 and pitch
\ in the wave-induced motion model Σ2, the roll motion is redundant in the proposed dynamics.

This insight leads to the proposition that wave-propelled USVs may sufficiently be described
by a 5-DOF model for the vehicle motion by surge, sway, heave, pitch and yaw motions only.

Validation of foil motions

The parameters in the wave-propulsion model Σ3 may be validated by measurement of the foil
angles𝝑. An objective function for the optimization in Sect. 3.4 could be an absolute or quadratic
error measure of the foil angles when the motion of the USV is given. Currently, on NTNU
AutoNaut however, no measurement of the foil angles are present. An alternative validation
procedure for model Σ3 could be an implicit validation. The average speed and variance of the
speed of the USV may be a measure for the accuracy of model Σ3 because the wave-propelled
forces are fed from the foil motions to the maneuvering model Σ1. A benefit for this method
is that the overall speed model of the USV might is corrected at the expense of correcting the
sub-model Σ3. Any unwanted error in the maneuvering model Σ1 might thus be left uncorrected
if implicit methods are employed.

The better alternative for NTNU AutoNaut would probably be to install physical measuring
devices, for instance one or more of the following:

• Submerged camera: Indirect angle measurement by camera vision techniques

• Installation of angle encoders: Direct angle measurement with an encoder mounted on
the pivot points

• Pressure sensors: Positioning of pressure sensors on the foils to estimate the relative
velocity field and in turn indirect angle measurement from sensor fusion
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Centrifugal forces on foils

If the assumption of slow turning by Assumption 19 no longer holds, the foils experience
centrifugal forces which cause a small coupling term from the heading rate 𝑝 correcting the foil
angles towards 𝝑→ 0. This coupling is straightforward to derive in the case of the heading rate
being analyzed separately. However, this effect is believed to be negligible in comparison to the
other hydrodynamic forces and model assumptions.

Figure 5.7: Linear approximation for damping for slow motion, 𝜔 < 1.5 [s−1].

Stability considerations

The model architecture is a highly nonlinear system and stability is a consideration that should
be considered when running the simulation model.

The model experiences a weird behavior under certain conditions in which case the surge
speed is propelled forward with a finite escape time.

This might be due to the foil forces scaling as 𝜏foil ∼ 𝑣2. In a one-dimensional case for linear
damping, 𝐹 = 𝑚 ¤𝑣 = −𝑏𝑣 + 𝑐𝑣2, whenever quadratic term dominates, then ¤𝑥 = 𝑘𝑥2. Assuming
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that the system reaches a dynamical equation 𝑘 (𝑡) ≥ 𝑘0 at time 𝑡0
¤𝑥(𝑡) = 𝑘0𝑥(𝑡)2,∫
d𝑥
𝑥(𝑡)2

=

∫
𝑘0 d𝑡,[

− 1
𝑥(𝑡)

] 𝑡
𝑡0

= 𝑘0 [𝑡 − 𝑡0],

1
𝑥0
− 1
𝑥(𝑡) = 𝑘0Δ𝑡,

𝑥(𝑡)
[

1
𝑥0
− 𝑘0Δ𝑡

]
= 1,

𝑥(𝑡) = 1
1
𝑥0
− 𝑘0Δ𝑡

,

which diverges 𝑥(𝑡) → ∞ as Δ𝑡 → 1
𝑘0𝑥0

.
This might happen when the phase of the normal force approaches about 15◦. According to

Fig. 2.26, this happens around 𝑘f = 0.3.

𝑘f =
𝑐

2
𝜔

𝑈
, 𝜔 = 2𝑘f𝑈/𝑐 (5.4)

for velocity about 1 [m/s] this corresponds to a frequency of 𝜔 = 3.125 [s−1].

Remark 111. A direct stability consideration for the model architecture is thus the necessity of
viscous damping, at least in surge in order to mitigate the risk of exciting a finite-escape time.

5.3 Model corrections
This section describes discuss partly some corrections of interest for the model. Unsteady effects
on foils

5.3.1 Correction for unsteady circulation forces
The basic idea is to evaluate the foil into two segments with chord width 𝑐max and 𝑐tip. Thus any
motion will not operate at the reduced frequency and accidental excite a non-trivial behavior
discussed in under “Finite escape time considerations” in Sect. 5.2.

Denote the maximum chord length 𝑐max and the tip chord length 𝑐tip. Partition the half span
into these two widths according to Fig. 5.8 where ` is a geometric constant determining the ratio
where the max chord length and tip chord length acts.

The foil area is
𝐴 = 𝑆𝑐𝑚 = 𝑆[𝑐max` + 𝑐tip(1 − `)], (5.5)

where the tip chord length is

𝑐tip =
𝐴 − 𝑆𝑐max`

𝑆(1 − `) =
𝑐𝑚 − 𝑐max`

1 − ` . (5.6)
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Figure 5.8: Simplified foil model approximation for use of evaluation of the
Theodorsen function.

5.3.2 Shallow water effects
The motion of wave-propelled USVs in shallow water mainly affects the maneuverability deriva-
tives and a the dispersion relation of surface waves. The hydrodynamic forces on the foils can
be considered unchanged.

Maneuvering model

In shallow water, the hydrodynamic forces for maneuvering become more pronounced because
of mirroring effects from the sea bed. Corrections in the maneuvering derivatives are given in
Appendix C.3 based on Sheng [78] and Clarke et al. [44].

Linear wave theory

When the wave-propelled USV enters shallow water, the assumptions of deep water given in
linear wave theory in Sect. 2.3.3 is no longer suitable, thus the dispersion relation given by
𝜔2 = 𝑔𝑘 no longer holds. Still, linear wave theory is developed for any sea depth, and a
discussion for shallow waves can for instance be found in Krogstad and Arntsen [35].

Forces on hydrofoils

According to Wu [18], the effects of solid boundaries – and also free surface effects – can be
neglected when the foils are further than two chord lengths away. For the case study on NTNU
AutoNaut, this means that the forces on the foils do not need any correction if a clearance of
about 0.5 [m] from the sea bed to the foils are held. This probably do not impose any practical
challenges. For very shallow waters with small clearance, this correction is probably not needed
anyway if the USV is propelled by an optional auxiliary propeller or towed, thus mitigating the
need for a working wave-propulsion model in those scenarios.

Effects of operating conditions on foils

Operating conditions is important when considering the forces on foils. This consideration is
left as a future work.
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5.4 Summary of main contributions
This work combines knowledge from multiple fields of study, from engineering cybernetics,
modeling and simulation and hydrodynamics. A summary of the finding in this work is:

• Semi-empiric forces on foils beyond stall angle

• An empiric equation for reduction coefficient for added mass was found

• Categorizing the governing equations of motion for wave-propelled USVs

• A semi-empirical equation for lift characteristics

• An empiric calculation of added mass for rectangular foils based on Meyerhoff 1970

• A semi-empirical equation for drag on foils valid through all angles of attack

• An approximation for the center of pressure through all angles of attack

• Proposed unified maneuvering and seakeeping model

• Description of the dynamics for attack angles including d’Alembert’s (inertia) forces

• Approximation of unsteady lift and drag forces on foils through a transfer function with
speed-dependent terms

• Identification of the terms in the simplest fluid memory effects for a monohull box-shaped
vessel

• Case study on AutoNaut vehicle which demonstrates feasibility of the model proposed and
a numerical demonstration that it can be used to optimize spring settings for operations

• Viscous drag and added mass from foils are incorporated in a monohull geometry repre-
senting the overall hydrodynamic behaviour of the wave-propelled USV

• Determining a source of instability in the model occuring from unsteady forces on the
foils

• Determined main dimensions for the AutoNaut foil geometry; where the span is 1.3 m,
the mean chord is 19.2 cm, maximum thickness 15% and maximum thickness appear at
30% from leading edge

• Proposed model for identifying the sectional shape of foils consisting of an ellipse and a
slope

• Show that simple controller laws can be tested on the simulation model

• Proposed a method for determining the position of an effective rectangular section for
foils
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• A correction proposed for 3D-effects for the Theodorsen function

• Explains the main limitations of the model and directions forward for further work

• Proposed methods to measure the foil angles to be able to validate more accurately the
foil angles from simulation and measurement

• The model can further be incorporated in model-based estimator for wave-propelled
vehicles based on noisy measurements from IMU

• The model can be extended to other wave-propelled USVs applying the proposed method-
ology

• Show that quadratic damping in surge is necessary.
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Chapter 6

Conclusions and future work

6.1 Conclusion
A closed-form simulation model for wave-propelled uncrewed surface vehicles (USVs) which
are propelled by corrective passive springs proves feasible with the proposed model architecture.
The method proposed to use a unified maneuvering model in surge, sway and yaw motions and a
wave-induced motion model in heave, roll and pitch. A quick estimate for the maneuvering model
was found through motion derivatives by a small set of design parameters for the main particulars.
The model for wave-induced motions incorporated successfully the complex hydrodynamic
effects from the correcting hydrofoils on the overall wave-induced motions of the vehicle. This
analysis proved possible by an analysis of an efficient monohull geometry.

A case study on a specific wave-propelled USV AutoNaut suggests slightly smaller dimen-
sions for the maneuvering model, and slightly larger dimension in breadth and length for the
wave-induced motion model compared to the physical ones.

Stability of the system was enforced by adding viscous drag to the maneuvering model,
low-pass filtering of the relative velocity used for unsteady forces on the foils and unnecessary
fluttering phenomena on the foils are reduced by enforcing a long blend between attached and
detached flow regimes.

The simulation model gives a feasible prediction of the USV motion in 6-DOF for the case
study on AutoNaut with an average forward speed matching operational data. A quantitative
results from the simulation is that the soft spring setting for the case study is optimal for wave
frequencies 𝜔 ≤ 1.4 [s−1], the medium spring stiffness is optimal around 𝜔 ≃ 1.8 [s−1] and the
stiff spring settings is optimal for 𝜔 > 2.2 [s−1] with regard to forward thrust.

A continuation of this work would be to write a code environment for simulation of the
model architecture for a wide range of wave-propelled USVs and perform a validation of the
specific wave-propelled USV analyzed in this work. Many new exciting areas for advanced
control and safety in marine autonomy for wave-propelled USVs is possible to pursue further
with the development of a physical speed model for such vehicles.
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6.2 Future work
The work in this report has established a physical speed model with emphasize on closed-form
expressions on the equations of motion. Suggested continuation of this work is listed below:

1. Peer-review of the assumptions and methods developed and proposed in this work

2. Successful software implementation for general wave-propelled USVs

3. Perform a proper qualitative validation on the case study based on operational data

4. Develop and formulate motion derivatives through Bis system

5. Perform short-term speed predictions on NTNU AutoNaut based on metocean forecast,
and compare the results to the regression methods by Øveraas [27]

6. Look into the nonlinear stability properties of the whole system architecture

7. Use the simulation model to test steering control algorithms

8. Look into other use-cases for the model, for instance in Kalman filter or development for
a digital twin

A list of other noteworthy future work suggestions are:

Successful implementation of a general software

Validation of the case study

Reduce the computational complexity

Test steering control algorithms on the simulation model

Look into how the model may be employed in Kalman filters

Perform model correction of the sytem architecture through machine learning

Develop transfer functions from heave and pitch motion to foil angles

A priori distribution for environmental states

Data assimilation with sensors from AutoNaut
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Appendix A

System theory

A.1 Realization of proper transfer functions
The material in this section is based on linear theory found in the chapter “State-space solutions
and realizations” in the linear system theory book from Chen [102].

The following theorem states which transfer function can be realized:
Theorem 3. (Realizable transfer functions)

A transfer function is realizable if and only if it is a proper rational matrix.
A proper transfer function 𝑔(𝑠) can be split into a strictly proper part 𝑔sp(𝑠) and the infinite-

frequency part 𝑔(∞)

𝑔(𝑠) = 𝑔sp(𝑠) + 𝑔(∞), (A.1)
such that the strictly proper part is written on the form

𝑔sp(𝑠) =
𝑛1𝑠

𝑟−1 + 𝑛2𝑠
𝑟−2 + · · · + 𝑛𝑟−1𝑠 + 𝑛𝑟

𝑠𝑟 + 𝛼1𝑠𝑟−1 + · · · + 𝛼𝑟−1𝑠 + 𝛼𝑟
. (A.2)

Then the state-space realization 𝑔(𝑠) = C[sI𝑟×𝑟 − A]−1B + 𝐷 on the form
¤x = Ax + B𝑢,
𝑦 = Cx + 𝐷𝑢,

(A.3)

can be realized by choosing

A =

©«

−𝛼1 −𝛼2 · · · −𝛼𝑟−1 −𝛼𝑟
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

ª®®®®®®¬
, B =

©«

1
0
0
...

0

ª®®®®®®¬
, C =

(
𝑛1 𝑛2 · · · 𝑛𝑟

)
, 𝐷 = 𝑔(∞).

(A.4)
The result can readily be generalized to a matrix transfer functions G(𝑠) by using the least

common denominator of all entries of Gsp(𝑠).

158



A.2. Stability, observability and controllability Appendix A. System theory

A.2 Stability, observability and controllability
A general state equation with states x, measurement y and input u is

¤x = f (x, u), (A.5a)
y = g(x, u). (A.5b)

The definitions below are based on the ones given by Chen [102]. Observability is defined
according to the following definition:

Definition 29. (Observability)
The state equation in Eq. (A.5) is observable if for any initial state x(𝑡0), there exist a finite

𝑡1 > 𝑡0 such that the knowledge of the input u and the output y over [𝑡0, 𝑡1] suffices to determine
uniquely the initial state x(𝑡0). Otherwise, the equation is said to be unobservable.

Controllability is defined according to the following definition:

Definition 30. (Controllability)
The state equation in Eq. (A.5a) is said to be controllable if for any initial state x(𝑡0) and any

final state x1, there exist an input that transfers x0 to x1 in a finite time. Otherwise the equation
is said to be uncontrollable.

Stability is defined according to the following definition:

Definition 31. (Lyapunov stability)
The state equation in Eq. (A.5a) with zero-input u = 0 is marginally stable in the sense

of Lyapunov if every finite initial state x(𝑡0) excites a bounded response. It is asymptotically
stable at the point xe if every finite initial state excites a bounded response, which, in addition,
approaches the equilibrium point xe as 𝑡 → ∞. If the system is not marginally stable or
asymptotically stable, the equation is unstable.

Feedback - and networked systems

For stability properties in feedback - and networked systems, the reader is referred to for instance
linear system theory by Chen [102], nonlinear system theory presented by Khalil [103] or model
properties given in the comprehensive control-oriented modelling and simulation handbook of
Egeland and Gravdahl [30].
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Appendix B

Analytical derivations

B.1 Inertia forces in equations of motion of hydrofoils
Inertia forces in the foil dynamics may be found through Euler-Lagrange method. The notation
here follows that given in Sect. 2.1.4 and the dynamics is found by Eq. (2.15).

Generalized coordinates

The generalized coordinates for the foil-system can be taken as the position (𝑥𝑝, 𝑧𝑝) of the pivot
point and the foil pitch angle relative to NED 𝜗𝑛, see fig. B.1. The coordinates are a vector
q ∈ R2 × S

q ≜ ©«
𝑥𝑝
𝑧𝑝
𝜗𝑛

ª®¬ =
©«
𝑞1
𝑞2
𝑞3

ª®¬ . (B.1)

𝜗𝑛

(𝑥𝑝, 𝑧𝑝)

𝛿𝑥 CG

Figure B.1: Foil coordinates (𝑥𝑝, 𝑧𝑝) with angle 𝜗𝑛. The coordinates is such that
𝑥-axis point to left and 𝑧-axis point downwards.

From Euler-Lagrange method, the dynamics of the foils including dissipative forces are(
𝜕𝐿

𝜕q

)⊤
− d

d𝑡

(
𝜕𝐿

𝜕 ¤q

)⊤
= Q −

(
𝜕F
𝜕 ¤q

)⊤
. (B.2)

In this study, all hydrodynamic forces excluding circulatory forces and non-circulatory linear
forces are included. It is also assumed that buoyancy and gravity forces cancels according to
Assumption 18.
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Energies

Potential damping is included with Rayleigh dissipation function

F =
1
2
𝑀 ¤𝜗 ¤𝜗2

𝑛 . (B.3)

The rotational energy including added kinetic energy of the surrounding fluid is

𝑇rot =
1
2
(𝐽 + 𝑀 ¥𝜗) ¥𝜗2

𝑛 . (B.4)

The potential energy stored in the spring depends on the contraction 𝜗𝑛 − \ and stiffness ^

𝑉spring =
1
2
^(𝜗𝑛 − \)2, (B.5)

where \ is treated as an input to the force. Lastly, the linear kinetic energy of the foil is found
by the center of mass at foil coordinate [−𝛿𝑥, 0]⊤ at position

rg =

(
𝑥𝑝
𝑧𝑝

)
+ R2D(𝜗𝑛)

⊤

(
−𝛿𝑥

0

)
=

(
𝑥𝑝 − cos(𝜗𝑛)𝛿𝑥
𝑧𝑝 + sin(𝜗𝑛)𝛿𝑥

)
, (B.6)

where the velocity is

¤rg =

(
¤𝑥𝑝 + 𝛿𝑥 ¤𝜗𝑛 sin(𝜗𝑛)
¤𝑧𝑝 + 𝛿𝑥𝜗𝑛 cos(𝜗𝑛)

)
≡

(
𝑣1
𝑣2

)
, (B.7)

such that the linear kinetic energy with mass 𝑚 is

𝑇lin =
1
2
𝑚 [𝑣2

1 + 𝑣
2
2] . (B.8)

Combining Eqs. (B.4), (B.5) and (B.8) yields the Lagrangian

𝐿 = 𝑇rot + 𝑇lin −𝑉spring,

=
1
2
𝐽 ¤𝜗2

𝑛 +
1
2
𝑀 ¥𝜗 ¤𝜗2

𝑛 +
1
2
𝑚

[ (
¤𝑧𝑝 + 𝛿𝑥 ¤𝜗𝑛 cos(𝜗𝑛)

)2 +
(
¤𝑥𝑝 + 𝛿𝑥 ¤𝜗𝑛 sin(𝜗𝑛)

)2
]
− 1

2
^(𝜗𝑛 − \)2.

(B.9)

Dynamics

Inserting the Lagrangian from Eq. (B.9) into Eq. (B.2), the dynamics of the foils was found

^𝜗𝑛 − ^\ + 𝐽 ¥𝜗𝑛 + 𝑀 ¤𝜗𝑛 ¤𝜗𝑛 + 𝑀 ¥𝜗𝑛 ¥𝜗𝑛 + 𝛿𝑥
2𝑚 ¥𝜗𝑛 + 𝛿𝑥𝑚 ¥𝑧𝑝 cos (𝜗𝑛) + 𝛿𝑥𝑚 ¥𝑥𝑝 sin (𝜗𝑛) = 0, (B.10)

which can be reorganised into the same form as Eq. (3.99)

(𝐽 + 𝛿𝑥2𝑚 + 𝑀 ¥𝜗𝑛)︸                 ︷︷                 ︸
𝑀𝜗

¥𝜗𝑛 + 𝑀 ¤𝜗𝑛︸︷︷︸
𝐵𝜗

¤𝜗𝑛 + ^︸︷︷︸
𝐶𝜗

𝜗𝑛 = ^︸︷︷︸
𝐶𝜗

\ −𝛿𝑥𝑚 ¥𝑧𝑝 cos (𝜗𝑛) − 𝛿𝑥𝑚 ¥𝑥𝑝 sin (𝜗𝑛)︸                                        ︷︷                                        ︸
inertia moment

.

(B.11)
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Comparing the dynamics without circulatory moments and non-circulatory moments to
Eq. (3.99), the equivalent inertia moments are thus

𝑄inertia = −𝛿𝑥𝑚 ¥𝑧𝑝 cos(𝜗𝑛) − 𝛿𝑥𝑚 ¥𝑥𝑝 sin(𝜗𝑛). (B.12)

It is seen that the correction introduced by Euler-Lagrange method is a fictitious moment,
an inertia moment. This is a d’Alembert or inertia force which originates from d’Alembert’s
principle of reducing a dynamics problem to a statics problem. For Newton’s second law, this
means that 𝐹 = 𝑚𝑎 is equivalent to study 𝐹 − 𝑚𝑎 = 0 where the term −𝑚𝑎 is a fictitious force.

Remark 112. When the foil angle 𝜗 = 𝜗𝑛 − \ is small, the inertia forces in Eq. (B.12) can be
approximated by the vertical contribution by 𝑀inertia ≃ −𝛿𝑥𝑚 ¥𝑧𝑝 cos(𝜗𝑛).

Remark 113. We see that when the pivot point is accelerating upwards, −¥𝑧, then a positive
moment appears on the right hand side (for small 𝜗𝑛) making an inertial correction. In practice
this means that the foils experience a positive acceleration.
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B.2 Roll force response amplitude operator
The response amplitude operator for the roll moment excited from linear waves to roll motion
for the simplified monohull geometry given in Sect. 3.3 is shown here. This derivation follows
closely the one given in Jensen et al. [25]. The parameters in this derivation is defined in
Sect. 3.3.

Firstly define the radiation potential 𝜑4 as the complex potential for forced roll motions,
meaning waves generated by the roll motion of the vehicle. For a symmetrical body along 𝑥-axis,
this potential is asymptotically equal [24]

𝜑4 = ±𝑃4e𝑘𝑧− 𝑗 |𝑦𝑘 sin(𝛽) |, 𝑦 → ±∞, (B.13)

where 𝑃4 depends on body shape and wave number. 𝑃4 is related to the hydrodynamic damping
by the relation

𝑏44 = 𝜌𝜔|𝑃4 |2. (B.14)

The exciting moment for a section in the 𝑦𝑧-plane is from the Haskind relation

𝑘0(𝑥) = 𝑗𝜔𝜌 e 𝑗𝜔𝑡
∫ 0

−∞

[
𝜑
𝜕𝜑4
𝜕𝑦
− 𝜑4

𝜕𝜑

𝜕𝑦

] 𝑦=∞
𝑦=−∞

d𝑦 (B.15)

where 𝜑 is the complex wave potential given in section 2.3.3.
Integrating (B.15) with the relation from Newman in (B.14) equates to

𝑘0(𝑥) = sin(𝛽)
√︂
𝜌𝑔2

𝜔
𝑏44e− 𝑗𝑥𝑘 cos(𝛽)e 𝑗𝜔𝑡 . (B.16)

Integration alogn the vehicle’s length 𝐿 gives the total excitation moment

𝐾0 = sin(𝛽)
√︂
𝜌𝑔2

𝜔
e 𝑗𝜔𝑡

{∫ 𝛿𝐿

0

√︁
𝑏44,a e− 𝑗𝑥𝑘 cos(𝛽)d𝑥 +

∫ 𝐿

𝛿𝐿

√︁
𝑏44,f e− 𝑗𝑥𝑘 cos(𝛽)d𝑥

}
, (B.17)

where the forcing function 𝐾0 is the real part

𝐾0 = | sin(𝛽) |
√︂
𝜌𝑔2

𝜔

2
𝑘e

√︁
𝑏44,a

[
sin

(
𝛿
𝑘e𝐿

2

)2
+
𝑏44,f
𝑏44,a

sin
(
(1 − 𝛿 ) 𝑘e𝐿

2

)2
+ 2

√︄
𝑏44,f
𝑏44,a

sin
(
𝛿
𝑘e𝐿

2

)
sin

(
(1 − 𝛿 ) 𝑘e𝐿

2

)
cos

(
𝑘e𝐿

2

)]1/2

,

(B.18)
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B.3 Time-domain solution of simple retardation function
In this section the time domain solution of the frequency-domain function

�̂�′(𝑠′) =
𝑞′0𝑠
′

𝑠′2 + 𝑝′1𝑠′ + 𝑝
′
0
, (B.19)

is derived. First the square is completed

�̂�′(𝑠′) =
𝑞′0𝑠
′(

𝑠′ + 𝑝′1
2

)2
+ 𝑝′0 −

(
𝑝′1
2

)2 , (B.20)

and denote 𝑎′ ≜ 𝑝′1/2 and 𝜔2
𝑑
≜ 𝑝′0 − (

𝑝′1
2 )

2 > 0 such that one can identify

�̂�′(𝑠′) = 𝑞′0 ·
(𝑠′ + 𝑎′)

(𝑠′ + 𝑎′)2 + 𝜔2
𝑑

−
𝑞′0𝑎
′

𝜔𝑑
· 𝜔𝑑

(𝑠′ + 𝑎′)2 + 𝜔2
𝑑

. (B.21)

Equation (B.21) can be solved for the time domain solution �̂�′(𝑡′) by using look-up tables for
common Laplace transform pairs. On the present form, it is recognized as the sum of a damped
sin()- and cos()-term with the exponential decay e−𝑎′𝑡′ with solution

�̂�′(𝑡′) = 𝑞′0e−𝑎
′𝑡′ cos(𝜔𝑑𝑡′) −

𝑞′0𝑎
′

𝜔𝑑
e−𝑎

′𝑡′ sin(𝜔𝑑𝑡′). (B.22)

By substituting for 𝑎′ and 𝜔𝑑 into Eq. (B.22) the analytical time-domain solution is identified as

�̂�′(𝑡′) = 𝑞′0e−
𝑝′1
2 𝑡
′
cos ©«

[
𝑝′0 −

(
𝑝′1
2

)2] 1
2

𝑡′
ª®¬ −

𝑞′0𝑝
′
1

2
[
𝑝′0 −

(
𝑝′1
2

)2
] 1

2
e−

𝑝′1
2 𝑡
′
sin ©«

[
𝑝′0 −

(
𝑝′1
2

)2] 1
2

𝑡′
ª®¬ .

(B.23)
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B.4 Kinematics of two consecutive homogeneous transforma-
tions

The acceleration kinematics for two consecutive homogeneous transformation is derived. In
order to ease the derivation, denote a coordinate-free vector fixed to a specific frame by the
notation [ ®(·)]𝑏, where {𝑏} is the frame in which the vector ®(·) is fixed in.

Consider the point 𝑥 defined by frames {𝑛}, {𝑏} and {𝑝} illustrated in Fig. B.2. The location
of the point is given by the vector ®𝑟px in frame {𝑝} while the frame {𝑝} itself is located at point
®𝑟bp in frame {𝑏}. With the notation introduced above, the total position of the point is

®𝑟nx = ®𝑟nb + [®𝑟bp + [®𝑟px] 𝑝]𝑏 . (B.24)

{𝑛}

®𝜔nb

{𝑏} {𝑝}

𝑥

®𝜔bp

Figure B.2: The point 𝑥 is attached in frame {𝑝}. Frame {𝑝} rotates with an
angular velocity ®𝜔bp relative to frame {𝑏}. Frame {𝑏} rotates with an angular
velocity ®𝜔nb relative to frame {𝑛}.

Derivations

The velocity of point 𝑥 relative to {𝑛} is found through the kinematics of Eq. (2.6) such that

𝑛 d
d𝑡
®𝑟nx = 𝑛 d

d𝑡
®𝑟nb + 𝑛 d

d𝑡
[®𝑟bp + [®𝑟px] 𝑝]𝑏, (B.25)

and furthermore using that ®𝑣 ≡ d
d𝑡 ®𝑟

®𝑣nx = ®𝑣nb + ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 +
[
𝑏 d

d𝑡
®𝑟bp + 𝑏 d

d𝑡
[®𝑟px] 𝑝

]𝑏
,

= ®𝑣nb + ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 +
[
®𝑣bp + ®𝜔bp × [®𝑟px] 𝑝 +

[
𝑝 d

d𝑡
®𝑟px

] 𝑝]𝑏
,

®𝑣nx = ®𝑣nb + ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 +
[
®𝑣bp + ®𝜔bp × [®𝑟px] 𝑝 +

[
®𝑣px

] 𝑝]𝑏
.

(B.26)
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The acceleration is found by once more applying Eq. (2.6), this time on Eq. (B.26) such
that

𝑛 d
d𝑡
®𝑣nx = 𝑛 d

d𝑡
®𝑣nb + 𝑛 d

d𝑡

(
®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏

)
︸                               ︷︷                               ︸

part 1

+ 𝑛 d
d𝑡

[
®𝑣bp + ®𝜔bp × [®𝑟px] 𝑝 +

[
®𝑣px

] 𝑝]𝑏︸                                          ︷︷                                          ︸
part 2

,

= ¤®𝑣nb + ¤®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 + ®𝜔nb × ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 + ®𝜔nb ×
[
𝑏 d

d𝑡
®𝑟bp + 𝑏 d

d𝑡
[
®𝑟px

] 𝑝]𝑏︸                                                                                                               ︷︷                                                                                                               ︸
part 1

· · ·

+ ®𝜔nb ×
[
®𝑣bp + ®𝜔bp × [®𝑟px] 𝑝 +

[
®𝑣px

] 𝑝]𝑏 + [
𝑏 d

d𝑡
®𝑣bp + 𝑏 d

d𝑡
(
®𝜔bp × [®𝑟px] 𝑝

)
+ 𝑏 d

d𝑡
[
®𝑣px

] 𝑝]𝑏︸                                                                                                                 ︷︷                                                                                                                 ︸
part 2

,

= ¤®𝑣nb + ¤®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 + ®𝜔nb × ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 + ®𝜔nb ×
[
®𝑣bp + ®𝜔bp ×

[
®𝑟px

] 𝑝 + [
®𝑣px

] 𝑝]𝑏︸                                                                                                                        ︷︷                                                                                                                        ︸
part 1

· · ·

+ ®𝜔nb ×
[
®𝑣bp + ®𝜔bp × [®𝑟px] 𝑝 +

[
®𝑣px

] 𝑝]𝑏︸                                            ︷︷                                            ︸
part 2a

· · ·

+
[
¤®𝑣bp + ¤®𝜔bp × [®𝑟px] 𝑝 + ®𝜔bp × ®𝜔bp × [®𝑟px] 𝑝 + ®𝜔bp × [®𝑣px] 𝑝 + ®𝜔bp ×

[
®𝑣px

] 𝑝 + [
¤®𝑣px

] 𝑝]𝑏︸                                                                                                             ︷︷                                                                                                             ︸
part 2b

.

(B.27)
Simplifying Eq. (B.27), the acceleration of point 𝑥 in Fig. B.2 is readily found as

¤®𝑣nx = ¤®𝑣nb + ¤®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 + ®𝜔nb × ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 · · ·

+ 2 ®𝜔nb ×
[
®𝑣bp + ®𝜔bp × [®𝑟px] 𝑝 +

[
®𝑣px

] 𝑝]𝑏 · · ·
+

[
¤®𝑣bp + ¤®𝜔bp × [®𝑟px] 𝑝 + ®𝜔bp × ®𝜔bp × [®𝑟px] 𝑝 + 2 ®𝜔bp ×

[
®𝑣px

] 𝑝 + [
¤®𝑣px

] 𝑝]𝑏
.

(B.28)

Remark 114. When ®𝑟bp and ®𝑟px is constant in their respective frames, the acceleration is

¤®𝑣nx = ¤®𝑣nb + ¤®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 + ®𝜔nb × ®𝜔nb × [®𝑟bp + [®𝑟px] 𝑝]𝑏 · · ·

+ 2 ®𝜔nb ×
[
®𝜔bp × [®𝑟px] 𝑝

]𝑏 + [
¤®𝜔bp × [®𝑟px] 𝑝 + ®𝜔bp × ®𝜔bp × [®𝑟px] 𝑝

]𝑏
.

(B.29)

Or, written as

¤vnx = ¤vnb + S( ¤𝝎nb) [rbp + rpx] + S(𝝎nb)2 [rbp + rpx] + 2S(𝝎nb)S(𝝎bp)rpx + S( ¤𝝎bp)rpx + S(𝝎bp)2rpx
(B.30)
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B.5 Torsion spring stiffness
A closed-wound spring is illustrated in Fig. B.3 with 𝑁a numbers of active turns, wire diameter
𝑑, spring diameter 𝐷 and deflection angle \.

\

𝑁a

𝑑

𝐷

Figure B.3: Closed-wound spring.

Castigliano’s method was employed to find the deflection in radians in the body of a torsion
spring. From Timoshenko, pp. 288–290, [75] the potential energy in equilibrium is

𝑉 =
1
2

∫
coil

𝑀2

𝐸𝐼
d\, (B.31)

with external moment 𝑀 , Young’s modulus 𝐸 and 𝐼 is the second moment of area of the coil
section along the coil length. Let the external moment be 𝑀 = 𝐹𝑟 and integrate over the length
of the body-coil wire. The force 𝐹 will deflect through a distance 𝑟\ and the change in potential
energy in Eq. (B.31) equals a change in the force 𝐹 over the distance 𝑟\ as 𝛿𝑉 = 𝛿𝐹 · 𝑟\. The
angle \ is found

\ =
𝜕𝑉

𝑟𝜕𝐹
=

1
2𝑟

∫ 𝜋𝐷𝑁a

0

𝜕

𝜕𝐹

(
𝐹2𝑟2

𝐸𝐼

)
d𝑥 =

∫ 𝜋𝐷𝑁a

0

𝐹𝑟

𝐸𝐼
d𝑥 =

64𝐷𝑁a

𝐸𝑑4︸  ︷︷  ︸
1/^

𝑀. (B.32)

For an ideal spring, the torsion spring stiffness was found according to Eq. (B.32) on the
form

^ =
𝐸𝑑4

64𝐷𝑁a
. (B.33)
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Appendix C

Alternative formulations for vehicle
derivatives

C.1 Maneuvering derivatives

Table C.1: Alternative empiric relations for maneuvering parameters. Semi-
empirical methods for acceleration and velocity derivatives as function of maneu-
vering design parameters {𝐿d, 𝐵d, 𝑇d, 𝐶B}. From Clarke et al. [44].

Derivative Strip Norrbin Inoue et al. Clarke et al.

−𝑌 ′¤𝑣/𝜋
(
𝑇d
𝐿d

)2
1 - - 1 + 0.16𝐶B

𝐵d
𝑇d
− 5.1

(
𝐵d
𝐿d

)2

−𝑌 ′¤𝑟/𝜋
(
𝑇d
𝐿d

)2
0 - - 0.67𝐵d

𝐿d
− 0.0033

(
𝐵d
𝑇d

)2

−𝑁′¤𝑣/𝜋
(
𝑇d
𝐿d

)2
0 - - 1.1𝐵d

𝐿d
− 0.41𝐵d

𝑇d

−𝑁′¤𝑟/𝜋
(
𝑇d
𝐿d

)2 1
12 - - 1

12 + 0.017𝐶B
𝐵d
𝑇d
− 0.33𝐵d

𝐿d

−𝑌 ′𝑣/𝜋
(
𝑇d
𝐿d

)2
1 1.69 + 0.08𝐶B

𝜋

𝐵d
𝑇d

1.0 + 1.4𝐶B
𝜋

𝐵d
𝑇d

1 + 0.40𝐶B
𝐵d
𝑇d

−𝑌 ′𝑟/𝜋
(
𝑇d
𝐿d

)2
−1

2 −0.645 + 0.38𝐶B
𝜋

𝐵d
𝑇d

−0.5 −0.5 + 2.2𝐵d
𝐿d
− 0.080𝐵d

𝑇d

−𝑁′𝑣/𝜋
(
𝑇d
𝐿d

)2 1
2 0.64 − 0.04𝐶B

𝜋

𝐵d
𝑇d

2.0
𝜋
𝐶B
𝜋

𝐵d
𝑇d

0.5 + 2.4 𝑇d
𝐿d

−𝑁′𝑟/𝜋
(
𝑇d
𝐿d

)2 1
4 0.47 − 0.18𝐶B

𝜋

𝐵d
𝑇d

1.04
𝜋
− 4.0

𝜋

𝑇d
𝐿d
𝐶B
𝜋

𝐵d
𝑇d

0.25 + 0.039𝐵d
𝑇d
− 0.56𝐵d

𝐿d
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C.2 Seakeeping oscillatory derivatives

Table C.2: Wave-induced motion derivatives as function of parameters 𝜶∗2 and
main particulars. Only the damping in heave and pitch is frequency-dependent.

Derivative Proposed model approximation
−�̃� ¤𝑤 (𝜔) 2𝜌𝐶wp𝐵𝐿𝑇

∗ − 𝑚
−�̃�𝑤 (𝜔)

(
𝐶wp

𝐵
𝐵∗

)
𝐿𝑏(𝜔)

−�̃�𝑧 (𝜔) 𝜌𝑔𝐶wp𝐵𝐿

−�̃� ¤𝑝 (𝜔)
(
𝑇∗4
2𝜋

)2
𝜌𝑔∇GMT − 𝐽𝑥

−�̃�𝑝 (𝜔) 2Z∗4
(
𝑇∗4
2𝜋

)
𝜌𝑔∇GMT

−�̃�𝜙 (𝜔) 𝜌𝑔∇GMT
−�̃� ¤𝑞 (𝜔) 2𝜌∇GML𝑇

∗ − 𝐽𝑦
−�̃�𝑞 (𝜔)

(
𝐵
𝐵∗𝐶B

)
· 𝑇GML𝐿𝑏(𝜔)

−�̃�\ (𝜔) 𝜌𝑔∇GML
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Table C.3: Tabular values for parameters in the non-dimensional transfer function
of smallest order for simulation of fluid memory effects for homogeneously loaded
box-shaped vessels following the damping from Newman [24] for use in heave and
pitch motions. The values are found through a least squares optimization by the
impulse response of the retardation function for various ratios ΛT.

Ratio ΛT 𝑞′0 𝑝′0 𝑝′1
= (𝐵/𝑇)

1.0 0.2729 0.2801 0.6209
1.2 0.3007 0.3121 0.6380
1.4 0.3236 0.3387 0.6502
1.6 0.3428 0.3610 0.6593
1.8 0.3591 0.3799 0.6663
2.0 0.3731 0.3961 0.6718
2.2 0.3854 0.4101 0.6763
2.4 0.3961 0.4223 0.6801
2.6 0.4056 0.4330 0.6833
2.8 0.4141 0.4425 0.6860
3.0 0.4217 0.4509 0.6884
3.2 0.4285 0.4585 0.6906
3.4 0.4348 0.4653 0.6925
3.6 0.4404 0.4715 0.6942
3.8 0.4456 0.4771 0.6957
4.0 0.4504 0.4823 0.6971
4.2 0.4548 0.4870 0.6984
4.4 0.4589 0.4913 0.6996
4.6 0.4627 0.4953 0.7007
4.8 0.4662 0.4990 0.7017
5.0 0.4695 0.5024 0.7027
6.0 0.4832 0.5164 0.7066
7.0 0.4934 0.5266 0.7097
8.0 0.5015 0.5344 0.7121
9.0 0.5079 0.5406 0.7141
10 0.5132 0.5456 0.7158
∞ 0.5696 0.5917 0.7376
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C.3 Correction of maneuvering derivatives in shallow water
The material in this section is based on Sheng [78] and from Clark et al. [44].

The effects of shallow water on the maneuvering derivatives have been studied experimen-
tally, and it has been found that in general the numerical values increase as the water depth
reduces. However, the manner in which each derivative changes with water depth is different.
Correction factors have been suggested by Sheng based on slender body theory. The ship
was assumed to have a parabolic form for the breadth distribution and elliptical cross section.
According to Clarke et al. [44], the formulae given by Sheng are in good agreement with the
experimental results. The correction factors are as follows

𝑌 ′¤𝑣/𝑌 ′¤𝑣∞ = 𝐾0 +
2
3
𝐾1
𝐵

𝑇
+ 8

15
𝐾2

(
𝐵

𝑇

)2
, (C.1a)

𝑁′¤𝑟/𝑁′¤𝑟∞ = 𝐾0 +
2
5
𝐾1
𝐵

𝑇
+ 24

105
𝐾2

(
𝐵

𝑇

)2
, (C.1b)

𝑌 ′𝑣/𝑌 ′𝑣∞ = 𝐾0 + 𝐾1
𝐵

𝑇
+ 𝐾2

(
𝐵

𝑇

)2
, (C.1c)

𝑌 ′𝑟/𝑌 ′𝑟∞ = 𝐾0 +
2
3
𝐾1
𝐵

𝑇
+ 8

15
𝐾2

(
𝐵

𝑇

)2
, (C.1d)

𝑁′𝑣/𝑁′𝑣∞ = 𝐾0 +
2
3
𝐾1
𝐵

𝑇
+ 8

15
𝐾2

(
𝐵

𝑇

)2
, (C.1e)

𝑁′𝑟/𝑁′𝑟∞ = 𝐾0 +
1
2
𝐾1
𝐵

𝑇
+ 1

3
𝐾2

(
𝐵

𝑇

)2
, (C.1f)

where the correction constant 𝐾0, 𝐾1 and 𝐾2 are

𝐾0 ≡ 1 + 0.0775
𝐹2 − 0.0110

𝐹3 , (C.2a)

𝐾1 ≡ −
0.0643
𝐹
+ 0.0724

𝐹2 − 0.043
𝐹3 , (C.2b)

𝐾2 ≡
0.0342
𝐹

, (C.2c)

and the parameter 𝐹 is related to the water depth by

𝐹 ≜

(
𝐻

𝑇
− 1

)
. (C.3)

In the above formulae the subscript∞ refers to the deep water value of the derivative. Unfortu-
nately, no corrections were given for the derivatives 𝑌 ′¤𝑟 and 𝑁′¤𝑣.

171



Appendix D

Foil contour for NTNU AutoNaut

Projected foil contours for NTNU AutoNaut are illustrated in Fig. D.1 and tabular values are
listed in Tab. D.1, were it was assumed that the foil at the stern and bow had the same curvature.

0.10 m

(a) Foil at the stern (starboard side). (b) Foil at the bow (port side).

Figure D.1: Projected foil contours present at NTNU AutoNaut. The shapes were
found by hand drawing on a sheet of paper and scanned. Adapted from Tufte [17].
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Appendix D. Foil contour for NTNU AutoNaut

Table D.1: Chord length per half span on NTNU AutoNaut. The distances were
measured from the projected contour illustrated in Fig. D.1.

0–50% TE LE Chord length 50–100% TE LE Chord length
𝑦/2𝑆 (±0.01) (±0.01) 𝑐/2𝑆 (±0.015) 𝑦/2𝑆 (±0.01) (±0.01) 𝑐/2𝑆 (±0.015)
0.000 0.000 0.348 0.348 0.500 0.000 0.314 0.314
0.015 0.000 0.348 0.348 0.515 0.000 0.311 0.311
0.030 0.000 0.348 0.348 0.530 0.000 0.309 0.309
0.045 0.000 0.348 0.348 0.545 0.000 0.308 0.308
0.061 0.000 0.348 0.348 0.561 0.000 0.305 0.305
0.076 0.000 0.348 0.348 0.576 0.000 0.302 0.302
0.091 0.000 0.348 0.348 0.591 0.000 0.300 0.300
0.106 0.000 0.348 0.348 0.606 0.000 0.298 0.298
0.121 0.000 0.348 0.348 0.621 0.002 0.295 0.294
0.136 0.000 0.348 0.348 0.636 0.002 0.292 0.291
0.152 0.000 0.347 0.347 0.652 0.002 0.289 0.288
0.167 0.000 0.347 0.347 0.667 0.002 0.285 0.283
0.182 0.000 0.347 0.347 0.682 0.003 0.282 0.279
0.197 0.000 0.345 0.345 0.697 0.003 0.279 0.276
0.212 0.000 0.345 0.345 0.712 0.003 0.276 0.273
0.227 0.000 0.344 0.344 0.727 0.005 0.271 0.267
0.242 0.000 0.344 0.344 0.742 0.005 0.268 0.264
0.258 0.000 0.342 0.342 0.758 0.006 0.264 0.258
0.273 0.000 0.341 0.341 0.773 0.006 0.259 0.253
0.288 0.000 0.339 0.339 0.788 0.008 0.255 0.247
0.303 0.000 0.338 0.338 0.803 0.009 0.248 0.239
0.318 0.000 0.336 0.336 0.818 0.011 0.242 0.232
0.333 0.000 0.335 0.335 0.833 0.012 0.235 0.223
0.348 0.000 0.333 0.333 0.848 0.014 0.227 0.214
0.364 0.000 0.332 0.332 0.864 0.017 0.220 0.203
0.379 0.000 0.330 0.330 0.879 0.020 0.209 0.189
0.394 0.000 0.329 0.329 0.894 0.023 0.200 0.177
0.409 0.000 0.327 0.327 0.909 0.026 0.188 0.162
0.424 0.000 0.326 0.326 0.924 0.029 0.177 0.148
0.439 0.000 0.323 0.323 0.939 0.032 0.164 0.132
0.455 0.000 0.321 0.321 0.955 0.036 0.150 0.114
0.470 0.000 0.318 0.318 0.970 0.042 0.136 0.094
0.485 0.000 0.317 0.317 0.985 0.053 0.118 0.065
0.500 0.000 0.314 0.314 1.000 0.073 0.092 0.020
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