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Preface

This master’s thesis was written for the course ”TMA4900 - Industrial Mathematics, Master’s Thesis”, as

part of the Master of Science degree in Applied Physics and Mathematics (MTFYMA) at the Norwegian

University of Science and Technology (NTNU).

The thesis concerns Bayesian inversion with Markov chain Monte Carlo. The thesis also considers two

supervised learning methods which are used to simplify parts of the Bayesian inversion model, and

therefore reduce the computation time of the Markov chain Monte Carlo calculations. The fast and

approximate MCMC is tested for seismic amplitude-variation-with-offset inversion at the Alvheim field.

It is assumed that the reader has fundamental knowledge of statistics and that the reader has a basic

idea of the concept of statistical learning. The inverse problem in question will be explained, however,

some acquaintance with spatial statistics is recommended.

I would like to thank my supervisor Professor Jo Eidsvik and co-supervisors PhD Candidate Mina Spremić

and Postdoctoral Fellow The Tien Mai for supervising me while writing this thesis.
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Abstract

Inverse problems can be solved in a Bayesian framework by combining a priori knowledge about the

variables of interest with a likelihood model for the observed data, to form a posterior distribution for the

variables of interest. Markov chain Monte Carlo (MCMC) can be used to draw samples from the posterior

distribution and is a popular approach when faced with high-dimensional inverse problems. However, a

drawback of the approach is that it can be slow. Time-consuming calculation of non-linear forward models

in high dimensions is often the reason for this. Substituting the forward model with an approximation to

the forward model is a strategy for reducing the computation time of the algorithm. In this thesis, the

complicated and non-linear forward model in the likelihood model for seismic amplitude-variation-with-

offset (AVO) data is approximated by a multivariate adaptive regression spline (MARS). The MARS

model is on average 32 times faster than the exact forward model. This reduction in computation time

enables fast approximate MCMC for seismic AVO inversion at the Alvheim field. A comparison between

MCMC samples with the exact forward model and MCMC samples with the MARS model on a small area

in the Alvheim field shows great similarities. Using the MARS model also enables extensive comparison

between four MCMC algorithms in a small area. The most efficient algorithm is used for approximate

MCMC over the total area of the Alvheim field. The approximate MCMC samples from the Alvheim

field contain more oil and clay compared to the results in Spremić et al. (2024), which used a localized

ensemble-based approach to approximate the posterior in the Alvheim field.
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Sammendrag

Inverse problemer kan løses i et Bayesiansk rammeverk. Da kombineres a priori kunnskap om modell-

parametre med en rimelighetsmodell for observerte data, for å konstruere en posterior-fordeling for mod-

ellparameterne. Markov chain Monte Carlo (MCMC) kan brukes til å trekke realisasjoner fra posterior-

fordelingen, og den er en populær metode for å h̊andtere høydimensjonale inverse problemer. En ulempe

med metoden er imidlertid at den kan være treg. Tidkrevende beregning av ikke-lineære forovermodeller

i høye dimensjoner er ofte årsaken til dette. For å redusere kjøretiden til algoritmen kan forovermod-

ellen erstattes av en enklere tilnærming. I denne oppgaven tilnærmes den kompliserte og ikke-lineære

forovermodellen i rimelighetsmodellen for seismisk amplitude-variasjon-med-offset (AVO) data med en

multivariat adaptiv regresjonsspline (MARS). MARS-modellen er i gjennomsnitt 32 ganger raskere enn

den eksakte forovermodellen. Denne reduksjonen i beregningstiden muliggjør rask approksimativ MCMC

for seismisk AVO-inversjon ved Alvheim-feltet. Sammenligning av resultater fra MCMC med den ek-

sakte forovermodellen og med MARS-modellen p̊a et lite omr̊ade av Alvheimfeltet, viser store likheter.

Bruk av MARS-modellen muliggjør ogs̊a en omfattende sammenligning av fire MCMC-algoritmer p̊a et

lite omr̊ade. Den mest effektive algoritmen brukes til å trekke approksimerte MCMC realisasjoner fra

hele Alvheim-feltet. De approksimerte MCMC-resultatene fra Alvheim-feltet inneholder mer olje og leire

sammenlignet med resultatene fra Spremić et al. (2024), som brukte et ensemblebasert Kalman-filtrer for

å tilnærme a posterior-fordelingen.
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1
Introduction

A frequent scientific problem is that of estimating unobservable quantities of interest from observed data.

There is often a known physical or mathematical relation between the quantities of interest and the data,

known as the forward model. However, the inverse problem of going from data to the quantity of interest

is much more difficult. An inverse problem can be solved in the Bayesian framework by combining a

priori knowledge about the quantities of interest with a likelihood model for the observed data to form

a posterior distribution for the quantities of interest (Mosegaard & Tarantola, 1995). Bayesian inversion

is suitable for geophysical inverse problems, because these problems often require a priori knowledge of

the earth parameters, as the information from the measurements can be sparse. A priori knowledge is

represented by a prior distribution, which enables us to account for the trends and uncertainties in the

prior beliefs (Malinverno & Briggs, 2004). A likelihood model, built on geophysical principles, expresses

which earth parameter values are compatible with the observed data. A real-life example of an inverse

problem is that of estimating reservoir variables from seismic amplitude-variation-with-offset (AVO) data

in the Alvheim field, located in the North Sea off the Norwegian west coast.

As pointed out by van Ravenzwaaij et al. (2018), posterior densities in Bayesian inversion are often

challenging to examine analytically. In low dimensions, posterior distributions can be investigated by

evaluating the posterior systematically throughout the parameter space. However, such an exhaustive

search of the parameter space becomes infeasible in high dimensions (Mosegaard & Tarantola, 1995). For

high-dimensional inverse problems, Markov chain Monte Carlo (MCMC) is a popular way of estimating

posterior densities in Bayesian inversion (Robert & Casella, 2011). MCMC draws dependent samples from

the posterior distribution by constructing a Markov chain that converges to the posterior distribution.

These samples are used to estimate population means with Monte Carlo integration (Givens & Hoeting,

2013). MCMC was first introduced in the early 1950s. As computers advanced in the 1990s, the algorithm

became increasingly popular. With MCMC, it was possible to analyse models that were too complex

for previous methods to handle satisfactorily. However, MCMC is as of now too slow for many high-

dimensional spatial problems. The increasing demand for solving inverse problems with slow calculations

of the forward model has shown that straightforward use of MCMC algorithms is unfeasible (Khoshkholgh

et al., 2021).

To improve the computational efficiency of MCMC, time-consuming forward model calculations can be

replaced with faster surrogate model calculations. A surrogate model aims to approximate a complicated

model with fewer parameters (Chen et al., 2014). In Holm-Jensen and Hansen (2019), a linear approx-

imation to the forward model was constructed using ridge regression on data sampled from the prior, to

speed up a linear waveform tomography inversion. A surrogate system based on sparse grid interpolation
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was used by Zeng et al. (2012) to accelerate forward calculations in a contaminant source identification

problem. Chen et al. (2013) compared using several polynomial regression models, a Gaussian process

regression and a multivariate adaptive regression spline (MARS) as surrogates in the non-linear process of

hydraulic fracturing. Among the surrogates, MARS showed the best predicting performance. MARS was

also used by Chen et al. (2014) as a surrogate for the time-consuming forward function in a hydrothermal

model.

In this thesis, a surrogate model for the complicated and non-linear forward model in the likelihood model

for the AVO data from the Alvheim field is constructed. Inspired by Chen et al. (2013) and Chen et al.

(2014), a MARS model is trained on data sampled from the prior distribution. The main result of this

thesis is that evaluating earth parameters using the MARS approximation to the forward model is about

32 times faster than using the exact forward model. The MARS model is compared to a more complex

MARS model and two non-parametric kernel regression (NPKR) models. The models are compared

in terms of correlation, means square error (MSE) and computation time. The gradient of the MARS

and NPKR models is used to approximate the gradient of the forward model. The approximations are

compared to a MARS model trained directly to the partial derivatives of the forward model.

The MARS model is used to sample approximate posterior samples with MCMC at the Alvheim field.

The samples are compared to posterior samples obtained using the exact forward model on a small area

in the Alvheim field. Using the MARS model, the efficiency of four MCMC algorithms is compared on a

small area in the Alvheim field. The four methods are the Metropolis-Hastings (MH) algorithm with a

standard random walk as proposal distribution, the MH algorithm with a random walk with covariance

as proposal distribution, the MH algorithm with the preconditioned Crank Nicolson (pCN) defined in

(Pinski et al., 2015) as proposal distribution, and the Metropolis-adjusted Langevin algorithm (MALA).

MALA uses the approximation to the gradient of the forward model to reduce the computation time. The

most efficient algorithm among the four is used to sample approximate posterior samples over the entire

Alvheim field. The results are compared to the results of Spremić et al. (2024), who used a localized

ensemble-based approach for approximate and efficient seismic AVO inversion at the Alvheim field. The

method of Spremić et al. (2024) gives approximate posterior samples, whereas MCMC in principle can

draw exact samples from the posterior. However considering that the forward model is approximated, the

MCMC samples are from an approximate posterior distribution. To partially adjust for the error caused

by approximating the forward model, additional variance and covariance are added to the likelihood

model.

Monte Carlo approximation of the MCMC samples provides mean saturations of oil and gas from the

Bayesian posterior model at the Alvheim field. In Norway, the oil fields currently have an average oil

recovery rate of about 47 %. To maximize the use of established infrastructure, oil companies seek to

increase the oil recovery near existing wells. Moreover, smaller deposits are only profitable if existing

infrastructure is used1. AVO inversion could be used to increase oil recovery. Oil and gas extraction

is debatable. On one hand, the climate crisis requires fossil fuel energy to be phased out and replaced

by sustainable energy resources. Goal 7 of the United Nations 17 Sustainable Development Goals is

to ”ensure access to affordable, reliable, sustainable and modern energy for all”2. Fossil fuel energy is

neither sustainable nor modern. However, in 2021, 61.5% of the world’s electricity production came from

fossil energy sources (IEA, 2022). An argument for extracting oil and gas is therefore that sustainable

and renewable energy sources do not supply enough or affordable energy for everyone yet.

1https://www.norskpetroleum.no/en/developments-and-operations/resource-management-in-mature-areas/. Accessed

16.01.2024.
2https://sdgs.un.org/goals/goal7 Accessed 25.01.2024
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The structure of this thesis is as follows: In Chapter 2, Bayes inversion and MCMC are presented. A

simple bivariate example is used to demonstrate Bayesian inversion and basic MCMC concepts. Section

2.2 is devoted to giving the reader an understanding of how the MCMC algorithm MH works. Different

types of proposal distributions used by the MH algorithm are introduced. Several techniques for analysing

MCMC results are also presented. In Chapter 3, details of AVO inversion at the Alvheim field are

introduced. Prior and likelihood models are presented and necessary notation is given. Chapter 4

discusses approximating the forward function in the likelihood model for the AVO data. In particular,

MARS and NPKR models are considered for this task. In Chapter 5, MCMC results from the Alvheim

field are presented and compared to the results obtained by Spremić et al. (2024). The results are also

discussed in Chapter 5. Chapter 6 contains some closing remarks.

The experiments in this thesis were performed using R 4.3.2 on x86 Ubuntu 20.04 on an Intel Xeon E5-

2690 v4 2.6 GHz CPU. The function earth in the package earth (https://cran.r-project.org/web/packages/

earth/earth.pdf) and the function npreg in the package np (https://cran.r-project.org/web/packages/np/

np.pdf) were used to create the two supervised learning models MARS and NPKR, presented in Chapter

4.

Matrices, vectors and vector-evaluated functions are written in bold. Capital letters are used for matrices.
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2
Bayesian inversion

This chapter concerns Bayesian inversion. Components of Bayesian inversion such as priors, likelihoods

and posteriors are introduced. A simple two-dimensional example is used to illustrate Bayesian inver-

sion. In Section 2.2, the MH algorithm is presented. Also introduced in this section are the proposal

distributions random walk, preconditioned Crank-Nicolson (pCN) and the proposal of the Metropolis ad-

justed Langevin algorithm (MALA). The two-dimensional example is revisited to illustrate how to tune

the proposal distributions. In the last part of this chapter, the example is used to demonstrate how to

analyse the convergence and mixing of MCMC results. Monte Carlo approximation is presented briefly

at the end of this chapter.

2.1 The Bayesian inversion model

The inverse problem arises when it is possible to measure data, denoted y, that are related to an un-

observable variable of interest, denoted by x. A relationship between the variable of interest and the

observed data is expressed as

y = h(x) + ε, (2.1)

where h represents a known functional relationship and ε is random noise. When the objective x = h−1(y)

is non-unique or difficult to find, Bayesian inversion can be employed to do inversion (Ulrych et al., 2001).

In Bayesian inversion, a likelihood model for the observed data and a priori knowledge about the variable

of interest, are combined to form a posterior distribution f(x|y). A priori knowledge is expressed through

a prior distribution, denoted f(x). The likelihood probability density function, f(y|x), expresses how

likely the observed data are given a value of x. The posterior distribution function is given by Bayes’

theorem:

f(x|y) = f(y|x)f(x)
f(y)

∝ f(y|x)f(x), (2.2)

(Robert & Casella, 2004). The denominator, f(y), in equation (2.2) is a normalising constant independent

of the desired variable x and will therefore be neglected. The posterior f(x|y) will be denoted by π(x).

A priori knowledge used to create the prior can be subjective knowledge about the variable x. This can

be beneficial as you can incorporate domain or expert knowledge into the model. Bayesian inversion

is reasonable for solving an inverse geophysical problem where a priori information is necessary as the

information from the measurements alone is insufficient (Malinverno & Briggs, 2004). On the other hand,

one might argue that however reasonable a priori information is, the posterior model is nevertheless built
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on beliefs and not objective data.

Selecting a prior is an important and often difficult part of Bayesian inversion. However, the focus of

this thesis is not to find a prior, but on using Bayesian inversion and MCMC to draw samples from a

posterior distribution π(x). For the real-world example in this thesis, the same prior as in Spremić et al.

(2024) is used.

A two-dimensional example is now introduced to illustrate Bayesian inversion (see Figure 2.1). A similar

example is found in Auestad (2023). Suppose a wave is sent from a source to a receiver through two

layers of different substances (different rocks, liquids, etc.). The objective is to find the slowness in the

first and second layers, denoted by x1 and x2 respectively. Slowness is the inverse of the speed. Hence

x1 = v−1
1 and x2 = v−1

2 , where v1 and v2 are the speed of the wave through the first and second layers

respectively. Let d1 and d2 be the distances along the ray of the wave in the first and second layers

respectively. The total travel time is the sum of the travel times in the two layers, t1 and t2. Using

Pythagoras’ theorem and the equations of motion, the total travel time the ray uses to travel from the

source located at (ws, zs) to the receiver at (wr, zr) is

t = t1+ t2 =
d1
v1

+
d2
v2

= x1d1+x2d2 = x1

√
(ws − wc)2 + (zs − zc)2+x2

√
(wc − wr)2 + (zs − zc)2, (2.3)

The location of the source (ws, zs) and receiver (wr, zr) are known. Figure 2.1 illustrates the example

set-up. The source and receiver locations are set to (ws, zs) = (2, 2) and (wr, zr) = (0, 0) in the example.

Moreover, the transition between the two layers is at zc = 1. Then (2.3) reduces to

t = x1

√
(2− wc)2 + 1 + x2

√
w2

c + 1. (2.4)

According to Fermat’s principle, the ray travels the fastest route (Ammon et al., 2021). Therefore wc is

the solution to
∂t

∂wc
= 0, (2.5)

which can be found numerically by using Newton’s method (Nocedal & Wright, 2006).

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5
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1.
5

2.
0

distance, w
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pt

h,
 z

(ws, zs)

(wr, zr)

(wc, zc)

Layer 1, slowness x1

Layer 2, slowness x2

d1

d2

Figure 2.1: Illustration of the situation in the ray tracing example. Both layers have the same depth.

A wave is sent from the source at (ws, zs) = (2, 2) and is received at (wr, zr) = (0, 0). The transition

between the two layers is at depth zc = 1. The distances travelled in the layers by the shortest ray path

are denoted d1 and d2. The slowness of layer 1 is denoted x1 and the slowness of layer 2 is denoted x2.

Suppose an observation of the total travel time, y, deviates from the true travel time due to noise in the
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measurement. That is,

y = t+ ε, ε ∼ N (0, γ2). (2.6)

The forward model is thus h(x1, x2) = x1

√
(2− wc)2 + 1 + x2

√
w2

c + 1, where wc is the solution to

equation (2.5). In this example, the noise is γ2 = 0.052, which gives the likelihood

y|x1, x2 ∼ N (t, 0.052). (2.7)

The likelihood for an observation y = 3 is visualised in Figure 2.2. For a measured travel time, there are

two unknowns x1 and x2, and so from a single measurement, y, there is no unique solution for [x1, x2]

even if the noise variance γ2 approaches zero.
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Figure 2.2: Graphical description of the likelihood f(y|x1, x2) in the ray tracing example for data y = 3.

A log-normal distribution is assumed as prior for the slowness parameters:[
x1

x2

]
∼ log-normal

(
µ, σ2

[
1 0

0 1

])
, (2.8)

with µ = [0.1, 0.1]
T
and σ2 = 0.12. This prior is symmetric in (log(x1), log(x2))-space. An illustration of

the prior in (x1, x2)-space is shown in Figure 2.3.
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Figure 2.3: Graphical description of the prior f(x1, x2) for the slowness parameters in the ray tracing

example.
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It is in practice impossible to find an analytic expression for this posterior, but as it is only bivariate,

it is possible to visualize a numerical approximation to the posterior. To do this, the likelihood and

prior are calculated for 2002 evenly spaced discrete values in the area [0.8, 1.5] × [0.8, 1.5]. That is

(x1, x2) ∈ D = {[0.8, 0.8 + δ, ..., 1.5 − δ, 1.5] × [0.8, 0.8 + δ, ..., 1.5 − δ, 1.5]} for δ = 1.5−0.8
200 ≈ 0.0035. At

each point on the grid, the product of the likelihood and the prior is computed according to

π(x1, x2) ∝ f(y|x1, x2)f(x1, x2). (2.9)

This gives values proportional to the posterior, which in turn are normalised such that∑
x1,x2∈D

π(x1, x2)δ
2 = 1. (2.10)

The numerical approximation to the posterior is visualised in Figure 2.4.
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Figure 2.4: Graphical description of the posterior π(x1, x2) for the slowness parameters in the ray tracing

example.

When the dimension is higher, it is infeasible to calculate, normalize and visualize the posterior in this

way. In these cases, MCMC can be used to do Bayesian inversion and MCMC is the topic of the next

section.

2.2 Markov chain Monte Carlo

MCMC is a method that can be used to draw samples from a posterior distribution. The idea of MCMC

is to construct a Markov chain that converges to a desired posterior distribution (Givens & Hoeting,

2013). Robert and Casella (2004) define an MCMC method as any method producing an ergodic Markov

chain whose stationary distribution is the posterior π. This section attempts to briefly understand this

definition by presenting Markov chains, in particular ergodic Markov chains, and stationary distributions.

The MCMC methods in this thesis construct discrete-time Markov chains on the state space RN . For

simplicity, the following paragraphs regard discrete-time Markov chains on finite state space, though, the

results for continuous state spaces are similar to the results presented in the next paragraphs (Givens

& Hoeting, 2013). After establishing a notion of an ergodic Markov chain and stationary distributions,

the MH algorithm is presented. Proposal distributions are important in the MH algorithm and four
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proposal distributions are presented in Section 2.2.3. Convergence and mixing analysis tools are presented.

The two-dimensional ray tracing example introduced in Section 2.1 is revisited to illustrate how to

tune proposal distributions and how to examine the convergence and mixing. Finally, the Monte Carlo

approximation is described in brief.

2.2.1 Markov chains

To define a Markov chain, let {xt}mt=0 be a stochastic process, that is a sequence of random variables, with

subscripts t indicating the time iteration. Moreover, let S denote the state space, that is the collection of

all possible values xt can take. If a ∈ S, then a is called a state. A Markov chain is a stochastic process

where the probability of transitioning from one state to another state in one time step is only dependent

on the current state. This is called the Markov property. By denoting the one-step transition probability

from state a to state b as p(b|a), the Markov property is mathematically written as

p(b|a) := P (xt+1 = b|xt = a, xt−1 = at−1, . . . , x0 = a0) = P (xt+1 = b|xt = a) , (2.11)

for states b, a, at−1, . . . , a0 ∈ S (Givens & Hoeting, 2013).

Some Markov chains have stationary distributions. That is a distribution π = [..., πa, πb, ...] such that

if xt follows this distribution, so does xt+1 (Robert & Casella, 2004). If a Markov chain converges to

its stationary distribution, the element πb of the stationary distribution π, approaches the probability of

finding the Markov chain in state b as t → ∞. Another interpretation is that πb gives the long-run mean

fraction of time the Markov chain spends in state b (Pinksy & Karlin, 2011).

For a Markov chain to have and converge to a unique stationary distribution some requirements need to

be met. If a Markov chain is recurrent, aperiodic and irreducible it has a unique stationary distribution

to which it converges (Pinksy & Karlin, 2011). According to Givens and Hoeting (2013), such Markov

chains (irreducible, aperiodic and recurrent) are called ergodic. This paragraph explains intuitively in

turn what these properties mean. In an irreducible Markov chain, it is possible to transition between any

two states in the state space in a finite number of time steps. If, in addition, it is possible to stay in the

same state over two or more time iterations, the Markov chain is called aperiodic. A state is recurrent if

the probability that the chain returns to the state is 1 (Givens & Hoeting, 2013).

Fundamental convergence results are elemental for the motivation of MCMC methods (Robert & Casella,

2004). However, showing that these properties hold for a general state space is outside the scope of

this thesis. In this thesis, the transition probabilities are Gaussian proposals, which have support on

RN , multiplied by an acceptance probability. For these proposals, the requirements suffice (Robert &

Casella, 2004). Intuitively this seems reasonable as one can draw the same sample twice from a Gaussian

distribution. It is also possible to reach anywhere from anywhere in a finite number of steps. And as

t → ∞, the Markov chain eventually visits every state. Moving on it is assumed that the chains created

by the MCMC scheme are ergodic Markov chains as described in Robert and Casella (2004).

2.2.2 The Metropolis-Hastings algorithm

The definition of an MCMC method by Robert and Casella (2004) encloses different types of MCMC

methods such as Gibbs sampling and MH (Givens & Hoeting, 2013), however, this thesis only concerns

the MH algorithm. The MH algorithm uses the detailed balance equation:

πap(b|a) = πbp(a|b) (2.12)
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to ensure that the stationary distribution is the posterior (Givens & Hoeting, 2013). If there exists a

function π that satisfies the equation (2.12) then π is a stationary distribution to the Markov chain

defined by the transition probabilities p(b|a) for all a, b ∈ S. A Markov chain that satisfies the detailed

balance equation is reversible (Robert & Casella, 2004). This means that, in the long run, the chain

transitions equally many times from a to b as from b to a. For π to be a stationary distribution to

the Markov chain associated with the transition probability p(b|a), it is not required that the chain is

reversible, but it is a sufficient condition which is easily checked, and therefore used by many MCMC

methods (Robert & Casella, 2004).

To exploit the detailed balance equation (2.12) such that the posterior distribution π is the stationary

distribution, the transition probability p(b|a) is expressed as the product

p(b|a) = q(b|a)α(b|a), (2.13)

where q(b|a) is the probability of proposing a move to state b when the current state is a and α(b|a) is the
probability of accepting this move. Proposal distributions are the subject of the next section, for now, the

attention is directed to the acceptance probability α(b|a). The key is to select this acceptance probability

such that the detailed balance equation (2.12) is fulfilled. Inserting equation (2.13) into equation (2.12)

gives

πaq(b|a)α(b|a) = πbq(a|b)α(a|b), (2.14)

which can be written as

α(b|a)
α(a|b)

=
πbq(a|b)
πaq(b|a)

(2.15)

By choosing

α(b|a) = min

{
1,

πb

πa

q(a|b)
q(b|a)

}
, (2.16)

then in the case where πaq(b|a) ≤ πbq(a|b)

α(b|a) = 1 (2.17)

and

α(a|b) = πa

πb

q(b|a)
q(a|b)

. (2.18)

Thus
α(b|a)
α(a|b)

=
πb

πa

q(a|b)
q(b|a)

(2.19)

which satisfies equation (2.15). In the other case when πaq(b|a) > πbq(a|b)

α(a|b) = 1 (2.20)

and thus
α(b|a)
α(a|b)

= α(b|a) = πb

πa

q(a|b)
q(b|a)

, (2.21)

which also fulfils equation (2.15). Consequently, by choosing α(a|b) according to (2.16) the detailed

balance given in equation (2.12) is satisfied and π is the stationary distribution of the Markov chain

associated with the transition probability q(b|a)α(b|a), for all a, b ∈ S. Moreover, as it is assumed that

the Markov chain produced by the MH scheme is ergodic, the Markov chain converges to this stationary

distribution.
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Moving on, the state of a Markov chain produced by the MH algorithm at time t, is referred to as a

sample instead of a state and denoted by xt.

The MH algorithm works as follows. At time iteration t + 1, a sample xp is proposed from a proposal

distribution q(xp|xt). The proposed sample is accepted with probability

α(xp|xt) = min

{
1,

π(xp)

π(xt)

q(xt|xp)

q(xp|xt)

}
. (2.22)

If xp is accepted, then xt+1 = xp, otherwise the current sample is kept xt+1 = xt. As the MH algorithm

depends on the posterior density ratio,

π(xp)

π(xt)
=

f(y|xp)f(xp)f(y)

f(y)f(y|xt)f(xt)
=

f(y|xp)f(xp)

f(y|xt)f(xt)
, (2.23)

normality constant of the posterior, f(y), and the normality constant of the proposal distribution, are

not needed.

2.2.3 Proposal distributions

By defining the acceptance rate as in equation (2.22), almost any proposal distribution, as long as the

produced Markov chain is ergodic, can be used in the MH algorithm. Selecting a good proposal distribu-

tion, q, is an important and often difficult task. A good proposal distribution covers the posterior at its

tails and is also similar to the posterior (Givens & Hoeting, 2013). Moreover, the proposal distribution

should be easy to sample from. The proposal distribution influences the efficiency of the MH algorithm.

Now, four different types of proposal distributions are presented, denoted by q1, q2, q3 and q4 respective

to the order they are presented. All these proposal distributions are dependent proposal distributions

because they are dependent on the current sample. If the proposal distribution is independent of the

current sample it is called an independent proposal distribution (Givens & Hoeting, 2013).

Random walk

The first proposal distribution is the standard random walk. It is a simple and intuitive proposal. In

random walk, a sample is proposed according to

xp = xt + εt, εt+1 ∼ N (0, s2I). (2.24)

Here xt is the current sample and εt are i.i.d. noise with standard deviation s. Hence the proposal

distribution is a Gaussian distribution,

q1(x
p|xt) = φ(xt, s

2I), (2.25)

where φ(xt, s
2I) denotes the normal probability density function with xt as expected value and variance

s2. The standard deviation, s, is a tuning parameter which should be tuned to make the algorithm more

efficient. Approaches for tuning s are discussed after the four proposal distributions have been presented.

Due to the simplicity and generality of this proposal distribution, the random walk is widely used

(Kamatani, 2020). An advantage of the random walk is that it is symmetric. This means that q1(x
p|xt) =

q1(xt|xp). An MH algorithm with a symmetric proposal is called a Metropolis algorithm (Givens & Ho-

eting, 2013). This is convenient as the acceptance rate in equation (2.22) reduces to

α = min

{
1,

π(xp)

π(xt)

}
. (2.26)
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At each iteration, only the likelihood f(y|xp) and prior f(xp) needs to be computed. Proposing a sample

has a relatively low computational cost as the covariance matrix has zero elements everywhere but the

diagonal.

The efficiency of this proposal decreases with increasing dimension. When the posterior is light-tailed and

similar to a Gaussian distribution, the number of iterations m should be proportional to the dimension

N (Kamatani, 2020). However, Kamatani (2020) found that when the posterior is not light-tailed and

further from a Gaussian distribution, the number of iterations should be proportional to N2 for the

standard random walk.

Random walk with covariance

Another similar and symmetric proposal distribution is a random walk with covariance. That is

q2(x
p|xt) = φ(xt, s

2Σ), (2.27)

where Σ is a covariance matrix and s is a tuning parameter.

The acceptance probability is reduced to (2.26) because it is symmetric. As for q1, only the likelihood

f(y|xp) and prior f(xp) needs to be computed at each iteration. However, because this proposal distri-

bution draws samples with correlation, proposing a sample requires a matrix multiplication.

As the covariance structure of the posterior is unknown, it is not clear which covariance matrix to use.

In this thesis, the covariance matrix of the prior is used. In this way, this proposal distribution uses

more information than the first proposal. However, at the cost of being less computationally efficient

compared to the standard random walk. Especially when the dimension becomes very high, the matrix

multiplications with the covariance matrix become very computationally expensive.

Preconditioned Crank-Nicolson

A modified version of the random walk is the pCN proposal distribution. Suppose the prior distribution in

a Bayesian inversion framework has a Gaussian distribution φ (µ,Σ) with non-zero mean µ and covariance

matrix Σ. Then the pCN proposal distribution

q3(x
p|xt) = φ

(
µ+

√
1− s2(xt − µ), s2Σ

)
, (2.28)

with tuning parameter s is reversible with respect to the prior distribution (Pinski et al., 2015). This

means that

f(xt)q3(x
p|xt) = f(xp)q3(xt|xp) (2.29)

which in turn means that the acceptance probability given in equation (2.22) reduces to the likelihood

ratio

α = min

{
1,

f(y|xp)

f(y|xt)

}
. (2.30)

This leads to significant speed-ups for problems which are discretized on a grid of dimension N . This

proposal only requires evaluating the likelihood function and performing a matrix multiplication when

proposing a new sample.

As opposed to the standard random walk q1, the number of steps required by using pCN does not increase

with the dimension N . Hence using pCN, the support of the posterior is explored more efficiently than

by using q1, and the difference in efficiency increases with the dimension (Rudolf & Sprungk, 2016).
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Metropolis-adjusted Langevin algorithm

Finally, the last proposal is on the form

q4(x
p|xt) = φ

(
xt +

s2

2
∇ log (π(xt)) , s

2I

)
. (2.31)

Here ∇ log (π(xt)) is the gradient of the posterior evaluated at the current sample and s is a tuning

parameter. An MH algorithm with the distribution in equation (2.31) as proposal distribution is called

MALA. One can deduct MALA from the Langevin diffusion equation (Roberts & Rosenthal, 1998).

This proposal distribution exploits the form of the posterior by shifting the expected value in the direction

of higher posterior density. Using information about the posterior built into the proposal gives a higher

chance of creating an efficient algorithm (Khoshkholgh et al., 2021). MALA is the most computationally

expensive of the four proposal distributions. To calculate the acceptance probability, the prior, likelihood,

gradient of the prior and gradient of the likelihood need to be evaluated. Even though each iteration is

more computationally expensive, one probably does not need to compute as many iterations to obtain

the same information as one would by using q1, because MALA can be considerably more efficient than

the MH algorithm with the standard random walk as proposal distribution. What is meant by efficient is

described in Section 2.2.4. Roberts and Rosenthal (1998) found that for a lightly-tailed posterior similar

to a Gaussian distribution, the number of iterations, m, needed is proportional to N
1
3 compared to N

for the random walk q1. Unfortunately, if the posterior has many modes, using the MALA may lead to

only exploring one of the posterior’s modes and sometimes lead to slow convergence (Givens & Hoeting,

2013).

Scaling the proposal distributions

The tuning parameter, s, in the four proposal distributions, should be tuned to make the MH algorithms

more efficient. Tuning can be time-consuming (Eidsvik & Tjelmeland, 2006), however, studies where

the MH algorithms are tuned in general cases can serve as guidelines when using MH algorithms for

specific problems. Under quite general conditions, Roberts et al. (1997) found that scaling s such that

the asymptotic acceptance rate is 23.4%, maximizes the efficiency of a multidimensional random walk

Metropolis algorithm. In Cotter et al. (2013) the pCN is also tuned such that the acceptance rate is

about 23.4%. The optimal asymptotic acceptance rate for MALA in high dimension is approximately

57.4% (Roberts & Rosenthal, 1998). These acceptance rates are used as pointers to values of s which

give efficient MCMC sampling in high dimension. In this thesis, s will be tuned such that the acceptance

rates of q1, q2 and q3 are approximately 23.4% and q4 such that the acceptance rate is near 57.4%.

The ray tracing example is employed to illustrate why these acceptance rates are favoured by demonstrat-

ing what happens when s is chosen either too low or too high. A description of the prior and likelihood

in the ray tracing example is given in Section 2.1. MCMC is performed for m = 5000 iterations using

three different values for s. For this part, only the proposal q1 is used. Figure 2.5a, Figure 2.5b and

Figure 2.5c show the values of the produced Markov chains for standard deviations s = 0.002, s = 0.1 and

s = 0.8, respectively. Black circles indicate the values of {[x1, x2]t}m=5000
t=0 at time iteration t, while grey,

the dashed line shows the path. The red contour curves are from the numerically calculated posterior

distribution corresponding to Figure 2.4 in Section 2.1. The Markov chains start at x0 = [1.4, 1.4]0.

Figure 2.5a illustrate the consequence of selecting a too low standard deviation s. Since s is very small,

the proposed sample is likely very close to the current sample, and consequently, the steps of the random

walk are small. The grey dashed lines are not visible as the black circles are so close to each other. The
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sample values are similar and strongly influenced by previous sample values. This is called poor mixing.

Eventually, the Markov chain arrives to the high posterior density region, but it is unable to explore

much of the posterior in the remaining time iterations. In Figure 2.5a, one can see essential parts of the

posterior left unexplored. This scenario gives a high acceptance rate, beacause the posterior ratio is close

to one. The acceptance rate from this MCMC run was 96.3%.
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(a) Path of {[x1, x2]t}m=5000
t=0 sampled with the

MH algorithm using the proposal distribution

q1 with standard deviation s = 0.002. The

acceptance rate was 96.3%.
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(b) Path of {[x1, x2]t}m=5000
t=0 sampled with the

MH algorithm using the proposal distribution

q1 with standard deviation s = 0.1. The ac-

ceptance rate was 23.6%.
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(c) Path of {[x1, x2]t}m=5000
t=0 sampled with the

MH algorithm using the proposal distribution

q1 with standard deviation s = 0.8. The ac-

ceptance rate was 0.6%.

Figure 2.5: Path of Markov chains from the ray tracing example described in Section 2.1. Values of

{[x1, x2]t}m=5000
t=0 are marked as black circles, while grey dashed lines mark the path. Red contour curves

are numerical approximations of the posterior distribution also shown in Figure 2.4. The Markov chains

started in x0 = [1.4, 1.4]0.
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If, on the other hand, the standard deviation is too large, the acceptance rate becomes very low. In

Figure 2.5c, the tuning parameter was 0.8 and the acceptance rate was only 0.6%. In this path, the

proposed sample is far away from the current sample and therefore seldom in the high posterior density

region. Hence many proposed samples are not accepted and the process stays in the same sample over

many time iterations before moving. This is an inefficient and time-consuming way to explore the region

of the posterior.

The acceptance rate of 23.4% presented in Roberts et al. (1997) give a trade-off between accepting

a sufficient amount of the proposed samples, while also exploring most of the posterior. Figure 2.5b

illustrates MCMC results when s was tuned according to Roberts et al. (1997). The standard deviation

was 0.1 which gave an acceptance rate of 23.6%. More or less every part of the posterior is visited.

Between the three MCMC runs, this is clearly the most efficient way to explore the posterior in the 5000

given time iterations. Figure 2.5b demonstrates good mixing and fast convergence, which is discussed in

the next section.

2.2.4 Convergence and mixing diagnostics

In most situations where MCMC is performed, there are unfortunately no contour plots of the posterior

to compare the MCMC samples with. However, tools are available for assessing convergence and mixing.

Convergence means that the Markov chain has approximately reached its stationary distribution. Mixing

is how quickly the Markov chain explores the support of the posterior and how fast it forgets its initial

value (Givens & Hoeting, 2013). Mixing and convergence are two related concepts and many of the

same diagnostics apply to investigate both properties. This section concerns trace plots, autocorrelation

plots and effective sample size (ESS). Note that no diagnostics can assure convergence, only indicate

convergence of an MCMC algorithm. Givens and Hoeting (2013) therefore recommend using a variety

of diagnostics techniques. Again, the ray tracing example is employed to illustrate how to use these

techniques.

Trace plots

Trace plots display the value of a stochastic process {xt}mt=0 as a function of the time iteration t. Figure

2.6a, Figure 2.6b and Figure 2.6c show trace plots for {x1,t}mt=0 in the ray tracing example. The trace

plots correspond to values in Figure 2.5a, Figure 2.5b and Figure 2.5c, that is, they are from MCMC

runs using the standard random walk proposal, q1, with standard deviations s = 0.002, s = 0.1 and

s = 0.8, respectively. The three scenarios from the ray tracing example will serve as objects of study

to understand how trace plots can be used to determine convergence and mixing properties. Only trace

plots for {x1,t}mt=0 are considered here, however, one could have regarded trace plots of {x2,t}mt=0 instead.

Identifying a clear burn-in period in a trace plot indicates convergence. The burn-in period are the first

iterations, where the Markov chain moves from the starting value to the high posterior density region

(Givens & Hoeting, 2013). A shorter burn-in period indicates faster convergence. How many iterations

are required for convergence depends on where you start and which proposal you use. In the ray tracing

example, all three MCMC runs started at the same initial sample, however, using a low value for s

required more iterations before reaching convergence as shown in Figure 2.6a. Approximately the first

1000 samples make up the burn-in in Figure 2.6a, which is significantly more than in Figure 2.6b and

Figure 2.6c, where the burn-in appears to be about 10 − 20 iterations. It is a bit difficult to see the

burn-in in Figure 2.6b and especially in Figure 2.6c.
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(a) Trace plot of MCMC samples

sampled with the MH algorithm

using the proposal distribution

q1 with standard deviation s =

0.002. The acceptance rate was

96.3%.
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(b) Trace plot of MCMC samples

sampled with the MH algorithm

using the proposal distribution

q1 with standard deviation s =

0.1. The acceptance rate was

23.6%.
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(c) Trace plot of MCMC samples

sampled with the MH algorithm

using the proposal distribution

q1 with standard deviation s =

0.8. The acceptance rate was

0.6%.

Figure 2.6: Trace plots for {x1,t}mt=0 in the ray tracing example described in Section 2.1. Values for

{x1,t}mt=0 are plotted against the time iteration t. The Markov chain started in x0 = [1.4, 1.4]0.
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(a) Trace plot of MCMC samples

sampled with the MH algorithm

using the proposal distribution

q1 with standard deviation s =

0.1 starting in x0 = [1.6, 1.6]0.
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(b) Trace plot of MCMC samples

sampled with the MH algorithm

using the proposal distribution

q1 with standard deviation s =

0.1 starting in x0 = [0.4, 0.4]0.

Figure 2.7: Trace plots for {x1,t}mt=0 in the ray tracing example described in Section 2.1. The Markov

chain was started in two different initial samples.

The Markov chain should be started with several different initial values to ensure that the Markov chain

has converged. If the Markov chain converges to the same region this indicates that it has reached its

stationary distribution (Givens & Hoeting, 2013). Figure 2.7 shows two trace plots from the ray tracing

example with initial samples [1.6, 1.6]0 and [0.4, 0.4]0. Both paths end up in the same region, indicating

that the samples after burn-in are sampled from the posterior distribution. It is especially important to

try several starting values if the posterior is multi-modal, as the Markov chain can stay in one of the

high-density regions for a long time before moving to another high-density region. If the trace plot only

captures the burn-in and samples from one of the high-density regions, it gives the illusion of convergence,
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while in fact the samples only represent parts of the stationary distribution. Before estimating distribution

properties from MCMC samples, the burn-in is removed.

Trace plots can also be used to assess the mixing properties of an MCMCmethod. If the MCMC algorithm

is mixing poorly, the Markov chain will stay close to or at the same value for many iterations (Givens

& Hoeting, 2013). The path in Figure 2.6c stays at the same value over many iterations and the values

of the path in Figure 2.6a are close to each other. Hence these are examples of bad mixing. Ideally, a

trace plot similar to Figure 2.6b is desired. The stable, horizontal band indicates good mixing (Givens

& Hoeting, 2013).

Autocorrelation plots

Autocorrelation plots are good for assessing mixing. Mixing is closely related to the correlation between

samples at different lags. In an autocorrelation plot, the autocorrelation function (ACF) is shown on the

vertical axis and lag, k, on the horizontal axis. The ACF, denoted by rk, gives the sample correlation

between xt and xt+k at lag k:

rk =

∑m
t=0(xt+k − x̄)(xt − x̄)∑m

t=0(xt − x̄)2
(2.32)

(Venables & Ripley, 2002). Values of rk close to 1 signify that the values of xt and xt+k are similar.

Conversely, if rk is close to minus 1 the values of xt and xt+k are dissimilar (Walpole et al., 2012).

Figure 2.8 shows autocorrelation plots for the three different MCMC runs in the ray tracing example

discussed so far. Ideally, the autocorrelation plot decreases quickly because this signifies that the samples

are less correlated. That is, the Markov chain forgets its initial value quickly and thus mixes well. Using

a relatively low or high value for s, gives autocorrelation plots that decay slowly. When s is too low, the

MCMC samples are very similar and therefore highly correlated. On the other hand, when s is too high,

the same sample is kept over many time iterations which also makes the samples correlated.
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(a) Autocorrelation plot of

MCMC samples sampled with

the MH algorithm using the

proposal distribution q1 with

standard deviation s = 0.002.

The acceptance rate was 96.3%.
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(b) Autocorrelation plot of

MCMC samples sampled with

the MH algorithm using the

proposal distribution q1 with

standard deviation s = 0.1. The

acceptance rate was 23.6%.
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(c) Autocorrelation plot of

MCMC samples sampled with

the MH algorithm using the

proposal distribution q1 with

standard deviation s = 0.8. The

acceptance rate was 0.6%.

Figure 2.8: Autocorrelation plots for {x1,t}mt=0 in the ray tracing example described in Section 2.1. The

ACF rk is on the vertical axis and the lag k is on the horizontal axis.
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Effective sample size

To find the trade-off value between low and high s one can use the ESS. ESS is how many independent

samples the information from the dependent MCMC samples represents (Givens & Hoeting, 2013). That

is, the higher ESS, the less correlated samples. For m̃ MCMC samples after burn-in, ESS is defined as

ESS =
m̃

τ
, (2.33)

where τ is the integrated autocorrelation time (IAT) defined as

τ = 1 + 2

∞∑
k=1

rk. (2.34)

It is common to truncate the sum in equation (2.34) when rk < 0.05 (Kass et al., 1998). The IAT is

proportional to the area under the ACF curve. IAT is roughly the number of iterations per independent

sample (Christen & Fox, 2010). Hence, a low IAT is good. As ESS is inversely proportional to IAT, it is

clear that a high value of ESS is better. An MCMC algorithm with a larger ESS is likely to converge in

fewer time iterations compared to an MCMC algorithm with a smaller ESS (Givens & Hoeting, 2013).

The ESSs from the ray tracing example are presented in Table 2.1. The ESSs are calculated on 3000

iterations after burn-in. By now, it is probably no surprise that using s = 0.1 obtains the highest ESS.

The 3000 MCMC samples contain as much information as approximately 139 i.i.d. samples.

proposal s acceptance rate [%] ESS [#]

q1 0.002 96.3 6.081

q1 0.1 23.6 139.410

q1 0.8 0.6 5.869

Table 2.1: Comparison of acceptance rates and ESS for three MH algorithms with proposal distribution

q1 in the ray tracing example described in Section 2.1. The three proposal distributions in the algorithms

had different standard deviations, as reported in the table. ESSs are measured for {x1,t}5000t=2000.

An attempt to illustrate how ESS relates to the acceptance rate is shown in Figure 2.9. The ESS of

200, 000 MCMC samples after burn-in of the stochastic process {x1,t}t is calculated for different values

of s. The ESSs are divided by the max ESS such that they can be plotted on top of the acceptance

rate. The black dashed line shows the parameter value, s = 0.1, used in the ray tracing example. The

figure shows that this value approximately corresponds to an acceptance rate of 23.4% marked by the

dashed, orange line and that this is close to the maximum ESS. In high dimension, tuning the standard

deviation such that the asymptotic acceptance rate is 23.4% maximizes the ESS for the same number of

iterations (Roberts & Rosenthal, 2001). As the dimension of x is only 2, it is reasonable that the optimal

acceptance rate is different to 23.4%. Roberts and Rosenthal (2001) finds that for dimension around 5

and higher, the optimal acceptance rate approaches 23.4%.

For a fixed number of samples, a higher ESS is better, however, to measure the efficiency of different

MH algorithms, the time used to produce those samples must also be accounted for. This is because

the overall goal is to produce the least correlated samples in the shortest amount of time. Eidsvik and

Tjelmeland (2006) used the number of evaluations per independent sample to measure the efficiency. In

17



this thesis, the measure ESS per computation time will determine the efficiency of the algorithm. The

algorithm with the highest ESS per time will serve as the most efficient.
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Figure 2.9: ESS of {x1,t}205000t=5000 plotted as a function of the standard deviation s. The ESSs are divided

by the maximum ESS such that they can be compared to the acceptance rates. The blue line shows the

acceptance rate as a function of s. The black dashed line marks the parameter value s = 0.1 used in the

ray tracing example. The acceptance rate of 23.4% is marked by the orange dashed line.

2.2.5 Monte Carlo approximations

Monte Carlo approximation is a procedure to approximate important distribution quantities from a

sample set. Given a set of m̃ samples x1,x2, ...,xm̃ from a distribution, f(x), not to be confused with

the prior distribution, many interesting quantities can be expressed as an expected value of a function

E[u(x)]. The Monte Carlo approximation estimates this quantity by the sample average

E[u(x)] ≈ 1

m̃

m̃∑
t=1

u(xt). (2.35)

If the samples x are i.i.d. then

E[u(x)] ≈ 1

m̃

m̃∑
t=1

u(xt) →
∫

u(x)f(x)dx = E[u(x)] (2.36)

as m̃ → ∞ by the strong law of large numbers (Givens & Hoeting, 2013). As mentioned, MCMC does not

draw independent samples. However, a sequence of samples produced by an MCMC scheme is sufficient

to ensure proper approximations through approximations like (2.35) see e.g. (Robert & Casella, 2004).

The burn-in samples must be removed before performing Monte Carlo approximations.
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3
Seismic AVO inversion at the Alvheim field

This chapter is devoted to describing the inverse problem at the Alvheim oil and gas field. First, an

orientation of the situation and necessary notation are given. Then the choices regarding the prior

distribution are presented. Lastly, seismic AVO data, well-log data, and the likelihood functions are

described. The information in this chapter is based on the article of Spremić et al. (2024). It is very

similar to the information provided and the notation given in the specialization project by Auestad (2023),

which also was based on the article of Spremić et al. (2024).

3.1 The Alvheim field

The Alvheim field is situated in the North Sea off the Norwegian west coast. Figure 3.1 shows the location

of the field. It is a producing oil and gas field. As stated in Spremić et al. (2024), conducting seismic

reservoir characterization is challenging as the distribution of lithology and fluids is complex. Further

details regarding the geology and lithology of the Alvheim field can be found in for example (Rimstad

et al., 2012b).

Figure 3.1: Location of the Alvheim field in the North Sea 1.

Seismic AVO inversion is performed at the top-reservoir in the Alvheim field. Following the framework of

Spremić et al. (2024), the horizontal axis represents the inline direction and the vertical axis represents

1Map from : https://factmaps.npd.no. Accessed 13.12.23.
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the crossline direction at the top-reservoir. The area is approximately 109.3 square kilometres, roughly

12.35 km in the inline direction and 8.85 km in the crossline direction. Seismic AVO data are available

at N evenly spaced locations in the field, denoted by l, l = 1, 2, ..., N . Also available at each location,

l, is depth, calculated from measured travel times. The depth of the top-reservoir in the field is shown

in Figure 3.2. Already drilled wells in the area are marked as red and violet circles. Red circles mark

wells where primarily gas was found. Mainly oil was retrieved in the well marked by the violet circle. As

shown in Figure 3.2, all four wells are located at relatively shallow locations.
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Figure 3.2: The depth of the top-reservoir of the Alvheim field. Four wells are marked by coloured circles,

where the colour indicates the majority type of hydrocarbons found at that well. The wells are located

at (inline,crossline)-locations (484, 4798), (716, 4914), (1026, 4924) and (1300, 5150).

The variable of interest, x, consists of the transformed reservoir variables. That is xl = [xl
g, x

l
o, x

l
c], where

xl
g, x

l
o and xl

c are transformed values for gas, oil and clay respectively at location l. Figure 3.3 illustrates

the variable x = [x1,x2, ...,xN ] discretized on a grid, where the location l correspond to the location

where the seismic AVO data and depth measurement is collected. The area consists of 248 data points

in the inline direction and 178 data points in the crossline direction. This leaves N = 44, 144 equally

spaced discrete locations with approximately 50 meters apart.

x43896 x43897 . . . x44144

...
...

. . .
...

x249 x250 . . . x496

x1 x2 . . . x248

xline

inline

Figure 3.3: Spatial representation of the random variable x ∈ RN with N = 44, 144 in the inline,crossline

coordinate system.
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In this thesis, the random variables of interest xg, xo and xc are represented as vectors

xg = [x1
g, x

2
g, . . . , x

N
g ], (3.1)

xo = [x1
o, x

2
o, . . . , x

N
o ], (3.2)

and

xc = [x1
c , x

2
c , . . . , x

N
c ], (3.3)

with xl
g, x

l
o, x

l
c ∈ ⟨−∞,∞⟩. Motivated by insight gained from the Alvheim field, Spremić et al. (2024)

chose to model these variables as continuous variables because it allows for sand-clay mixtures and partial

saturations in the sample space and avoids unrealistically strong classification tendencies and accuracies.

Following the notation of Spremić et al. (2024), logistic transformations,

Sl
g(x

l) =
ex

l
g

1 + ex
l
g + ex

l
o

(3.4)

and

Sl
o(x

l) =
ex

l
o

1 + ex
l
g + ex

l
o

(3.5)

are applied to xl
g and xl

o at each location l. Brine is used for reference saturation. Hence

Sl
b(x

l) =
1

1 + ex
l
g + ex

l
o

(3.6)

such that Sl
g + Sl

o + Sl
b = 1 for all locations l = 1, ..., N . For the clay content, the logistic transformation

V l
c (x

l) =
ex

l
c

1 + ex
l
c

, (3.7)

is applied at each location l, such that V l
c ∈ ⟨0, 1⟩. For efficient calculations, the algorithms work with

the variables xl
g, x

l
o, x

l
c instead of the modelled saturations Sl

g and Sl
o and clay content V l

c .

3.2 Seismic AVO inversion

The posterior, π(x), in the Alvheim case consists of two likelihood functions and a prior:

π(x) = const · f(ys|x) · f(yw|x) · f(x). (3.8)

The likelihood f(ys|x) is the contribution from the seismic AVO data and f(yw|x) is the contribution

from the well-log data. As in Chapter 2, f(x) denotes the prior. It follows an elaboration of the prior,

the likelihoods and the data. The gradient of the prior and likelihoods are also presented. The gradients

are used by the MALA presented in Chapter 2.

3.2.1 The prior

As briefly mentioned in Chapter 2, the prior used in this thesis is the same as in Spremić et al. (2024). This

is an informed type of prior, constructed off the well-log data and expert knowledge of geological trends,

spatial smoothness and fluid sorting (Spremić et al., 2024). Depth, shown in Figure 3.2 is incorporated

into the model by letting the variables xg, xo and xc depend on the depth (Spremić et al., 2024). The

expected values of the prior, µg, µg and µc, represent depth trends estimated from well-log data. As
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described in (Spremić et al., 2024), xg, xo and xc are assumed independent Gaussian random fields.

That is,

xg ∼ N (µg,Σg), (3.9)

xo ∼ N (µo,Σo), (3.10)

and

xc ∼ N (µc,Σc). (3.11)

Hence the log prior is

log(f(x)) = const− 1

2
(xg −µg)

TΣ−1
g (xg −µg)−

1

2
(xo−µo)

TΣ−1
o (xo−µo)−

1

2
(xc−µc)

TΣ−1
c (xc−µc),

(3.12)

with gradient

∇ log (f(x)) = −
[
Σ−1

g (xg − µg),Σ
−1
o (xo − µo),Σ

−1
c (xc − µc)

]
. (3.13)

Logistic transformations, given in equations (3.4), (3.5) and (3.6), applied to the prior means µg and µo

are shown in Figure 3.4. Generally, Figure 3.4a and 3.4b show that the prior mean gas and oil saturation

are higher in shallow areas. The prior mean saturation of oil is also relatively high around the area of

the well marked by a violet circle in Figure 3.2, whereas the prior mean saturation of gas is low in this

area. In the deepest areas, such as the top left corner, both saturations are low. The mean saturation of

oil is slightly higher in the relatively deep area in the top middle. Between the middle ridge and the high

area where the well that contained most oil is located, the prior mean saturation for oil is higher than

the prior mean saturation of gas. Overall, in the areas where both the mean saturations are relatively

high, the gas saturation is slightly higher.
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(a) Prior mean saturation of gas.
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(b) Prior mean saturation of oil.
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(c) Prior mean saturation of brine.

Figure 3.4: Saturation of the prior means µg and µg. Brine is used for reference saturation.
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Figure 3.5 shows the prior mean clay content. That is the logistic transformation, given in equation (3.7),

of µc. The prior mean clay content is generally very low, however, it is very high in the deep area at the

top left corner.
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Figure 3.5: Prior mean of the clay content.

Spatial correlation between the variables x1,x2, ...,xN is included as a Gaussian correlation function

with an effective correlation length of 15 grid cells (Spremić et al., 2024). This means that the element

at row l and column k of the covariance matrix Σj , j = g, o, c, is

σ2
j e

− 1
2

(
dlk
15

)2

, (3.14)

with standard deviations σg = 2.83, σo = 2.68 and σc = 1.64. Here dlk is the euclidean distance between

the location of xl and the location of xk,

dlk =
√
(el − ek)2 + (nl − nk)2, (3.15)

where east and north coordinates are

el = (l − 1) modulo 178,

ek = (k − 1) modulo 178,

nl = (l − 1) integer division 178,

nk = (k − 1) integer division 178.

The covariance matrices Σo, Σo and Σo are each of size N ×N . Fast Fourier transform (FFT) will be

used to compute the matrix multiplications in equation (3.12) (Gray, 2006).

3.2.2 The data and likelihood models

There are two sorts of data available. Seismic AVO data is denoted ys and well-log data from the four

wells marked as red and violet circles in Figure 3.2 is denoted by yw. The data are collectively denoted

as

y =

ys

yw

 . (3.16)

As there are two types of data, there are also two sources of contribution to the likelihood, f(ys|x) and
f(yw|x), which will be described in turn.
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Seismic AVO data

The seismic AVO data consists of the measurements zero-offset intercept (R0) and AVO gradient (G)

from the top-reservoir. The measurements, shown in Figure 3.6, are available at each location l. A

description of the processing procedure for making these data appropriate for quantitative analysis is

given in Rimstad et al., 2012a.
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(a) Zero-offset intercept (R0).
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(b) AVO gradient (G).

Figure 3.6: Presentation of the seismic AVO data in the crossline,inline coordinate system.

Seismic AVO data at location l is denoted yl
s =

[
Rl

0, G
l
]
. All 2N seismic AVO measurements are collected

in the vector

ys =
[
y1
s, . . . ,y

N
s

]T
=
[
R1

0, G
1, R2

0, G
2, ..., RN

0 , GN
]T

. (3.17)

Following Spremić et al. (2024), a relationship on the form

yl
s = h(xl) + ω, ω ∼ N (0,Ω0), (3.18)

with

Ω0 =

 Var[R0] Cov[R0, G]

Cov[R0, G] Var[G]

 =

 0.003 −0.6
√

Var[R0]Var[G]

−0.6
√

Var[R0]Var[G] 0.03

 , (3.19)

is assumed. The non-linear functional relationship,

h(x) =
[
hR1

0
, hG1 , hR2

0
, hG2 , ..., hRN

0
, hGN

]
, (3.20)

builds on rock physics relations between the seismic AVO data and the variables of interest xg, xo and xc

(Spremić et al., 2024). Depth is also an input variable to the forward model. In this thesis, this function is

treated as a black box. The function uses a relatively long time to map a sample xl and the corresponding

depth to [hRl
0
, hGl ]. In the next chapter, an approximation to the forward model is described, to reduce

the overall computation time of the MCMC algorithm. The seismic AVO log-likelihood is

log (f(ys|x)) = const− 1

2
(ys − h(x))

T
Ω−1 (ys − h(x)) , (3.21)

24



where

Ω =



[Ω0] 0 . . . 0 0

0 [Ω0] . . . 0 0

...
...

. . .
...

...

0 0 . . . [Ω0] 0

0 0 . . . 0 [Ω0]


. (3.22)

The gradient of log (f(ys|x)) is (
Ω−1 (ys − h(x))

)T ∇h(x). (3.23)

As there are 3 random variables at allN locations, there are essentially 3N variables x1
g, x

1
o, x

1
c , x

2
g, x

2
o, x

2
c , ...,

xN
g , xN

o , xN
c . The gradient is thus also of length 3N

∇ =

[
∂

∂x1
g

,
∂

∂x1
o

,
∂

∂x1
c

,
∂

∂x2
g

,
∂

∂x2
o

,
∂

∂x2
c

, ...,
∂

∂xN
g

,
∂

∂xN
o

,
∂

∂xN
c

]
, (3.24)

and ∇h(x) has 2N rows and 3N columns:

∂
∂x1

g
hR1

0

∂
∂x1

o
hR1

0

∂
∂x1

c
hR1

0

∂
∂x2

g
hR1

0

∂
∂x2

o
hR1

0

∂
∂x2

c
hR1

0
. . . ∂

∂xN
g
hR1

0

∂
∂xN

o
hR1

0

∂
∂xN

c
hR1

0

∂
∂x1

g
hG1

∂
∂x1

o
hG1

∂
∂x1
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hG1

∂
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∂
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∂
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0
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hRN

0
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(3.25)

=



∂
∂x1

g
hR1

0

∂
∂x1

o
hR1

0

∂
∂x1

c
hR1

0
0 0 0 . . . 0 0 0

∂
∂x1

g
hG1

∂
∂x1

o
hG1

∂
∂x1

c
hG1 0 0 0 . . . 0 0 0

0 0 0 ∂
∂x2

g
hR2

0

∂
∂x2

o
hR2

0

∂
∂x2

c
hR2

0
. . . 0 0 0

0 0 0 ∂
∂x2

g
hG2

∂
∂x2

o
hG2

∂
∂x2

c
hG2 . . . 0 0 0

...
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...
...

...
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...
...

...
...

0 0 0 0 0 0 . . . ∂
∂xN

g
hRN

0

∂
∂xN

o
hRN

0

∂
∂xN

c
hRN

0

0 0 0 0 0 0 . . . ∂
∂xN

g
hGN

∂
∂xN

o
hGN

∂
∂xN

c
hGN



.

(3.26)

The elements of matrix (3.26) are not known analytically. The numerical gradients are available, but

computationally expensive to calculate. This thesis proposes using an approximation to the numerical

gradient, which will be denoted ∇h(x). This is discussed in greater detail in the next chapter.
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The well-log data

In addition to being used in the construction of the prior and forward model, the well-log data is incor-

porated into the expression for the posterior given in equation (3.8) as a likelihood function. Let lwell

denote the set of the locations of the four wells, marked by coloured circles in Figure 3.2. The likelihood

f(yw|x) is constructed to impose values of xg and xo that agree with the type of hydrocarbons found in

the four wells. The log-likelihood of the well-log data is

log (f(yw|x)) = const− 1

2σ2

∑
l∈lwell

(
ylw,g − xl

g

)2 − 1

2σ2

∑
l∈lwell

(
ylw,o − xl

o

)2
, (3.27)

where σ2 is set to 0.12. At the locations of the wells that primarily contained gas, ylw,g is set to the

relatively high value 4, while ylw,o is set to the relatively low value −4. Conversely, at the location of the

well that mainly contained oil, ylw,g = −4 and ylw,o = 4. The gradient of the log-likelihood is zero for all

locations l /∈ lwell. At each location l ∈ lwell, the partial derivative of log (f(yw|x)) with respect to xl
g is

ylw,g − xl
g

σ2
, (3.28)

the partial derivative of log (f(yw|x)) with respect to xl
o is

ylw,o − xl
o

σ2
, (3.29)

and the partial derivative of log (f(yw|x)) with respect to xl
c is 0.
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4
Approximation of the forward model

Evaluating the forward model in the Alvheim case from Chapter 3 at a value x takes a relatively long

time. At each iteration in the MCMC algorithm, h(xp) needs to be calculated to find the likelihood at

the proposed sample xp. In this chapter, substitutes ĥ are explored with the goal of speeding up the

MCMC algorithm. The goal is also that the approximation has a small error, such that the MCMC

samples obtained with ĥ are similar to the MCMC samples from using h. By sampling from the prior, a

data set with the forward model as the response is created. Two supervised learning methods, MARS and

NPKR, are attempted as surrogates for h. In addition to finding a substitute for h, an approximation

to ∇h is found. This is used in the MALA proposal distribution, described in Chapter 2.

There are numerous supervised learning techniques. At the beginning of this work, candidates for ap-

proximating the forward model included polynomial regression, random forest, MARS and NPKR. An

advantage of MARS and NPKR is that they do not assume a specific functional form of the response. In

polynomial regression, the degree of the model is typically set manually or found using cross-validation

(James et al., 2021). This requires some insight into the function h, however, this function is treated

as a black box in this thesis, and non-parametric methods were therefore favoured. Another advant-

age of MARS and the NPKR model used in this thesis is that is possible to calculate the gradient of

both models. These could possibly serve as substitutes for ∇h. A random forest does not produce a

model which has a gradient. In this thesis, MARS and NPKR are tested for approximating the forward

model as they have qualities suitable for this situation. However, other supervised learning methods,

including polynomial regression and random forest, could be explored for approximating a non-linear and

computationally inefficient forward model.

This chapter starts with presenting MARS and its gradient. Then the NPKR used in this thesis is

presented, as well as its gradient. Afterwards, a 2D example is introduced to illustrate the properties of

the models. The models are then used to approximate the forward model in the Alvheim case, and its

gradient. Finally, a brief comment on how the error made by the approximation can be adjusted for is

given.

There are some common notations in Section 4.3 and Section 4.4. In both the 2D example and the

Alvheim case, a data set is used to train the models. In both cases, the number of data points in the

training set is denoted by n and the type of covariate is denoted by j. The number of covariates is p.

In the 2D example, the response is denoted by f . An observation in the data set is then (xi, fi) with

xi = [xi1, xi2, ..., xip]. In Section 4.4, when approximating the forward model, the responses are denoted

hR0
and hG.

27



4.1 Multivariate adaptive regression spline

A MARS model combines piecewise linear functions to approximate a response f . The theory in this

section is based on the theory in Hastie et al. (2009). A MARS model consists of linear basis functions

(xj − cj)+ and (cj − xj)+, where xj is a covariate and cj is an observed value of that covariate. The

subscript + means the positive part, hence

(xj − cj)+ =

xj − cj , for xj > cj ,

0, otherwise,
(4.1)

and

(cj − xj)+ =

cj − xj , for cj > xj ,

0, otherwise.
(4.2)

Figure 4.1 shows the functions (xj −1)+ and (1−xj)+ for xj ∈ [−2, 4]. Hastie et al. (2009) call (xj −1)+

and (1− xj)+ a reflective pair.

−2 −1 0 1 2 3 4
0

1

2

3

4

(xj − 1)+(1− xj)+

xj

Figure 4.1: Reflective pair (xj − 1)+ and (1− xj)+ for xj ∈ [−2, 4].

The set C consist of all functions (xj − cj)+ and (cj − xj)+ for every covariate xj and observed value xij

in the data set, that is

C = {(xj − cj)+, (cj − xj)+}cj∈{x1j ,x2j ,...xnj}. (4.3)

The MARS model is on the form

f̂(x) = β0 +

D∑
d=1

βdgd(x), (4.4)

where β1, β2, ..., βD are coefficients jointly estimated by minimizing the residual sum of squares, and

gd(x) are functions or products of functions from the set C. Even though gd only depends on one or more

covariates it is considered a function on all of the covariates. The number of terms in the model is D.

Building a MARS model consists of two main steps, a forward model building procedure and a backward

pruning procedure. In the forward step, functions gd(x) are chosen successively until a large, often

overfitted model is obtained, which then is pruned to a smaller model. To go through these steps in

detail, let D be the set of chosen combinations of basis functions for the model. Initially, D = {g0}, with
g0 = 1. Next, all functions in D are successfully multiplied by the pairs C and the term

β̂D+1gr(x)(xj − cj)+ + β̂D+2gr(x)(cj − xj)+, gr(x) ∈ D (4.5)
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that produces the largest decrease in the training error is added to the model. This greedy step is repeated

until a maximum number of terms is reached or some other stopping criterion is fulfilled.

After the stopping criterion is met, the model is pruned by removing the term that leads to the smallest

increase in residual square error. This produces an estimated best model f̃λ, for each number of terms

λ. For each f̃λ the generalized cross-validation

GCVf (λ) =

∑n
i=1(fi − f̃λ(xi))

2(
1− D(λ)

n

)2 , (4.6)

is calculated, where fi is the response at data point i. D(λ) is the effective number of parameters as

described in Hastie et al. (2009). Finally, the model that minimises GCVh(λ) is chosen to be f̂ .

Interactions between the covariates are allowed. However, gd(x) can only include first-order terms of

one covariate. This is because higher-order powers in the response can be modelled by piecewise linear

functions, and allowing for higher-order powers in the model can lead to unwanted increases or decreases

near the boundaries of the feature space. Interactions are built up from products with terms already in the

model. The idea is that a high-order interaction probably only exists if a factor of the interaction exists

as a lower-order as well. It is possible to specify the order of interactions. By specifying no interactions,

the MARS model, which is then an additive model, is easier to interpret. In this case, however, the

response h is treated as a black box, and the interpretability of ĥ is not important.

There are several advantages to MARS. For instance, the produced model is continuous and differentiable

(Friedman & Roosen, 1995). Another advantage is that a MARS model does not assume a functional

form between the data x and response f . In this way, a MARS model can model responses of arbitrary

shape. This is especially important in high-dimensional data, as one is unable to visualise the relationship

between the variables and the response. MARS is also good in high dimensions because it consists of

functions that are zero over many parts of the feature space, such that parameters are only used where

they are needed. Hastie et al. (2009) state that the use of other basis functions, such as polynomials,

which would produce nonzero products almost everywhere, would not work as well in high dimensions.

Another advantage of MARS is that the number of knots and the number of terms are automatically

selected by the algorithm, which makes the method very easy to use.

In both the 2D example and when approximating the forward function in the Alvheim case, two MARS

models are built. Both models use the same forward model building procedure. The earth package

(https://cran.r-project.org/web/packages/earth/earth.pdf) in R is used to fit these models. Functionalities

provided by the earth function are exploited. The parameter degree is set to the number of covariates,

p, allowing interactions between all covariates. The maximum number of terms before the forward step

terminates, nk, is set to 50. The parameter thresh determines how many terms are added in the forward

pass by stopping the forward pass if adding a term changes R2 by less than thresh. It is set very low to

10−9, such that nk determines when the forward model procedure stops.

After the forward pass, the first MARS model is finished. This Mars model will be denoted by f̂MARSOF

in the 2D example and ĥMARSOF in the Alvheim case. The possibly overfitted model does not necessarily

have 50 terms because earth automatically removes linearly dependent terms at the end of the forward

pass. The motivation for trying a large, possibly overfitted, model, is that the derivative of the model

might be closer to the derivative of the response because a larger MARS model has more cuts. However,

an overfitted model generally leads to a larger test error (James et al., 2021). This is particularly an

issue if there are few data points in the training data set. When approximating the forward function, the

training data are sampled from the prior distribution, such that the amount of training data is unlimited.
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The second MARS model, denoted by f̂MARS and later ĥMARS, has a subset of the larger MARS models’s

terms. The option for the backward pruning method, pmethod, is set to ”exhaustive”. This functionality

uses the function leaps from the package leaps (https://cran.r-project.org/web/packages/leaps/leaps.pdf)

which performs an exhaustive subset selection. The maximum number of terms in the final model is set

to 25.

4.1.1 Gradient of multivariate adaptive regression spline

The gradient of a MARS model can be found by taking partial derivatives of the model in (4.4) directly

∂

∂xj
f(x) =

∂

∂xj

[
β0 +

D∑
d=1

βdgd(x)

]
(4.7)

=

D∑
d=1

βd
∂

∂xj
gd(x). (4.8)

The partial derivative of gd(x) with respect to xj is simple because gd(x) is just a product of functions

from C. The tedious part is finding out the form of gd(x) such that the gradient can be calculated. After

finding the derivative of gd(x) this must be multiplied with the corresponding coefficient βd and summed

according to (4.8).

In order to find the partial derivative of gd(x) with respect to xj , one needs to decide the form of gd(x).

That includes which covariates are present, which of the reflective pairs (xj − cj)+ or (cj − xj)+ are

present for each covariate and for each present covariate and check if the positive criterion is satisfied.

Terms without xj gives ∂
∂xj

gd(x) = 0. Terms on the form (xj − cj)+ gives

∂

∂xj
gd(x) =

1, xj > cj

0, otherwise.
(4.9)

On the other hand, terms on the form (cj − xj)+ gives

∂

∂xj
gd(x) =

−1, cj > xj

0, otherwise
(4.10)

Interactions terms are more complicated. First of all, the positive condition needs to be checked for all

covariates present in the term. That is, depending on the function, the condition xj > cj or xj < cj must

be checked for all covariates j in the term. If all the factors in the term are positive, the first factor of

the partial derivative is either 1 or −1, depending on the form of the term. This is then multiplied by

the other factors which are either xj′ − cj′ or cj′ − xj′ , j ̸= j
′
. Checking conditions for non-interactions

terms is done relatively fast by exploiting binary search. This is possible because cuts cj can be sorted

in advance. However, when gd had many interactions, it was harder to check all the necessary conditions

in a fast way in order to compute the partial derivative of gd with respect to xj .

4.2 Non-parametric kernel regression

NPKR approximates the response f at a new data point by a weighted average of the data points in the

training set. There are numerous ways to determine these weights. In this thesis, the Nadaraya-Watson
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estimator

f̂(x) =

n∑
i=1

wi(x)fi (4.11)

will be used with weights

wi(x) =
Kb(x− xi)∑n
l=1 Kb(x− xl)

i = 1, 2, ..., n. (4.12)

The function Kb(x−xi) is a Gaussian kernel with fixed bandwidths for each predictor b = [b1, b2, ..., bp].

When using the Gaussian kernel, the bandwidths are the standard deviation of the density. The weight

in equation (4.12) decrease with the distance between the new data point and the data points in the

training set. For p covariates, Kb is chosen to be the product of p one dimensional Gaussian kernels:

Kb(x− xi) =

p∏
j=1

kbj (xj − xji) (4.13)

=

p∏
j=1

1

bj
k

(
xj − xji

bj

)
(4.14)

=

p∏
j=1

1√
2πbj

e
−

(xj−xji)
2

2b2
j . (4.15)

The Gaussian kernel is a popular non-compact kernel (Hastie et al., 2009). The function npreg from

the package np (https://cran.r-project.org/web/packages/np/np.pdf) in R is used to fit the NPKR model.

Racine and Li (2004) describe this model in detail.

The bias-variance tradeoff asserts itself when selecting the bandwidths. Selecting small bandwidths tends

to lower the bias and increase the variance as the nearest points are valued a lot. On the other hand,

selecting too large bandwidths leads to a high bias and low variance, since this tends to include values far

away from the new data points in the estimate. For the NPKR model used in this thesis, the bandwidths

are found using least squares cross-validation. This is the only predetermined property of an NPKR

model because the weights need to be determined every time a prediction of a new data point is made.

Much of the work is therefore done at evaluation time (Hastie et al., 2009).

There are advantages and disadvantages of using an NPKR model. An advantage of NPKR models is

that they do not assume a functional form of the response, which as mentioned in the previous section,

is important in high dimension. Moreover, averaging nearby data points is quite intuitive. The model

described with equation (4.11) and (4.12) is a linear combination of smooth functions, and therefore the

model is also smooth. A disadvantage of NPKR is that it can suffer from being biased at the boundaries

(Hastie et al., 2009; Efron & Hastie, 2016). A weighted average near a boundary will use more data points

away from the boundary compared to towards the boundary to predict the response near the boundary,

because once the boundary is reached there are no more data points in that direction. Predictions near

the boundaries are therefore biased towards data points away from the boundary. This can result in

predicting an increasing function towards the boundaries, while in fact, the response is decreasing. This

is more problematic in higher dimension because the fraction of data points near the boundary is larger

(Hastie et al., 2009). To adjust for the boundary bias, one could fit a locally weighted linear regression

instead of a locally weighted average (Hastie et al., 2009). However, this is not tested in this thesis. The

logic of the boundary bias also applies inside the boundaries if the training data are spread very unevenly

(Hastie et al., 2009). Suppose a new data points is to be predicted. If there are many more close data

points in one direction compared to the opposite direction, the prediction will be biased towards the

response values of the data points in the direction with the most data points. As the NPKR model is a

weighted average of response values at the training data, predictions are dependent on which data points

are in the training data. Evenly spaced training data could perhaps improve the NPKR model.
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4.2.1 Gradient of a non-parametric kernel regression model

To find the derivative of an NPKR model, two approaches are tried. First analytical derivatives are

calculated. Second, the R function npreg used to fit the model offer gradients at the training data, and

the gradient at close training data points are averaged to approximate the gradient at a new data point.

The two approaches are described in turn.

The analytical gradients are found by taking derivatives of the expression (4.11), which gives

∂

∂xj
f̂(x) =

n∑
i=1

fi
∂

∂xj
wi(x). (4.16)

In order to find the partial derivative of the weight wi(x) given in equation (4.12) with respect to the

predictor xj , the quotient rule is applied:

∂

∂xj
wi(x) =

∂

∂xj

Kb(x− xi)∑n
l=1 Kb(x− xl)

(4.17)

=
(
∑n

l=1 Kb(x− xl))
∂

∂xj
Kb(x− xi)−Kb(x− xi)

∂
∂xj

(
∑n

l=1 Kb(x− xl))

(
∑n

l=1 Kb(x− xl))
2 . (4.18)

The partial derivative of Kb(x−xi) with respect to xj is found directly by differentiating the expression

in (4.15)

∂

∂xj
Kb(x− xi) = −

(
xj − xji

b2j

)
Kb(x− xi). (4.19)

which inserted into equation (4.18) gives

∂

∂xj
wi(x) = −

(
xj−xji

b2j

)
Kb(x− xi)∑n

l=1 Kb(x− xl)
+

Kb(x− xi)
(∑n

l=1

(
xj−xjl

b2j

)
Kb(x− xl)

)
(
∑n

l=1 Kb(x− xl))
2 (4.20)

All quantities in equation (4.20) are available, hence the partial derivative of the NPKR model with

respect to covariate xj is found by inserting equation (4.20) into equation (4.16).

The analytical gradient of the NPKR model given in equation (4.20) and equation (4.16), can be approx-

imated by using available gradient values provided by the function npreg in R. The R function npreg

gives the gradient value at the data points used to train the NPKR model. These values are used in the

following way. The data points are first divided into K groups using K-means, that is they are divided

into K groups such that the within-cluster sum of squares is minimized (Hartigan & Wong, 1979). A new

data point is compared to the centres of the K clusters. The closest cluster has the minimum distance

between the new data point and the cluster mean. Finally, the mean of the gradients at the closest

neighbouring data points in the nearest cluster are used to approximate the gradient at the new data

point.

The intention for trying to approximate the gradient with the K-means approach is to use the available

gradients at the training data in a smart way. A natural way to use these gradients is to approximate

the gradient at a new data point as the average of the gradient at close data points in the training data.

Because these gradients will be evaluated many times in the MCMC algorithm MALA, introduced in

Chapter 2, the computation time is important. K-means is a way to avoid searching through all the

training data, to find the closest training data points.

There are however issues with this approach. The first issue is that K-means might not find the closest

data points, for example, if the new data point is at the outskirts of a cluster. However, this is a price
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to pay to reduce the computation time. Another problem with K-means is that the number of clusters is

set manually (Hastie et al., 2009). For the procedure described above, the number of nearest neighbours

in the cluster which are averaged, also needs to be set manually. In both the 2D example and the

Alvheim case the number of clusters and the number of neighbours are found using a simple grid search

of different combinations of these values. However, the parameter grid was relatively small and could

have been done more thoroughly. In addition, there were multiple metrics for assessing the algorithms,

such that the optimal parameters were ambiguous. In Section 4.4 the metrics correlation, mean square

error (MSE) and computation time are considered, while in Section 4.3, only correlation and MSE were

evaluated. To select the parameters, computation time was valued most, thereafter the correlation and

MSE. An alternative, which was not tested in this thesis, is using hierarchical clustering instead of K-

means clustering. The number of clusters does not need to be set manually in hierarchical clustering

(Hastie et al., 2009). The last issue is whether or not the covariates should be scaled before dividing

the data. By not scaling the data, the covariate on the highest scale essentially dominates the distance

between the data points (James et al., 2021). However, by scaling the data points, the input data would

need to be scaled at each iteration, which adds additional computation time. In the end, the data was

not scaled.

4.3 2D example

The following toy example was created to examine MARS and NPKR models and their gradients. The

surface

f(x1, x2) = −
√
x2(x1 − 2)3 +

√
x1 − (x2 − 2)2 (4.21)

illustrated in Figure 4.2 is chosen as the response. It is non-linear and has interactions between x1 and

x2. The function in equation (4.21) has gradient

∇f(x1, x2) =

[
1

2
√
x1

− 3(x1 − 2)2
√
x2,−

(x1 − 2)3

2
√
x2

− 2x2 + 4

]
, (4.22)

illustrated in Figure 4.3. In this section, both the function in equation (4.21) and its gradient in equation

(4.22) are approximated by models described so far in this chapter.

1

2

3

1

2

3

0

2

x1
x2

f

Figure 4.2: The surface f(x1, x2) = −√
x2(x1 − 2)3 +

√
x1 − (x2 − 2)2 on x1, x2 ∈ [1, 3]× [1, 3].
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(a) Partial derivative of f with respect to x1.
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(b) Partial derivative of f with respect to x2.

Figure 4.3: Partial derivative of the function in equation (4.21) with respect to x1 (left) and x2 (right)

on x1, x2 ∈ [1, 3]× [1, 3].

Training data of x1 and x2 are sampled independently from a uniform distribution on the range [1, 3].

The number of data points is n = 100. The response is added to the training set by evaluating equation

(4.21) at every data point in the training set. The three models f̂MARS, f̂MARSOF and f̂NPKR, described

in Section 4.1 and in Section 4.2, are fitted to the response. The model f̂MARS has 21 terms of which 6

are interaction terms, while the larger MARS model has 30 terms of which 8 are interaction terms. The

bandwidths of f̂NPKR for x1 and x2 are approximately 0.087 and 0.106 respectively.

The test data are 100 evenly spaced data points on x1, x2 ∈ [1, 3] × [1, 3]. Predictions of f are shown

in Figure 4.4. The two MARS models look very similar to each other and also to the response f . The

surface predicted by f̂NPKR looks worse than the predictions made by the MARS models. The surface

in Figure 4.4c varies very locally, whereas the surfaces from the MARS models can capture the form

of the response much better. The boundary bias of the f̂NPKR model is also visible in Figure 4.4c. At

for example x1 ≈ 1 and x2 → 3 the prediction seems to be flat or even slightly increasing, whereas the

response surface is actually decreasing as x2 → 3.

The accuracy of the predictions are examined by evaluating the sample correlation

Corr
(
f, f̂

)
=

∑n
i=1

(
f − f̄

) (
f̂i −

¯̂
f
)

√∑n
i=1

(
fi − f̄

)2√∑n
i=1

(
f̂i −

¯̂
f
)2 . (4.23)

and MSE

MSE
(
f, f̂

)
=

1

n

n∑
i=1

(
fi − f̂i

)2
. (4.24)

The mean of the predictions is denoted by
¯̂
f , while the mean of the responses is denoted by f̄ . A high

sample correlation is better, while the best MSE is the smallest. Computation time is not considered in

this simple example but will be considered in the next section. The metrics are calculated on the test

data.
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(a) Fitted surface f̂MARS.
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(b) Fitted surface f̂MARSOF .
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(c) Fitted surface f̂NPKR.

Figure 4.4: Approximations, f̂MARS, f̂MARSOF and f̂NPKR to the surface f shown in Figure 4.2. The

response is predicted at 100 equally distanced values in x1, x2 ∈ [1, 3]× [1, 3].

Table 4.1 reports the correlation and MSE for the three models. The two MARS models have very similar

correlation and MSE. They have a higher correlation and much lower MSE compared to the NPKR model,

and are therefore better at predicting the response f . The large MARS model is slightly better than the

pruned MARS model, however the large MARS model has 9 more terms. This suggests that f̂MARS is

slightly more biased than f̂MARSOF in this example, however, the differences in precision are minor.

f̂ correlation MSE

f̂MARS 0.99951 0.00068

f̂MARSOF
0.99967 0.00061

f̂NPKR 0.96368 0.03695

Table 4.1: Correlation and MSE for the three approximations f̂MARS, f̂MARSOF and f̂NPKR fitted to the

function f in the 2D example.
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The true values f plotted against predicted values are shown in Figure 4.5a, 4.5b and 4.5c. Ideally, the

red circles should align with the black line, because the black line is where the predicted value is equal to

the true value. Figure 4.5 shows that the two MARS models perform very well and have no systematic

errors. On the other hand, the NPKR model performs especially poorly for low and high function values.

The error is also generally larger for the NPKR model compared to the MARS models as the red circles

are further away from the black line.
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(a) Red circles mark true function value

f plotted against predicted value f̂MARS

for test data marked.
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(b) Red circles mark true function

value f plotted against predicted value

f̂MARSOF for test data.
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(c) Red circles mark true function value

f plotted against predicted value f̂NPKR

for test data.

Figure 4.5: Red circles mark true response value f plotted against predicted value f̂ for test data. The

black line is f = f̂ .

The gradients of the three models are tested for approximating the gradient of the response shown in

Figure 4.3. How to extract the partial derivatives from the MARS and NPKR models is explained in
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Sections 4.1 and 4.2 respectively. In addition, two MARS models are trained with one gradient component

as a response each. That is the partial derivatives of f with respect to x1 and x2, from equation (4.22), are

evaluated at the training values and added to the training set. These MARS models will be collectively

denoted as MARS∇. For the K-means approximation to the gradient of f̂NPKR, the number of clusters

and number of closest data points to average was found by searching a simple parameter grid with the

number of clusters ∈ [2, ..., 9] and the number of closest neighbours to average ∈ [2, .., 6]. The combination

that gave the lowest MSE and highest correlation was 5 clusters and 5 neighbours. Figure 4.6 shows the

training data divided into 5 clusters using K-means.
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Figure 4.6: Training data in the 2D example divided into 5 clusters with K-means clustering.

The accuracy of the approximations to the gradient is the mean correlation

Corr
(
∇f,∇f̂

)
=

1

2

2∑
j=1

Corr

(
∂f

∂xj
,
∂̂f

∂xj

)
, (4.25)

and MSE

MSE
(
∇f,∇f̂

)
=

1

2

2∑
j=1

MSE

(
∂f

∂xj
,
∂̂f

∂xj

)
, (4.26)

for the two covariates. The metrics are calculated on the test data.

For ease of visualisation, the approximations to the gradient are illustrated on slices of the surfaces in

Figure 4.3. Figure 4.7 shows a slice of the partial derivative of f with respect to x1 for fixed value

x2 ≈ 2.33, while the slice of the partial derivative with respect to x2 for fixed value x1 ≈ 1.67 is shown

in Figure 4.8. The blue lines in these figures are the true partial derivatives, while coloured circles are

predicted values.

The plots in Figure 4.7a and 4.8a show that the MARS∇ is a very good approximation. It appears to

predict the gradient at the fixed values perfectly. Moreover, these figures show that the approximations

∇f̂MARS and ∇f̂MARSOF
performs quite good, even though there are some gaps between the true gradient

and the predictions, especially for the partial derivative with respect to x1 shown in Figure 4.7a. The

gradient of the large MARS model performs slightly better as the yellow circles are closer to the true

gradient.

According to Figure 4.7b and Figure 4.8b, the gradient of model f̂NPKR and the K-means approximation

to the gradient of f̂NPKR are poor at predicting the partial derivatives of f . From the figures, it is not

clear if the gradient of the NPKR model or the K-means approach is worse. Both predictions behave
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similarly. The predictions are good for values of x1 close to 2 in Figure 4.7b, and values of x2 close to

2 in Figure 4.8b. As discussed, NPKR can suffer from boundary bias. If f̂NPKR is very different to f at

the boundaries then so are their gradients, which is clear from Figure 4.7b and Figure 4.8b.
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(a) The red and yellow circles are the par-

tial derivative of f̂MARS and f̂MARSOF re-

spectively, with respect to x1. The green

circles are the predictions of MARS∇.
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Figure 4.7: Approximation of partial derivative of f . The blue curve is the partial derivative of f with

respect to x1 at x2 ≈ 2.33. Coloured circles are approximations to the partial derivative.
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Figure 4.8: Approximation of partial derivative of f . The blue curve is the partial derivative of f with

respect to x2 at x1 ≈ 1.67. Coloured circles are approximations to the partial derivative.
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The mean correlation and mean MSE of the approximations to the gradient are reported in Table 4.2.

The MARS model fitted directly to the gradient components has the highest correlation and lowest MSE.

This agrees with the good predictions in Figure 4.7a and Figure 4.8a. The gradients of the two MARS

models have high correlations, however, lower than MARS∇. They also have much higher MSE compared

to MARS∇. The large MARS model is slightly better than the smaller MARS model. This agrees with

the motivation for creating the large MARS model; more cuts might lead to better prediction of the

gradient. However, as presented in Table 4.1, f̂MARSOF was slightly better at predicting f compared

to f̂MARS. This could be the reason for the gradient of the large MARS model predicting the gradient

of the response better. The gradient of the NPKR model has a very low correlation compared to the

other approximations. This approximation also had the highest MSE. Table 4.2 shows that the K-means

approximation is better than the gradient of f̂NPKR, though this is not clear from Figure 4.7b and Figure

4.8b. The correlation and MSE of the gradient of the NPKR model and the K-means approximation to

the gradient of the NPKR model are much worse compared to the three other approximations.

∇̂f correlation MSE

MARS∇ 0.9999 0.0052

∇ f̂MARS 0.9726 2.0117

∇ f̂MARSOF 0.9758 1.8087

∇ f̂NPKR 0.4786 19.8937

≈ ∇ f̂NPKR (K-means) 0.8850 13.4772

Table 4.2: Mean correlation and MSE of approximations to the partial derivative of f with respect to x1

and x2.

4.4 Approximating the forward model in the Alvheim case

To approximate the forward model in the Alvheim case, a training data set is created. In this section,

covariates are denoted by letters instead of numbers. The data set has 20, 000 observations of covariates

xg, xo, xc and xd. The value of data point i at covariate j is denoted by xij , where j = g, o, c, d

corresponds to gas, oil, clay and depth respectively. Data point i is sampled as follows. First, a value for

xid is sampled from a uniform distribution on the interval between the minimum and maximum depth

at the top reservoir of the Alvheim field shown in Figure 3.2. Next xid is used to find the expected value

of the prior and draw xig, xio and xic from the prior distribution. The test data are created in the same

manner as the training data. It has 44144 test data points, which is the size of one sample x at the

Alvheim field.

Recall from Chapter 3 that there are two types of seismic AVO data, the zero offset (R0) and the seismic

gradient (G). That is, h : R4 → R2. To approximate h, two models are created. A model for the zero

offset, ĥR0
, and one for the seismic gradient ĥG such that ĥ collectively denotes the two models ĥR0

and

ĥG with ĥR0
: R4 → R and ĥG : R4 → R.

As candidates for approximating h, the MARS models ĥMARS and ĥMARSOF are trained on the 20, 000

data points. The procedure of how these models are made is described in Section 4.1. The large MARS

models for the two AVO properties hR0
and hG have 39 and 40 terms of which 26 and 24 are interaction
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terms respectively. The pruned MARS model for hR0 has 25 terms of which 17 are interaction terms,

while the pruned MARS model for hG has 25 of which 13 are interaction terms. In addition the models

ĥNPKR1000
and ĥNPKR4000

are trained as described in Section 4.2, with 1000 and 4000 of the training

data respectively. They are trained on subsets of the training data set because of computation time. As

the NPKR models are weighted averages of the training data, the number of training data affects the

prediction time. The subsets of the training data are random subsets, however one could try to select

these points in a more optimal way to improve the NPKR models as discussed in Section 4.2.

Precision metrics, such as correlation and MSE are the mean of these metrics for the two models. That is,

the correlation between a model ĥ and the response h is the mean of Corr
(
hR0

, ĥR0

)
and Corr

(
hG, ĥG

)
calculated using equation (4.23). Similarly, the MSE is the mean of MSE

(
hR0

, ĥR0

)
and MSE

(
hG, ĥG

)
from equation (4.24). Moving on ĥMARS, ĥMARSOF

, ĥNPKR1000
and ĥNPKR4000

are referred to as one

model, although they are two models, as described in the second paragraph of this section.

The computation time for predicting the test data, correlation and MSE are reported in Table 4.3. The

computation time reported in the table is the average of predicting the test data 50 times. For comparison,

the computation time of the true forward model used on average 2.059 seconds to compute h(x). The

fastest model was ĥMARS, which was on average ≈ 32 times faster than the true forward model. The

larger MARS model was also very fast, although slower than the smaller MARS model. The larger MARS

model is marginally better than ĥMARS when considering the correlation and MSE, however, it is much

more complex. By setting the maximum number of terms in the MARS model after pruning to a lower

number, the computation time is reduced. This is at a cost of increasing MSE and decreasing correlation.

The correlation and MSE are better for ĥNPKR4000
compared to ĥNPKR1000

. The correlation of ĥNPKR4000

is almost as good as the correlation of the MARS models, however, the MSE of the MARS models are

half the MSE of ĥNPKR4000
and the computation time is on average over 200 times faster. The model with

the worst MSE and correlation is ĥNPKR1000
. Table 4.3 shows that the NPKR models were much slower

than the MARS models, and even the forward function h. The computation time also increased with the

number of data points in the NPKR model as ĥNPKR4000 was much slower than ĥNPKR1000 . In addition

to the computation times reported in Table 4.3, the computation time of an NPKR model created from

100 training data was tested. It used on average 0.674 seconds to predict the test data. Even though

that was considerably less than the computation time of ĥNPKR4000
and ĥNPKR1000

, it is still much longer

than the computation times of the MARS models.

ĥ correlation MSE [10−5] computation time [sec]

ĥMARS 0.9954 3.8 0.064

ĥMARSOF
0.9958 3.4 0.107

ĥNPKR1000
0.9833 14.0 5.694

ĥNPKR4000
0.9914 7.2 22.674

Table 4.3: Correlation, MSE and computation time for ĥMARS, ĥMARSOF , ĥNPKR1000 and ĥNPKR4000 .

Figure 4.9 shows a scatter plot of the h versus ĥMARS on the test data, while Figure 4.10 depicts the same

for ĥMARSOF
. Overall the figures indicate that the errors are slightly smaller for the predictions of the

seismic gradient than for the zero offset. Neither ĥMARS nor ĥMARSOF
seems to make grave systematic
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errors, except perhaps for the lowest values of hR0 .
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(a) True forward model values for hR0 plotted as

function of predicted values from the model ĥMARS

for the test data.
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for the test data.

Figure 4.9: True forward model plotted as function of predicted forward model on test data using ĥMARS.
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(a) True forward model values for hR0 plotted

as function of predicted values from the model

ĥMARSOF for the test data.
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Figure 4.10: True forward model plotted as a function of predicted forward model on test data using

ĥMARSOF .

The predictions in Figures 4.9a and 4.10a look almost identical. This is confirmed by Figure 4.11, where

the predictions of ĥMARS are plotted against the predictions of ĥMARSOF
. The 14 more terms in model

ĥMARSOF
seems excessive when predictions are close to identical.
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Figure 4.11: Predictions of hR0 from ĥMARS plotted as a function of predictions of hR0 from ĥMARSOF .

The black line is ĥMARS = ĥMARSOF
.

Chapter 5 gives results from MCMC simulations at the Alvheim field using ĥMARS as a replacement of h.

This model was chosen because it was the fastest, and had marginally higher MSE and lower correlation

than ĥMARSOF . Considering correlation and MSE, both MARS models would serve as good substitutes

for the forward model, while reducing the computation time considerably.

As the goal is to reduce computation time, the NPKR models tested in this thesis are not good substitutes

for the forward model. A disadvantage of the NPKR model is that more training data makes the model

slower. Reducing the number of training data reduces the computation time of the prediction. Predicting

the test data 50 times with an NPKR model trained on 100 data points took on average 0.674 seconds

which is faster than h. However, this is still much slower than the MARS models, and it is also at the cost

of increasing the MSE and lowering the correlation. The 100 data points were sampled randomly from

the prior, as described at the beginning of the section. Sampling the data in a smarter way, could increase

the correlation and lower the MSE, however, the model built on 4000 data points had a correlation close

to the MARS model’s but a much higher MSE. For an NPKR model to compete with MARS, one would

need to find less than 100 training data, that gives a better NPKR model, in terms of correlation and

MSE, compared to the NPKR model trained on 4000 training data. This sounds difficult, however, other

similar models to the NPKR model used in this thesis could possibly be better. In Section 4.2, issues

with NPKR were discussed.

4.4.1 Approximating the gradient of the forward model

To use the MALA introduced in Section 2.2.3, the gradient ∇h is needed. However, the forward model is

treated as a black box. Consequently, the partial derivatives are unavailable. A numerical approximation

to the gradient can be found by adding small perturbations, ε, to only one of the covariates while the rest

are fixed. The difference in the forward model with and without the perturbation is divided by ε. For the

numerical partial derivative of hR0
with respect to the covariate xg at data point xi = [xig, xio, xic, xid]

this is
∂hR0

∂xg
(xi) =

hR0
(xi + [ε, 0, 0, 0])− hR0

(xi)

ε
, (4.27)
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with ε = 0.0001. However, the forward function needs to be evaluated to calculate the numerical partial

derivatives, which require a lot of computation time. In this thesis, the gradients of the four models

discussed so far are tested for approximating the gradient of the forward model, ∇h, in order to reduce

the computation time. The gradient of the MARS models and NPKR models are described in Sections

4.1 and 4.2 respectively. Because the analytical gradient is unavailable, the approximations are compared

to the numerical approximations of the gradient instead. For simplicity, the numerical approximation

to the gradient is denoted by ∇h and referred to as the gradient of the forward model throughout this

section.

In addition, as in Section 4.3, MARS models are created with partial derivatives as responses. That is,

six MARS models are fitted with each of the partial derivatives
∂hR0

∂xg
,

∂hR0

∂xo
,

∂hR0

∂xc
, ∂hG

∂xg
, ∂hG

∂xo
, and ∂hG

∂xc
as

responses. As MCMC is only performed with x = [xg,xo,xc] the partial derivative of h with respect to

the depth is not needed. The six MARS models fitted to the partial derivatives are collectively denoted

as MARS∇.

The K-means approximation to the gradient of an NPKR model is again tested. The procedure is

described in Section 4.2. A simple grid search of the number of clusters ∈ [3, 5, 10] and the number of

closest neighbours to average ∈ [3, 5, 10] was performed. The computation time decreased as the number

of clusters increased. Therefore, the number of clusters was set to 10. When the number of clusters was

10, the lowest MSE and the highest correlation was achieved when using 5 neighbours for both ĥNPKR1000

and ĥNPKR4000
.

The accuracy of the approximations to the gradient is the mean correlation

Corr
(
∇h, ∇̂h

)
:=

1

6

∑
j∈{g,o,c}

(
Corr

(
∂hR0

∂xj
,
∂̂hR0

∂xj

)
+Corr

(
∂hG

∂xj
,
∂̂hG

∂xj

))
(4.28)

and mean MSE

MSE
(
∇h, ∇̂h

)
:=

1

6

∑
j∈{g,o,c}

(
MSE

(
∂hR0

∂xj
,
∂̂hR0

∂xj

)
+MSE

(
∂hG

∂xj
,
∂̂hG

∂xj

))
(4.29)

for all the covariates j. The correlation, MSE and computation time are reported in Table 4.4. Again,

the computation time is the average of 50 computation times. One should keep in mind when reading

Table 4.4, that the correlation and MSE are calculated using the numerical approximations as ∇h.

According to Table 4.4, MARS∇ is the best at approximating the gradient of the forward model in terms

of correlation, MSE and computation time. In Chapter 5, this approximation is used by MALA. The

gradient of the two MARS models ∇ĥMARS and ∇ĥMARSOF
, had the second and third highest correlation

after MARS∇. These two models also had the second and third lowest MSE. As opposed to in the 2D

example, ∇ĥMARS is slightly better than ∇ĥMARSOF
in terms of correlation and MSE. The computation

time for the gradient of these models is very high. Using binary search in the algorithm for extracting

the partial derivatives reduces the computation time, however, the binary search is most efficient for

non-interaction terms. Therefore, the computation time depended on the number of interactions in the

MARS model. For a MARS model without around 40 non-interaction terms, the computation time was

approximately 10% of the computation time of ∇ĥMARS. However, reducing the degree of the MARS

model worsened the MSE and correlation. Using more data points in the NPKR model leads to a higher

correlation and a lower MSE for the gradient of the NPKR model, though at the cost of increasing the

computation time. Using the K-means approach to approximate ∇ĥNPKR4000 was faster than calculating

∇ĥNPKR4000 , but the K-means approach for approximating ∇ĥNPKR1000 was slower than computing

∇ĥNPKR1000
.
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The computation time of ∇ĥNPKR1000 was close to the computation time of ∇ĥMARS and lower than the

computation time for the gradient of the larger MARS model. The K-means approach with 10 clusters

and 5 neighbours is not particularly fast. It was however, a bit better at predicting the gradient of the

forward model compared to ∇ĥNPKR1000
and ∇ĥNPKR4000

.

∇̂h correlation MSE [10−5] computation time [sec]

MARS∇ 0.984 0.2 0.32288

∇ĥMARS 0.879 1.7 20.59836

∇ĥMARSOF 0.872 1.9 33.72662

∇ĥNPKR1000 0.621 6.2 22.40592

̂∇hNPKR1000 (K-means) 0.679 6.1 43.58878

∇ĥNPKR4000
0.702 4.7 62.19348

̂∇hNPKR4000
(K-means) 0.844 3.7 54.28604

Table 4.4: Correlation, MSE and computation time for approximations ∇ĥ.

4.4.2 Adjusting for the uncertainty added to the forward model

To adjust for the additional error caused by replacing h(x) by ĥMARS(x), the relationship between the

variable of interest and the data can be modified to

ys = ĥMARS(x) + ω̃, ω̃ ∼ N
(
0, Ω̃0

)
, (4.30)

where Ω̃0 is the covariance matrix Ω0 in equation (3.19) with empirical variance and covariance are added

to it. A homoscedastic independence of the covariates is assumed. Plots of |h(x)−ĥMARS(x)| against the
covariates used to investigate dependency between the absolute error and the covariates, indicated that

this is not an unreasonable assumption. The idea is that an average sample variance in the approximation

partially compensates for using ĥMARS. The adjusted covariance matrix is, where the subscript MARS

is omitted for simplicity,

Ω̃0 = Ω0 +

 V̂ar
[
ĥR0

]
Ĉov

[
ĥR0

, ĥG

]
Ĉov

[
ĥR0

, ĥG

]
V̂ar

[
ĥG

]
,

 (4.31)

with

V̂ar
[
ĥR0

]
=

1

n

n∑
i=1

(
ĥR0i

− hR0i

)2
, (4.32)

V̂ar
[
ĥG

]
=

1

n

n∑
i=1

(
ĥGi

− hGi

)2
, (4.33)

and

Ĉov
[
ĥR0

, ĥG

]
=

1

n

n∑
i=1

(
ĥR0i

− hR0i

)(
ĥGi

− hGi

)
. (4.34)
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Here ĥR0i
is the prediction for test data point i and hhR0i

denotes the response at test data point i. The

error-adjusted covariance matrix for the seismic AVO log-likelihood is thus

Ω̃ =



[
Ω̃0

]
0 . . . 0 0

0
[
Ω̃0

]
. . . 0 0

...
...

. . .
...

...

0 0 . . .
[
Ω̃0

]
0

0 0 . . . 0
[
Ω̃0

]


. (4.35)
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5
MCMC results from the Alvheim field

In this chapter, MCMC results from the Alvheim field are presented and discussed. The results are

divided into three sections and discussed at the end of each section. In the first section, MCMC results

from using the exact forward model are compared to MCMC results from using the approximation to the

forward model. The approximate likelihood function, where h is replaced by ĥMARS from Chapter 4, is

tested with using bothΩ, from equation (3.22), and Ω̃, presented in equation (4.35), as covariance matrix.

In Section 5.2, results from the four MH algorithms with the four proposal distributions are compared by

looking at trace plots, autocorrelation plots and ESS per time. The forward model is replaced by ĥMARS

for this part. Due to the computation time of the exact forward model and the extensive comparison,

these MCMC computations are only performed on a smaller area in the Alvheim field. Finally, the

surrogate, ĥMARS, is used to perform approximate MCMC over the entire Alvheim field. MCMC results

from using the MH algorithm with proposal distribution q3 are compared to the results of Spremić et al.

(2024) in Section 5.3.

In Section 5.1 and Section 5.3, MCMC samples are compared by mean gas, oil and brine saturations

and mean clay content. The samples are also compared by their uncertainties, which are represented as

the difference between the 90th and the 10th quantiles. The procedures for calculating these quantities

are described in this paragraph. To obtain the mean saturations and mean clay content, logistic trans-

formation, described in Chapter 3, of the sample mean is used. At every location l, let the sample mean

be denoted by xl
mean = [mean(xl

g),mean(xl
o),mean(xl

c)] where mean(xl
j) is the mean of the m̃ samples

after the burn-in of covariate j. The mean saturations of gas, oil and brine at location l are found by

evaluating xl
mean in the equation (3.4), equation (3.5) and equation (3.6), from Chapter 3, respectively.

Similarly, the mean clay content is found by evaluating xl
mean in equation (3.7). To find the uncertainty

at location l, the m̃ samples after burn-in are sorted and transformed using the logistic transformations.

Approximately 10% of transformed and sorted samples have lower values than the 10th quantile and

approximately 10% of transformed and sorted samples have a higher value than the 90th quantile. The

difference between these two saturations serves as the uncertainty. The uncertainty is measured this way

as the sample variance for variables between 0 and 1 is not very informative (Spremić et al., 2024).

5.1 Comparison of the surrogate and the exact forward model

In Chapter 4, an approximation to the slow exact forward function was created. This surrogate was

approximately 32 times faster. It also had a low MSE and a high correlation. However, as it is an

approximation, the MCMC samples are sampled from a posterior which is an approximation to the
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posterior π in equation (3.8). For simplicity, the approximated posterior, where h is replaced by ĥMARS,

is denoted π̂. To check how similar π̂ is to π, MCMC samples are sampled using both h and ĥMARS

as forward models. In addition, MCMC samples with ĥMARS as forward model and Ω̃, from equation

(4.35), as the covariance matrix of the likelihood model is tested to see if the samples from this posterior

are more similar to the samples of π than the samples of π̂. The posterior with forward function ĥMARS

and covariance matrix Ω̃ in the likelihood is denoted by π̃. The approximation ĥMARS and the covariance

matrix Ω̃ are described in Chapter 4. The covariance matrix Ω is described in Chapter 3.

The MH algorithm with proposal distribution q2 is used to sample the posteriors π, π̂ and π̃. The tuning

parameter s is tuned such that the acceptance rate is approximately 23.4%. The value s = 0.027 was

used, which gave the acceptance rate 23.5% when using the exact forward model, 23.4% when using

ĥMARS as forward model and 23.5% when using ĥMARS as forward model and Ω̃ as covariance matrix of

the likelihood. The initial sample was the mean of the prior distribution. The number of iterations was

m = 1, 000, 000 where every 10th sample is saved. The first half of the saved MCMC samples are discarded

as burn-in, such that the remaining 50, 000 samples was 10 time iterations apart and presumably from

the stationary distributions of the Markov chains.

Due to computation time, this was only done for a smaller area located at inlines × crosslines =

[928, 1160] × [4788, 5020], where every other inline and crossline is omitted, such that the location of

the measurements are approximately 100 meters apart. This means that the smaller area is discretized

by 30× 30 = 900 grid points. Hence xg,xo,xc ∈ R900. Figure 5.1 shows the smaller area at the Alvheim

field where the MCMC was performed. There is a well in the area. Particularly near the well, the samples

will be influenced by the likelihood model for the well-log data presented in Chapter 3, such that it is

most interesting to investigate the similarities and dissimilarities further from the well.
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Figure 5.1: The depth of the top-reservoir of the Alvheim field. Four wells are marked by coloured circles,

where the colour indicates the majority type of hydrocarbons found at that well. The wells are located

at (inline,crossline)-locations (484, 4798), (716, 4914), (1026, 4924) and (1300, 5150). The black square is

a smaller area where MCMC with the forward function is performed.

Figure 5.2 shows the mean gas saturations and the corresponding uncertainties from the three sets of

47



posterior samples. The mean gas saturations and the corresponding uncertainties are very similar. A

small difference between the mean gas saturations is that the light green area at approximately inline

= 1050 and crossline = 4955 is wider in Figure 5.2a than in Figure 5.2b and Figure 5.2c. In this same

area, the uncertainty is also larger in Figure 5.2d compared to Figure 5.2e and Figure 5.2f. Slightly to the

left of that area, at approximately inline = 1000 and crossline = 4950, the uncertainties in Figure 5.2d

and Figure 5.2e are more similar to each other, while the uncertainty in Figure 5.2f at this area is lower.

There is another small difference between the gas saturations in the yellow area at approximately inline

= 1100 and crossline = 4920. Figure 5.2b and Figure 5.2c are quite similar in this area, while this area is

slightly less intense in Figure 5.2a. The uncertainties show the same tendency in this area, scarcely less

intense for the MCMC results using the exact forward model compared to the MCMC results using the

surrogate. There are also some differences in the uncertainties in the bottom right corner, where again

the MCMC samples using the surrogate are similar to each other and slightly different to the MCMC

samples using the exact forward model.
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(a) Mean gas saturation from

MCMC samples from π.
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MCMC samples from π̂.
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(c) Mean gas saturation from

MCMC samples from π̃.
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Figure 5.2: Mean gas saturations and uncertainties from MCMC samples from three posteriors. The

posterior in the Alvheim field from equation (3.8) is π. The posterior where ĥMARS is surrogate is π̂. In

the last posterior, π̃, both the surrogate ĥMARS and the error correcting covariance matrix Ω̃ are used.

The MH algorithm with proposal distribution q2 with s = 0.027 was used in all three cases. Uncertainty

is expressed as the difference between the 90th and 10th quantiles.
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Also, the mean oil saturations and the oil saturation uncertainties in Figure 5.3 are very similar in all

three cases. There is a difference in the bottom left corner, where samples from π show lower oil saturation

than the samples from π̂ and π̃. Using the error-correcting covariance matrix improved the approximation

to π because the oil saturation in this area in Figure 5.3c shows lower oil saturation compared to the

oil saturation in Figure 5.3b. However, in the bottom right corner, Figure 5.3c shows a small green

area which is not present in neither Figure 5.3b nor in Figure 5.3a. The MCMC samples from π̃ also

have some slightly visible green areas in the top right corner, which is not found in the other two cases.

More visible are the differences in the uncertainty in this area. The uncertainties in Figure 5.3d and in

Figure 5.3e are more similar compared to the uncertainty in Figure 5.3f, which has a higher uncertainty.

An area where the uncertainties in the samples from π̂ and π̃ are similar to each other and different

to the uncertainty in the samples from π is at approximately inline = 1060 and crossline = 4900. The

uncertainty of the samples from π is lower. Another example of where the samples from π̂ and π̃ are

more similar to each other compared to the samples from π, is in the oil saturation at approximately

inline = 1060 and crossline = 5020. In this area, the oil saturation in Figure 5.3b and in Figure 5.3c

show a mean saturation of oil of approximately zero, while in Figure 5.3a, the mean saturation of oil is

approximately 0.6 in the same area.
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(f) Uncertainty of oil saturation

from MCMC samples from π̃.

Figure 5.3: Mean oil saturations and uncertainties from MCMC samples from three posteriors. The

posterior in the Alvheim field from equation (3.8) is π. The posterior where ĥMARS is surrogate is π̂. In

the last posterior, π̃, both the surrogate ĥMARS and the error correcting covariance matrix Ω̃ are used.

The MH algorithm with proposal distribution q2 with s = 0.027 was used in all three cases. Uncertainty

is expressed as the difference between the 90th and 10th quantiles.
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The mean saturation of brine and corresponding uncertainty in Figure 5.4 are also similar in the three

cases. A difference is found in approximately inline = 1060 and crossline = 5020. The brine saturations in

Figure 5.4b and in Figure 5.4c show high values, whereas the brine saturation in Figure 5.4a show a lower

brine saturation in this area. This is the same area where there was a difference in the oil saturation.

The uncertainties in the brine saturation in the three sets of samples are the most different in the bottom

left and right corners. In these areas, the similarities between Figure 5.4c and Figure 5.4d are stronger

compared to the similarities between Figure 5.4e and Figure 5.4d.
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MCMC samples from π.
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Figure 5.4: Mean brine saturations and uncertainties from MCMC samples from three posteriors. The

posterior in the Alvheim field from equation (3.8) is π. The posterior where ĥMARS is surrogate is π̂. In

the last posterior, π̃, both the surrogate ĥMARS and the error correcting covariance matrix Ω̃ are used.

The MH algorithm with proposal distribution q2 with s = 0.027 was used in all three cases. Uncertainty

is expressed as the difference between the 90th and 10th quantiles.

The mean content of clay shown in Figure 5.5a, Figure 5.5b and in Figure 5.5c are very similar to each

other. There are some slight differences to the right in the areas at approximately crossline = 4955, the

mean clay content in Figure 5.5a is much lower compared to the mean clay contents in Figure 5.5b and

Figure 5.5c. In this area, the samples from π̂ look slightly more like the samples from π, compared to

how similar samples from π̂ and π are. The uncertainty in Figure 5.5d, Figure 5.5e and in Figure 5.5f

are very similar. In general, the uncertainty might be a bit larger in Figure 5.5d for example at inline
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= 900 − 1000 at the highest crosslines, and in the area at approximately inline = 1130 and crossline

= 4930.
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MCMC samples from π.
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MCMC samples from π̃.
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(f) Uncertainty of clay content

from MCMC samples from π̃.

Figure 5.5: Mean clay content and uncertainties fromMCMC samples from three posteriors. The posterior

in the Alvheim field from equation (3.8) is π. The posterior where ĥMARS is surrogate is π̂. In the last

posterior, π̃, both the surrogate ĥMARS and the error correcting covariance matrix Ω̃ are used. The

MH algorithm with proposal distribution q2 with s = 0.027 was used in all three cases. Uncertainty is

expressed as the difference between the 90th and 10th quantiles.

Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5 show overall great similarity in the results from the

MCMC samples from π, π̂ and π̃ on the smaller area in the Alvheim field. This indicates that substituting

h with ĥMARS gives a good approximation to the posterior π, both when using the covariance matrix Ω

and when using Ω̃ as covariance matrix in the likelihood model. MARS models were also considered as

good surrogates for the time-consuming forward models in Chen et al. (2014) and Chen et al. (2013). A

MARS model does not assume a functional form of the response, which could be the reason it applied to

all three problems.

The use of the adjusted correlation function Ω̃ showed minor improvements in some areas, while in other

areas, using Ω gave the means and uncertainties closest to the mean and uncertainties of the MCMC

samples of π. The empirical variance and covariance added to the covariance matrix to adjust for the

error between ĥ and h were very small, such that Ω̃ and Ω are quite similar. That the covariance matrices

are very similar could be the reason for the similar result.

51



Most of the differences between the exact and approximate samples are found at the edges of the area. As

mentioned, there is a well in that area, such that samples close to the well are affected by the likelihood

model for the well-log data in addition to the likelihood model for the seismic AVO data. However, the

mean and uncertainty of the saturations are in general very similar, indicating that π̂ and π̃ are similar

to π. In MCMC, there is a randomness when proposing and accepting samples, such that the exact

same samples might not be considered for the three different Markov chains. This could lead to some

differences in the means and uncertainties, however, this difference vanishes with an increasing number

of MCMC iterations if π, π̂ and π̃ were the same distributions.

5.2 Comparing the proposals distributions

Next, the performance of the MH algorithm with the four different proposal distributions, q1, q2, q3 and

q4, from Chapter 2 are compared. The tuning parameter is, as in Chapter 2, denoted by s. To refresh,

there was the standard random walk

q1(x
p|xt) = φ(xt, s

2I), (5.1)

a random walk with the covariance matrix from the prior

q2(x
p|xt) = φ(xt, s

2Σ), (5.2)

the pCN proposal distribution with the covariance matrix from the prior

q3(x
p|xt) = φ

(
µ+

√
1− s2(xt − µ), s2Σ

)
, (5.3)

and the MALA

q4(x
p|xt) = φ

(
xt +

s2

2
∇ log (π(xt)) , s

2I

)
. (5.4)

The approximation MARS∇ from Chapter 4 is used instead of the gradient of the log posterior in the

MALA to reduce computation time.

The MH algorithms are used to draw samples from π̂, from the previous section, on the small area. That

is, ĥMARS is used as the forward model and the covariance matrix of the likelihood model is Ω. The

objective is to compare how efficiently the four MH algorithms explore the domain of π̂. The ESS per

computation time is measured to assess which proposal gives the most information about π̂ per time. The

reported ESS is the mean ESS of all 3N stochastic processes x1
g, x

1
o, x

1
c , x

2
g, x

2
o, x

2
c , ..., x

N
g , xN

o , xN
c . The

tuning parameter s and acceptance rates, which are connected to the efficiencies of the algorithms are

reported. The four MH algorithms were tuned such that the acceptance rates were approximately 23.4%

when using the proposal distributions q1, q2 and q3 and approximately 57.4% when using the proposal

distribution q4 as discussed in Section 2.2.3. As the acceptance rates and ESS should be computed on

MCMC samples after burn-in, the Markov chain starts at the mean of the posterior samples whose logistic

transformation is shown in Figure 5.2a, Figure 5.3a and Figure 5.5a. The MH algorithms are run for

1, 000, 000 iterations where every 100th sample is saved. This gives 10, 000 MCMC samples from π̂, 100

time iterations apart. Due to computation time and memory limitations, this is also done for the small

area described in the previous section.

The acceptance rate, computation time, ESS and ESS per computation time for the four MH algorithms

are reported in Table 5.1. These results show that the MH algorithm with the proposal distribution q3

was the most efficient. The 10, 000 MCMC samples this algorithm produced give approximately the same
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proposal s acceptance rate [%] computation time [sec] ESS [#] ESS / time [#/sec]

q1 0.006 25.5 13546.24 11.01340 0.000813023

q2 0.027 23.3 16547.33 93.88295 0.005673601

q3 0.045 22.8 11408.03 212.64163 0.018639645

q4 0.038 58.9 44418.04 39.72408 0.000894323

Table 5.1: Comparison of the efficiency of four MH algorithms. The acceptance rate, computation time

and ESS are calculated on 10, 000 MCMC samples which are 100 time iterations apart.

information as 212 i.i.d samples. The algorithm produced approximately 0.0186 independent samples per

second. This is much higher than the ESS per computation time for the MH algorithm with the other

proposals distributions. The second most efficient algorithm was the MH algorithm with the proposal

distribution q2. The difference in the ESS between the most efficient and second most efficient algorithms

is large. The ESS of the MH algorithm with proposal distribution q3 is twice as high as the ESS for the

MH algorithm with q2 as proposal distribution. The MH algorithm with proposal distribution q3 was also

about 1 hour and 25 minutes faster than the second most efficient algorithm. The slowest algorithm was

the MALA, which used more than 12 hours. For comparison, the fastest algorithm used 3 hours and 10

minutes. The MH algorithm with proposal distribution q1 was the second fastest algorithm. The MALA

used more than three times as much time as q1, but because the samples were less correlated, the MH

algorithm with q4 was slightly more efficient than the MH algorithm with q1 in this case.

Figure 5.6 show autocorrelation plots of every 100th value of {xl
g,t}1000000t=0 , {xl

o,t}1000000t=0 and {xl
c,t}1000000t=0

at location l = 435 using the four MH algorithms. These autocorrelation plots agree with the results in

Table 5.1. The autocorrelation plots in 5.6 show that the MH algorithm with q3 as proposal distribution

produces the least correlated samples among the four algorithms because the curve decreases the fastest.

The autocorrelation plots for this algorithm, shown in Figure 5.6c, Figure 5.6g and Figure 5.6k, show

that samples approximately 15, 000 time iterations apart, as there are 100 time iterations between each

lag, are not significantly correlated to each other. Compared to the autocorrelation plots of the least

efficient algorithm, the MH algorithm with q1 as proposal distribution, the autocorrelation plots of the

MH with autocorrelation q3 decrease much faster. The autocorrelation plots for the MH algorithm with

proposal distribution q2 also decrease fast compared to the autocorrelation plots of the MH algorithms

with proposal distributions q1 and q4. The autocorrelation in Figure 5.6a and in Figure 5.6d seem to

decrease at the same rate. However, the autocorrelation plot in Figure 5.6h and in Figure 5.6l from the

MALA decrease noticeably faster than the autocorrelation plots in Figure 5.6e and in Figure 5.6i, which

belong to the MH algorithm with q1 as proposal distribution.

The trace plots in Figure 5.7 also correspond with the results in Table 5.1. The trace plots show that the

MH algorithm with q3 as proposal distribution mixes best because the path moves around a centred value

many times. The MH algorithm with proposal distribution q2 also seems to mix well according to the

trace plots, however, there is slightly less coverage compared to the most efficient algorithm. The trace

plots indicate that the MALA mixes much better than the standard random walk, though the MALA

does not mix as well as the MH algorithms with q2 and q3 as proposal distributions. The trace plots

indicate that the MH algorithm with q1 as proposal distribution has not yet converged because there

seems to be a trend indicating that the algorithm was still exploring the posterior. When comparing the

trace plots for the standard random walk to the other algorithms, it is clear that this algorithm has not
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yet converged. For example, the trace plot in Figure 5.7a has not yet reached values close to −10, which

is an area visited by all three other algorithms.

In this location, the autocorrelation plots and trace plots agreed with the results in Table 5.1. It must be

mentioned that mixing, and hence trace plots and autocorrelation plots can vary at different locations.

However, the ESS in the table is the mean ESS of every location, which tells us that the MH algorithm

with q3 as proposal distribution had the best overall mixing.
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Figure 5.6: Autocorrelation plot up to lag k = 1000 of every 100th value of {xl
g,t}1000000t=0 (first row),

{xl
o,t}1000000t=0 (second row) and {xl

c,t}1000000t=0 (third row) at location l = 435 using the four MH algorithms.

The MH algorithm with proposal distribution q1, q2, q3 and q4 was used to get the results in the first,

second, third and fourth columns respectively.
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Figure 5.7: Trace plots of every 100th value of {xl
g,t}1000000t=0 (first row), {xl

o,t}1000000t=0 (second row) and

{xl
c,t}1000000t=0 (third row) at location l = 435 using the four MH algorithms. The MH algorithm with

proposal distribution q1, q2, q3 and q4 was used to get the results in the first, second, third and fourth

columns respectively.

Among the four MH algorithms tested for seismic AVO inversion in the small area in the Alvheim field,

using MH with the proposal distribution q3 was the most efficient sampling scheme in terms of ESS per

computation time. Between the four algorithms, the MH algorithm with proposal distribution q3 actually

had both the highest ESS and the lowest computation time. Thus the MH algorithm with q3 was clearly

the most efficient sampling scheme in the Alvheim case. However, this does not necessarily mean that it

is more efficient than the other algorithms in other situations. MCMC methods applicable for a variety

of inverse problems are generally hard to find, and an appropriate MCMC scheme is problem-dependent

(Eidsvik & Tjelmeland, 2006; Khoshkholgh et al., 2021). On the other hand, the MH algorithm with q3

as proposal distribution has been efficient for other problems than the Alvheim case as well. Using the
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proposal distribution q3 in the MH algorithm was much more efficient compared to using the proposal

distribution q1 in Rudolf and Sprungk (2016), especially as the dimension of the inversion problem

increased. The high dimension in the Alvheim case is a probable reason for the MH algorithm with q3 to

be the most efficient sampler because as opposed to the MH algorithm with q1 as proposal distribution,

its efficiency does not depend on the dimension.

As the two most efficient algorithms were the MH algorithm with the proposal distribution q3 and the MH

algorithm with the proposal distribution q2, this suggests that using correlation in the proposal distribu-

tion might lead to more efficient sampling. Intuitively this makes sense because if there is a covariance

pattern between the random variables, it is unlikely to draw a sample which has a covariance structure

similar to the covariance pattern of the posterior when all N locations are sampled independently. This

reasoning would suggest that this issue increases with the dimension N . In addition, if the covariance

pattern of the prior resembles the covariance pattern of the posterior in the Alvheim case, then using this

information in the proposal distribution leads to a more efficient sampler (Khoshkholgh et al., 2021).

Using the MH algorithm with the proposal distribution q3 gives faster MCMC sampling compared to

using the MH algorithm with the other three proposal distributions. It is reasonable that using the

proposal distribution q4 gives the slowest MCMC sampling because it is neither symmetric, as q1 and

q2, nor reversible with respect to the prior, as q3, and gradients need to be evaluated. Moreover, it is

reasonable that q2 is the second slowest proposal because it proposes samples with correlation, as q3,

and needs to evaluate both the prior and likelihood, as q1. Using the proposal q1 one does not need to

propose samples with correlation, as is necessary for q3. However, the prior needs to be evaluated when

using q1. This is not the case when using q3, where only the likelihood function needs to be evaluated.

The computation time in Table 5.1 thus show that proposing a sample with correlation is faster than

evaluating the proposal distribution.

For this example, the MALA mixes considerably better than the MH algorithm with q1 as proposal

distribution. This indicates that using information about the posterior is important as described in

(Roberts & Rosenthal, 1998; Khoshkholgh et al., 2021). The computation time used by MALA was more

than three times the computation time used by the MH algorithm with proposal distribution q1. However,

as the samples were less correlated, the MALA was able to produce marginally more information about

π̂ per second.

5.3 The MCMC samples from the approximate posterior in the

Alvheim case

In this section, MCMC samples from π̂ over the entire Alvheim field are compared to the results of

Spremić et al. (2024). The two results are compared by mean saturation of gas, oil and brine, mean clay

content, uncertainties and ternary plots from one deep and one shallow location in the Alvheim field.

How the saturation mean and uncertainty are computed is described at the beginning of this chapter.

The MH algorithm with q3 as proposal distribution is used to draw 500, 000 MCMC samples after burn-in

where every 50th sample is saved. That gives 10, 000 MCMC samples 50 time iterations apart, presumably

from the posterior π̂. The tuning parameter was s = 0.0088 and the acceptance rate was 25.4%. The

Markov chain is started in two locations to check that the Markov chain converges to the same values.

The MCMC results are regarded before the comparison.

The MCMC results are shown in Figure 5.8 and Figure 5.9. Figure 5.8 shows the mean and uncertainty
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of gas, oil and brine saturations, while the mean clay content and corresponding uncertainty are shown

in Figure 5.9. The wells are marked by coloured circles. As in Chapter 3, red circles indicate wells

where mainly gas was found and the violet circle indicates the well where the primarily oil was found.

Figure 5.8 shows that near the wells where mainly gas was found, the mean gas saturation is high and

the mean oil saturation is low. Likewise, the mean gas saturation is low and the mean oil saturation is

high near the well where most oil was retrieved. The uncertainty is generally low near the four wells.

The mean gas and oil saturations are generally low at the deeper areas, such as in the bottom left

corner, the top left corner, in the top middle and between the gas and oil wells in the area that stretches

from approximately (inline,crossline) = (600,5200) to (1300,4500). The uncertainty of the saturations is

generally low, however higher for the oil saturations than the gas saturations. The uncertainties are low

in the middle of areas which show high oil or gas saturations, and higher where the saturations transition

from high to low values, such that the uncertainties look like circles enclosing the areas with high gas or

oil saturations.
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(c) Mean saturation of brine.
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(d) Uncertainty of gas saturation.
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(e) Uncertainty of oil saturation.
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(f) Uncertainty of gas saturation.

Figure 5.8: Mean and uncertainty of gas, oil and brine saturations from MCMC samples from π̂. The

uncertainty is the difference in the 90th and 10th quantile.
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(b) Uncertainty of clay content.

Figure 5.9: Mean and uncertainty of clay content from MCMC samples from π̂. The uncertainty is the

difference in the 90th and 10th quantile.
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The results of Spremić et al. (2024) are shown in Figure 5.10 and Figure 5.11. The ensemble based method

described in (Spremić et al., 2024) is used to sample 100 samples approximately from the posterior π

in equation (3.8). Mean gas and oil saturations and the uncertainties of these saturations are shown in

Figure 5.10. The clay content and uncertainty of the clay content are shown in Figure 5.11. The three

wells marked by red circles and the well marked by the violet circle in Figure 5.8 are marked by red

squares and a green triangle in Figure 5.10, respectively.
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Figure 5.10: Mean and uncertainty of gas, oil and brine saturations from the ensemble based method

described in Spremić et al. (2024). The uncertainty is the difference in the 90th and 10th quantile. a)

mean gas saturation, b) mean oil saturation, c) mean brine saturation, d) uncertainty of gas saturation,

e) uncertainty of oil saturation and f) uncertainty of brine saturation.
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Figure 5.11: Mean and uncertainty of clay content from the ensemble based method described in Spremić

et al. (2024). The uncertainty is the difference in the 90th and 10th quantile. a) mean clay content and

b) uncertainty of clay content.

There are several similarities between the two results. The results in Figure 5.10 show high mean satur-

ation of gas and oil near the wells where mostly gas and oil were found respectively. There is also low

uncertainty close to the four wells. In general, the areas of high mean gas saturation look similar to each

other, but the mean saturation of gas from the MCMC samples has more defined shapes compared to

the mean gas saturation in Figure 5.10, which is more square-shaped and blurred around the edges of
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high mean saturation areas. Another similarity is the low mean saturation of gas and oil between the gas

and oil wells in the bottom left area, the top left area and the area that stretches from approximately

(inline,crossline) = (600,5200) to (1300,4500). The uncertainties of the clay content in Figure 5.11 and

Figure 5.9 also look very similar.

The mean oil saturations in the two results show some dissimilarities. For example, in Figure 5.10 below

the well marked by the green triangle, there are modest tendencies toward high oil saturations, whereas

in the same area in Figure 5.8b, mean oil saturation values are close to one. There is also an area to the

right of the well marked by the violet circle in Figure 5.8b which shows high mean oil saturation. This

area shows very low mean oil saturation in Figure 5.10. Another example of areas where the MCMC

results show higher oil saturation compared to the results of Spremić et al. (2024) are two areas below

the well located the furthest to the left at approximately inline = 500 and crossline = 4800. Conversely

above this well at approximately crossline 4600 − 4700, there is an area where the mean oil saturation

from the MCMC results is very low and the mean oil saturation in Figure 5.10 is high.

Another significant difference is the difference in the uncertainties for the mean gas and oil saturations.

In Figure 5.10 the uncertainty is high for the mean oil saturations in the areas described in the previous

paragraph. That is the area below the well marked by the green triangle, the area below the leftmost

well and the area over the leftmost well. In addition, the uncertainty of the mean oil saturation is high

above the well between the leftmost well and the well marked by the green triangle. The uncertainty of

the gas saturations in Figure 5.10 are high in the same areas as the mean gas saturation is high, except

near the wells. The uncertainty of the mean gas saturation from the MCMC results in Figure 5.9b are

generally considerably lower.

There is also a difference in the mean clay content, which shows higher values for the MCMC results

compared to the results of Spremić et al. (2024). The mean clay content is high in the same areas,

however, much higher in Figure 5.9 compared to the mean clay content in Figure 5.11.

Ternary plots at two locations in the Alvheim field for the two sets of samples from the two approximation

methods are shown in Figure 5.12. Figure 5.12a and 5.12b show the 10, 000 values of MCMC samples from

π̂ at locations (800, 4800) and (436, 5432) respectively. Ternary plots for the 100 approximate posterior

samples from the ensemble based approach at location (800, 4800) and (436, 5432) are shown in Figure

5.12c and 5.12d, respectively. The depth at the location (800, 4800) is 2112 meters and the depth at the

location (436, 5432) is 2190 meters.

The ternary plots in Figure 5.12b and Figure 5.12d show that the obtained samples in the two methods

give the same composition at the deep location. In the shallow location, however, there are some differ-

ences. The MCMC results show less uncertainty in the oil and gas saturations. The oil saturations were

also higher in Figure 5.12a compared to Figure 5.12c. This agrees with the higher mean oil saturations

in the MCMC results shown in Figure 5.8b compared to the mean oil saturations in Figure 5.10. The

uncertainty of the brine saturations in Figure 5.12a and Figure 5.12c is about the same. The ternary

plots are only from two locations, such that general conclusions cannot be drawn. However, they indicate

that the MCMC samples had more oil and lower uncertainty in the shallow area compared to the results

of Spremić et al. (2024), which agrees with results in Figure 5.8 and Figure 5.10.

Even though there are dissimilarities between the results from the two different methods for approximating

the posterior π, the results show the same tendencies. For most of the areas where the MCMC result

shows a high mean oil saturation and the ensemble-based approach shows a lower mean oil saturation,

the ensemble-based approach also has a higher uncertainty of the mean oil saturation. That means that

the two results are compatible with each other. There is an exception around inline 1250 and crossline
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4900 where the MCMC results show a high mean oil saturation and the ensemble-based approximation

to the posterior shows a low mean oil saturation and low uncertainty. A possible reason could be that

this area is located at the edge of the area such that there is no AVO data to the right of this area in the

conditioning in the ensemble-based approximation.
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(a) Ternary plots for the MCMC samples

from π̂ at location (800, 4800) in the

Alvheim field.

0

0

0

0.1

0.
1

0.1

0.2

0.
2

0.2

0.3

0.
3

0.3

0.4

0.
4

0.4

0.5 0.
5

0.5

0.6

0.
6

0.6
0.7

0.
7

0.7

0.8

0.
8

0.8

0.9

0.
9

0.9

1

1

1

G
as

O
il

Brine

(b) Ternary plots for the MCMC samples

from π̂ at location (436, 5432) in the

Alvheim field.
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(c) Ternary plots for the approximate pos-

terior samples from Spremić et al. (2024) at

location (800, 4800) in the Alvheim field.
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(d) Ternary plots for the approximate pos-

terior samples from Spremić et al. (2024) at
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Figure 5.12: Ternary plots for samples from the two approximations to the posterior π in equation (3.8)

at two locations at the Alvheim field. The depth in location (inline,crossline)= (800, 4800) is 2112 meters

while the depth at (inline,crossline)= (436, 5432) is 2190 meters.

In the approach described in Spremić et al. (2024), the prior samples from the total area are divided into

smaller patches when conditioning on the AVO data, to prevent false correlations between the AVO data

which can occur when using such methods (Spremić et al., 2024). Two patch sizes were compared to

each other, and when using larger patches, there was more oil in the results, which resembles the MCMC

results more.

Spremić et al. (2024) added an iterative loop of the approximate posterior samples to improve the posterior

approximation. The results indicated a possible increase in the integrated oil saturation, which resembles

the tendencies in the results from MCMC.
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Another explanation could be that π̂ has less uncertainty than π. Figure 5.5 showed that the approximate

posterior samples had slightly lower uncertainty of the clay content. However, the uncertainty of the clay

content is one of the similarities between the results from the MCMC and the method described in

Spremić et al. (2024). The uncertainties of the gas and oil saturations in Figure 5.2 and in Figure 5.3

did not indicate that using the surrogate leads to a lower uncertainty. If it is the case that π̂ has less

uncertainty than π it is not clear from the results in Section 5.1.
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6
Closing Remarks

In this thesis, the forward function of the likelihood model in the Alvheim case was approximated by a

MARS model to speed up the MCMC algorithm. The approximation was about 32 times faster. The

model had a high correlation and low MSE. The goodness of fit was also confirmed by a comparison

between MCMC samples obtained using both the exact forward model and the surrogate. Using the

MARS model, the MH algorithms with the proposal distributions q1, q2, q3 and q4 were compared on

a smaller part of the Alvheim field. A comparison of ESS per computation time showed that the MH

algorithm with q3 as proposal distribution was the most efficient algorithm in the Alvheim case. This

algorithm was therefore used with the surrogate to perform MCMC on the entire Alvheim field. The

MCMC results had similarities to the results in Spremić et al. (2024), however, the MCMC results showed

more oil and less uncertainty for the gas and oil saturations.

For the experiments in this thesis, computation time was a limitation in the sense that the proposal

distributions were not fine tuned for the particular problem at the Alvheim field. Instead, the results

from previous work (Roberts et al., 1997; Roberts & Rosenthal, 1998; Cotter et al., 2013) were used as

guidelines to tune the proposal distributions. Spending more time investigating the relationship between

the acceptance rate and the ESS for the specific case at the Alvheim field, could lead to higher efficiency.

However, for the random walk in the high-dimensional limit case in Roberts et al. (1997), the efficiency

decreased slowly as the acceptance rate moved away from 23.4%, indicating that an acceptance rate of

exactly 23.4% was not important. This suggests that one might not gain very much from fine-tuning the

acceptance rate.

Computation time was also a challenge when using the exact forward model h. To further investigate how

similar π̂ is to π, it would be interesting to continue to compare the MCMC samples from π̂ to MCMC

samples from π for other small areas. Dividing the area of 44, 144 grid points into areas of 900 grid

points gives approximately 50 smaller areas, such that performing MCMC on all these areas is tedious,

but some of the smaller areas could be investigated. It could be interesting to check some of the areas

which are further from the wells, as there is approximately no influence by the likelihood model for the

well-log data here. However, if the purpose is to increase the oil recovery near existing wells, this might

not be attractive for oil entrepreneurs.

Using ĥMARS as a surrogate opens for drawing samples from π̂ at the total area of the Alvheim field. The

information from these samples could be used in several ways. First, one could use the mean saturations

to narrow down a smaller area, which looks interesting for some reason, and perform MCMC sampling

with the exact forward model there. Using an approximation to locate interesting areas could however be

done using any approximation to the posterior. An advantage of using ĥMARS in this way is that results
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from the smaller area in Chapter 5 showed that MCMC samples from π̂ are very similar to the MCMC

samples from π. On the other hand, other approximations to the posterior, such as the ensemble based

method in Spremić et al. (2024), are faster than using MH with q3 to approximate the posterior, which

used around 20 hours to compute 500, 000 MCMC samples where every 50th sample is saved. Memory

storage was also a limitation for the experiments performed in this thesis. Whereas 100 posterior samples

were sampled in Spremić et al. (2024), 10, 000 MCMC samples were saved when performing MCMC on

the Alvheim field in this thesis.

Another way to use the MARS approximation is to use the samples from π̂ to create an informed

independent proposal. Khoshkholgh et al. (2021) found that using an independent proposal distribution

created on the information of the posterior, increased the efficiency compared to a dependent standard

random walk proposal distribution. An independent proposal could also run in parallel to speed up the

computations.

An attempt was made to sample from π and π̂ simultaneously. The MH algorithm with proposal distri-

bution q3 was used to sample 500, 000 MCMC samples from π̂. The proposed sample was at each time

iteration either accepted or rejected by the acceptance rate where ĥMARS served as the forward model,

as usual. In addition, at each 1000th time iteration, the proposed sample was either accepted or rejected

with acceptance probability calculated with the exact forward model instead of the approximation to the

forward model. The proposal distribution, q3, at 1000th time iterations apart served as independent pro-

posals changing as the Markov chain moved around the approximate posteriors’ support. The acceptance

rate was unfortunately zero for the exact MCMC sampling. An issue with combining dependent and in-

dependent proposals is that they have different optimal tuning. An independent proposal is more efficient

if the acceptance rate is closer to one (Givens & Hoeting, 2013). For the MH algorithm with proposal

distribution q3 tuned such that the acceptance rate is approximately 23.4% the proposed samples might

be too extreme/far away from the posterior for the independent proposal to accept them. This approach

could therefore maybe work better with MALA which has a higher optimal acceptance rate.

Since the MARS model is non-parametric, it can in principle model functions of arbitrary shape. This

suggests that MARS can approximate other forward models in other problems as well. The forward model

in the Alvheim example takes four continuous input parameters, hence the covariate space is R4. If there

are more covariates, one probably need more terms in the model, which would increase the computation

time a bit. However, the input space of the MARS model which served as a surrogate in Chen et al.

(2014) had dimension 15, and the MARS model still reduced the computation in that problem as well.

The conclusion that MARS is a good surrogate model for any forward model in any problem can not

be made. However, as the model is non-parametric, the approximation could work for similar problems

with complicated and computationally inefficient forward models in a Bayesian setting with similar input

spaces.
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