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Abstract 

Clays exhibit complex mechanical behaviour with significant viscous, nonlinear, and hysteric characteristics, 

beyond the prediction capacity of the well-known modified cam clay (MCC) model. This paper extends the 

MCC model to address these important limitations. The proposed family of models is constructed entirely 

within the hyperplasticity framework deduced from thermodynamic extremal principles. More specifically, the 

previously developed MCC hyper-viscoplastic model based on the isotache concept is extended to incorporate 

multiple internal variables and to capture recent loading history, hysteresis, and smooth response of the material. 

This is achieved by defining an inelastic free energy and an element that implements a bounding surface within 

hyperplasticity, resulting in pressure dependency in both reversible and irreversible processes with a unique 

critical state envelope, and only eight material parameters with a readily measurable viscous parameter. A 

kinematic hardening in the logistic differential form in stress space is derived that enables the proposed model to 

function effectively across a wide range of stresses. Based on this kinematic hardening rule, the current stress 

state acts as an asymptotic attractor for the back/shift stresses whose evolution rates are proportional to their 

current state. 

Keywords: clays; plasticity; constitutive relations; creep; rate dependence; critical state; thermodynamics 
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1. Introduction 

The modified cam clay (MCC) model (Burland 1965, Roscoe and Burland 1968), deduced from the 

unified and comprehensive behavioural framework of critical state soil mechanics (CSSM) (Roscoe et 

al. 1958, Schofield and Wroth 1968), revolutionised the understanding of the mechanical behaviour of 

soil, particularly clay, by linking the compressional and shearing behaviour. Although it was 

originally energy-based, with the normality rule for the inelastic flow imposed by Drucker’s stability 

postulate (Drucker 1959), the MCC model has also been re-appraised within the context of modern 

thermodynamics. Constitutive models lacking thermodynamic validity should not be confidently used 

for solving boundary value problems under various loading conditions, especially those involving 

unloading-reloading cycles. This is because they may spuriously generate or lose energy and 

subsequently violate the principle of conservation of energy. For instance, studies by Zytynski et al. 

(1978) and Borja et al. (1997) demonstrated that a system represented by such non-conservative 

models may not return to its initial state after a reversible process, due to a false generation or 

dissipation of energy. 

Shortly after its introduction, the MCC model received a thermodynamic description 

(Houlsby 1981), laying the foundation for its further development in a rigorous, systematic, and 

energy-based manner. Notably, improvements have been made to the MCC model, such as lifting the 

unnecessary normality rule (Collins and Hilder 2002, Collins and Kelly 2002) while maintaining 

maximum dissipation. This has been done just by introducing a convex and versatile dissipation 

potential coupled with the current state of the material. In these extensions, the approach of 

thermodynamics with internal variables deduced from the extremum principles (Ziegler 1977) has 

been employed. The systemised version of the approach, termed “Hyperplasticity”, which allows a 

systematic development of models from a basic version, has been presented by Houlsby and Puzrin 

(2006). Within the hyperplasticity framework, all components of a model are integrated into two 

characteristic potential functions: the force/dissipation potential defining the path-

dependent/irreversible behaviour, and the free energy potential defining the path-independent 

/reversible behaviour. 

In addition to the normality restriction, which could result in extreme dilatancy for some over-

consolidated clays, the original MCC model suffers from other important limitations. Perhaps, as 

pointed out by its founders (Roscoe and Burland 1968), the most profound deficiency, especially 

when prediction of soft clay behaviour is concerned, is the lack of time concept, preventing 

spontaneous change of the material state with a lapse of time. Adachi and Okano (1974), Kutter and 

Sathialingam (1992), and Yin and Graham (1999), among others, addressed the time-independency of 

the MCC model using the overstress theory of Perzyna (1963, 1966), which is also based on the 

restrictive stability postulate of Drucker (Drucker 1959), resulting in the normality restriction. Using 
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the hyperplasticity approach (Houlsby and Puzrin 2006), a viscoplastic MCC model has been recently 

developed (Dadras-Ajirlou et al. 2022, Dadras-Ajirlou et al. 2023) that lifted the normality restriction 

of inelastic viscous flows while the dissipation potential is maximal and, simultaneously, the CS 

envelope is unique under different loading rates. In this model, the viscous effects of clay behaviour 

are captured via the isotache concept (Šuklje 1957, Leroueil 2006) referring to a unique relationship 

between the inelastic strain rate (isotache) and the current state of material. The versatility of the 

developed model has been enhanced by incorporating the spacing ratio (Wroth and Houlsby 1985, 

Collins and Hilder 2002), normally defined as the ratio of the normal consolidation pressure to the 

pressure at the CS (Yu 1998). This addition allowed the regulation of shearing isotaches between the 

contractant (wet) and the dilatant (dry) zones, separated by a unique CS envelope. The inclusion of 

these features through the dissipative elastoplastic coupling (Collins 2002) enabled the hyper-

viscoplastic model to replicate effectively the general behaviour of clay under monotonic loading with 

different rates, including stress relaxation and creep. This capability has been exemplified in the 

simulation of the well-documented behaviour of Hong Kong Marine Deposits (HKMD) (Yin and Zhu 

1999, Zhu 2000, Yin et al. 2002). 

Other fundamental limitations of the MCC model and its offshoots are the abrupt stiffness degradation 

and the lack of memory of the recent loading history, failing to capture the hysteric behaviour during 

unloading-reloading cycles. Several efforts (e.g., Mróz et al. (1979), Stallebrass and Taylor (1997), 

Rouainia and Muir Wood (2000), Kavvadas and Amorosi (2000), Houlsby (2000), Einav and Puzrin 

(2003)) have been made to address these important features of clay behaviour, however without 

considering the time and rate effects. More recently, there has been a focus on capturing the hysteresis 

behaviour of clay within the context of viscoplasticity, (e.g., Kimoto et al. (2015), Maranha et al. 

(2016), Jiang et al. (2017), Tafili and Triantafyllidis (2020), Yuan and Whittle (2021), Shi et al. 

(2023), and Bathayian and Maleki (2023)). Nonetheless, despite their capabilities and sophistication, 

some of these advanced viscoplastic models have a large number of material parameters. This 

motivates further research on constitutive modelling of soil behaviour with fewer material parameters, 

while addressing the mentioned limitations. In this regard, hyperplasticity stands out as a promising 

framework due to its stringent mathematical structure, ensuring unconditional thermodynamic 

consistency and minimising ad-hoc assumptions. 

The above-mentioned important limitations of the phenomenological models, including the MCC 

model and its offshoots, could stem from the crude assumption of homogenous plastic flow within the 

Representative Elementary Volume (REV) (Coussy 1995). This is particularly relevant for clays with 

complex inhomogeneous microstructure which can both cause and be influenced by the 

inhomogeneous plastic deformation. Mesoscopic mechanical models (Einav and Collins 2008, 

Houlsby 2020) suggest that the inhomogeneity of plastic deformation within REV leads to phenomena 
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like the Bauschinger effect and hysteresis behaviour. Collins (2005) interpreted the inhomogeneous 

behaviour of geomaterials within REV on the mesoscale, including clay, as a signature of the 

formation of a network of strong and weak force chains (Radjai et al. 1998). In such a setting, it is 

hypothesised that the reversible energy is locked in the weak network trapped between strong 

networks. The trapped reversible energy is referred to as stored inelastic energy since its release can 

only occur through changes in the network of force chains at the mesoscopic level, induced by 

reversed plastic loading at the macroscopic or continuum level. 

In the hyperplasticity framework, the reversible inelastic energy is integrated into the free energy 

potential (Collins and Houlsby 1997, Houlsby and Puzrin 2006). Following the orthogonality 

principle introduced by Ziegler (1977), a crucial element of the hyperplasticity framework, the 

inclusion of reversible inelastic energy leads to a conservative stress quantity. This quantity is termed 

as the back or shift stress whose evolution in stress space is known as the kinematic hardening rule. 

The kinematic hardening or the back stress concept has been widely adopted as an effective 

phenomenological modelling tool for capturing the hysteresis behaviour and Bauschinger effect (e.g., 

Mróz (1967), Chaboche (1989), Puzrin and Houlsby (2001), Krabbenhøft and Krabbenhøft (2021)). 

Nevertheless, integrating the kinematic hardening and the back stress concept into viscoplastic models 

within soil mechanics comes with some important consequences. 

Grimstad et al. (2020) and Dadras-Ajirlou et al. (2023) have demonstrated that incorporating back 

stress and related kinematic hardening under isotache viscosity for a system with a single internal 

variable (tantamount to single yield or dynamic surface in the context of viscoplasticity) leads to non-

uniqueness of the CS envelope under different loading rates, even in triaxial stress space. A unique 

envelope for the CS condition is an essential paradigm in CSSM that provides a reference for the 

unified description of the general mechanical behaviour of soils with different densities and history. A 

large body of test data (e.g., Arulanandan et al. (1971), Vaid and Campanella (1977), Adachi et al. 

(1995), Sheahan et al. (1996), Zhu (2000), Hicher (2016), Tafili et al. (2021)) strongly supports this 

observation, suggesting that the CS envelope is largely independent of the rate of mechanical 

processes. These experimental observations align with the widely used first-order approximation of 

Coulomb’s sliding friction at macroscale (Popova and Popov 2015), which is generally considered to 

be almost independent of the rate of the shearing in isothermal process with no chemical reactions. 

The uniqueness of the CS envelope under various loading rates should be distinguished from the more 

subtle matter of the uniqueness of the CS envelope under different shearing modes (Lode angle) 

(Dafalias and Taiebat 2013, Li and Dafalias 2015). 
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Moreover, based on the conventional practice of the plasticity theory, back stress may be associated 

with a certain elastic domain that shifts by movement of the back stress according to a kinematic 

hardening rule. A general obstacle in this context is the establishment of the initial position of the 

back stress in stress space for each material point within the boundary value problem’s domain. Any 

viscoplastic processes, including pure creep or stress relaxation, necessitates the stress state to be 

situated outside the considered elastic domain (Chaboche 2008). 

 

Introducing multiple kinematic surfaces may entail additional viscous parameters (e.g., Shi et al. 

(2023)). Each of these additional viscosities is associated with a specific surface. However, 

establishing and evaluating these extra viscous parameters through the geotechnical laboratory or in-

situ tests can be challenging, and may not be feasible. For a system with a single internal variable, 

expressing the scalar-valued dissipation function as sums of homogeneous functions with varying 

degrees of homogeneity results in a non-homogeneity of the dissipation function which requires a 

special mathematical treatment, see Puzrin and Houlsby (2003). However, a single viscosity can be 

sufficient to represent the essential characteristics of the material’s behaviour. In the context of the 

creep behaviour of clay and peat, Ziegler (1972, 1981) presents an argument that aligns with the 

observations and statements made by Barden (1968), who advocated for simplifying a series of 

viscous elements with a single element having minimal viscous parameters. 

 

The work presented in this paper builds upon the prior research (Dadras-Ajirlou et al. 2022, Dadras-

Ajirlou et al. 2023) and specifically addresses the nonlinear, smooth (gradual stiffness degradation), 

and viscous behaviour of clay with recent loading history effect. To achieve this, the novel concept of 

the bounding surface in hyperplasticity (Houlsby and Richards 2023), which differs fundamentally 

from the bounding surface in plasticity (e.g., Dafalias and Popov (1975), Dafalias (1986), Hashiguchi 

(1989)), is utilised for the first time in viscoplastic modelling using the isotache viscosity. This 

treatment offers a minimum number of additional material parameters with only a single viscous 

parameter, in line with the argument by Ziegler (1972, 1981) and Barden (1968). Specifically, the 

classical force, flow, and free energy potentials of the basic MCC hyper-viscoplastic model (Dadras-

Ajirlou et al. 2022) are enriched with additional internal variables and mechanisms using the 

bounding surface concept. Subsequently, the incremental formulation, including inelastic flow and 

kinematic hardening, are derived. To incorporate the spacing ratio and exert control over the 

distribution of deviatoric isotaches in the contractant and the dilatant zones, a more generalised form 

for force/flow potential is developed. This generalisation is designed to ensure uniqueness of the CS 

envelope under various loading rates. Lastly, the paper concludes with the evaluation of the efficacy 

of the proposed hyper-viscoplastic model in capturing the monotonic and hysteresis time-dependent 
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behaviour of HKMD (Yin and Zhu 1999, Zhu 2000, Yin et al. 2002) and the recent loading history 

effect on the time-dependent behaviour of a saturated clay taken from an earth dam core (Hicher 

2016). 

For clarity, the model is constructed under the same notation as the previous work for an 

axisymmetric system (conventional triaxial specimen) confined to isothermal and infinitesimal strain 

conditions. Therefore, the total strain can be expressed as sums of volumetric  2v a r     and 

deviatoric   2 3s a r     strains. The corresponding work-conjugate stresses are then the 

spherical   2 3a rp     and the deviatoric  a rq     stresses. The subscripts “a“ and “r“ refer 

to the axial and radial components of stress and strain. Positive values are assigned to compressive 

strains and stresses. In the following, the notation    denotes the time derivative, all stresses are 

effective stresses, and inelastic volumetric  p

v  and deviatoric  p

s  strains are adopted as the 

internal variable of the system. The available space does not permit an outline of the hyperplasticity 

framework. For a detailed description of the framework, its thermodynamic rudiments, definition of 

the technical terminologies, and the systematic procedure for derivation of components of a 

constitutive model from different potentials, such as force, flow, free energy potentials, reference is 

made to Houlsby and Puzrin (2006). 

2. Force, flow, and free energy potentials 

The classical force potential (z) or the dissipation function (d) has already been constructed based on 

the isotache scaling (Dadras-Ajirlou et al. 2022): 

   
2 2

0

2

n

p p p

v v sMrpd
z

n n r

  
 

  
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 
 

 (1) 

where M is the frictional coefficient at the CS  0p

v  , and 0p  is the isotropic pre-consolidation 

pressure with the definition: 

0 exp
p

v
refp p



 

 
  

 
 (2) 

where refp is the value of 0p  at 0p

v  , and   and   are the typical CSSM compressional and 

swelling indexes on the bi-logarithmic plane of the specific volume versus the spherical effective 

stress. 
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The isotache scaling in Eq. (1) is considered by scaling a reference creep power  0rp with the ratio of 

current isotache per the reference isotache (reference strain rate r) to the power of rate sensitivity 

parameter n. For the current isotache, a mechanism without inelastic swelling has been utilized to 

impose the unidirectional nature of creep, which as a rheological phenomenon is a compressive and 

fully dissipative process under a progressive and one-way motion. Note that due to the pure scaling 

operation in Eq. (1), energy always dissipates, regardless of the current state of material, or absence of 

the external power, leading to unending creep or relaxation. However, due to the exponential form of 

Eq. (2) and appropriate values for n, this is not a practical issue (Grimstad et al. 2021, Dadras-Ajirlou 

et al. 2022). Nevertheless, one can simply add an extra term similar to Eq. (1) but with 1n   similar 

to the example provided by Grimstad et al. (2021) to limit the dissipation by introducing a yielding 

criterion. For simplicity and practicality, this limit is not implemented in the current study. 

The force potential (or dissipation function) described in Eq. (1), featuring strict convexity and a 

positive homogeneity degree of 1n  , characterises path-dependent/irreversible behaviour due to its 

positive semidefinite nature. To fully define material behaviour, path-independent/reversible 

behaviour must also be established. To do so, the Helmholtz free energy potential (f) proposed by 

Houlsby et al. (2005) has been utilized: 

 
23

2exp

p p

v v s s

a

g

f p

   




 
   

  
 
 

 (3) 

where g is dimensionless material parameters defining the elastic shear modulus, and ap  is an 

arbitrary reference pressure (preferably atmospheric pressure). This strictly convex Helmholtz free 

energy potential is particularly suitable for modelling the time-dependent behaviour of clay, such as 

creep or stress relaxation. Its exponential form which couples volumetric and shear strains provides a 

reference-independent and pressure-dependent state for the material (Dadras-Ajirlou et al. 2022). 

These features enable the model, with the laboratory-estimated viscous and reversible material 

parameters, to reasonably represent the material behaviour under the in-situ condition, with a 

significantly different time scale and pressure. When extending the model with the bounding surface 

concept, these attributes should be incorporated in the plastic part of free energy, which also 

influences the path-independent/reversible behaviour. 

The above-mentioned features also apply to the Gibbs free energy potential, the Legendre 

transform of the Helmholtz free energy defined in Eq. (3). For a detailed description of the role of the 

Legendre transformation, refer to the appendix in Collins and Houlsby (1997) and Houlsby and Puzrin 

(2006). The choice between the Helmholtz and Gibbs forms of the free energy potential is influenced 

principally by modelling preferences. In this context, the main justification for choosing the 
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Helmholtz form is not only to provide an aesthetically pleasing and consistent strain-based description 

of the system under isothermal processes but also to simplify the construction of the plastic part of 

free energy as a scalar-valued function of plastic strains. As presented below, the simplest form for 

the plastic free energy with the same attributes as of the elastic free energy presented in Eq. (3), is an 

exponential function of plastic volumetric and deviatoric strains. 

Now, by considering the earlier construction as the bounding condition (Eqs. (1), (2), and (3)), 1N   

additional mechanisms (including inelastic swelling) can be incorporated by increasing the number of 

internal variables using the bounding surface concept (Houlsby and Richards 2023): 
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 
  (6) 

All the parameters are the same as presented previously for Eqs. (1) and (3), except the dimensionless 

parameters pk , pg , and the weight functions iK  and iH , chosen to be: 

i

i
K

N


 
 (7) 

1i

i
H

N
   (8) 

The parameters pk , pg , and weight function iH  control the storage and release of reversible inelastic 

energy  pf . Notice how the bounding condition is considered at i N . The force potential (Eq. (4)) 

is still positive semidefinite with a positive homogeneity degree of 1n   in all variables. Moreover, 

the plastic part of the Helmholtz free energy  pf  is structured similarly to the elastic part to maintain 

the pressure dependence and the reference independence attributes, as discussed earlier. The above 

arrangement preserves the isotache scaling properties. Further elaborations are provided in the 

following and the proceeding section. 
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To understand the implications of the recent extension, an alternative expression in stress space is 

presented. To do so, by following the systematic procedures, the flow potential (w) is first computed 

in terms of the spherical and deviatoric dissipative stresses. Subsequently, w is transformed to the p-q 

stress space using the ZO condition. Based on the Legendre transformation, w can be expressed in 

terms of homogenous force potential z with homogeneity order of n as (Houlsby and Puzrin 2006): 

 1w d z n z     (9) 

In passing, it should be also realised that 0w   for 1n   (homogeneity degree of one for d or z, z d

) which signifies the rate-independent bounding surface form for the hyperplastic MCC model 

(Houlsby 1981, Collins and Houlsby 1997). Table 1 summarises the relationships between the 

systematic extensions of the MCC model to the viscoplastic and bounding surface forms. 

The generalised dissipative stresses  i  are obtained from the derivation of the force potential with 

respect to the corresponding work-conjugate variables (inelastic strain rates) as: 
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 (11) 

where  in Eq. (10) is the Macaulay bracket. Now by combining Eqs. (10) and (11), and applying 

the relation between the homogenous force and flow potentials (Eq. (9)), w can be found after 

moderate algebra as: 
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where eqp  is called equivalent pressure. Note that the flow potential w exhibits a positive 

homogeneity degree of n/(n-1) with respect to the dissipative stresses. This is expected based on the 

scaling property of Legendre-conjugate homogeneous functions (1/n + (n-1)/n = 1). 

To apply the ZO condition and complete the transformation, p, q, and the generalised conservative 

stresses  i  are computed by taking the derivatives of the Helmholtz free energy (Eq. (6)) with 

respect to the corresponding conjugate variables: 
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


     


 (16) 

where bip  and biq  are the spheric and deviatoric back stresses. Notice that 0bN bNp q   since 0NH 

. Now by imposing ZO condition: 

pi pi

qi qi

 

 

 




 (17) 

the equivalent pressure eqp  in Eq. (12) can be expressed in the p-q space: 
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     
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   
 
 
 


 (18) 

where, by considering that 0bN bNp q   (since 0iH  ),  , the stress ratio, can be defined as: 
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2 2

1
2

1

N
bi bi

i i i

M p p q q
q

K K

p






     
     
     




 (19) 

It can now be reasoned that under the condition of ZO, the pressure dependency emerges within all 

formulations. The pressure dependency feature is due to the exponential coupling of the volumetric 

and deviatoric strains in both elastic and inelastic parts of the Helmholtz free energy (Eq. (6)), as well 

as the imposition of the unidirectional nature of time-dependent behaviour clay (in a 

phenomenological sense based on the isotache concept) within the force potential (Eq. (4)). The latest 

criterion is established through two choices made at the bounding condition  i N , one in the force 

potential  z  and the other in the inelastic part of the Helmholtz free energy  pf . The first choice 

enforces zero dissipation for the pure plastic swelling at the bounding condition  0p p

vN vN   , while 
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the second ensures zero back stress at the bounding condition  0NH  . Based on these choices and 

the exponential form of the free energy, pressure remains strictly positive which is required by the 

isotache scaling (Dadras-Ajirlou et al. 2022). 

3. Incremental formulation 

The incremental formulation is derived directly from two potential functions, the free energy potential 

representing reversible response, and the force/dissipation potential representing irreversible response. 

To facilitate the implementation of the model into numerical codes by employing the common 

numerical integration schemes, the flow potential can be used instead of the force potential to derive 

the irreversible incremental response completely in terms of stress. 

Based on Eqs. (13) and (14) the following time differentials can be derived to describe the evolution 

of p and q stresses over time: 

2 2 2 2

2
1

N
p p

v s vi sip p
iv v s v vi v si

f f f f
p    
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    
    
       

  (20) 
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q    

      

    
    
       

  (21) 

Now since: 
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 (23) 
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 (24) 

the above system of differentials can be simplified as: 
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                                      

           

 

 

 (25) 

where 
eD  is the elasticity tensor whose components are expressed in terms of p and q based on the 

definition provided in Eqs. (13) and (14). 

The viscoplastic strain rates, based on the definition (Houlsby and Puzrin 2006), can be directly 

derived from the flow potential w (Eq. (12)). In this regard for the bounding viscoplastic flow, there 

are: 
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and for the other viscoplastic flows: 
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 (29) 

In the above equations, the ZO condition (Eq. (17)) has been applied after the derivations of w with 

respect to the corresponding conjugate dissipative stresses.   in Eq. (26) refers to the definition 

provided in Eq. (19) for the stress ratio in the p-q stress space. 

There are also two hardening rules controlling the incremental response of the material. The isotropic 

hardening rule refers to the evolution of 0p  during an inelastic process, which according to Eq. (5) 

can be expressed as: 

1
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 
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 



 

 (30) 

The kinematic hardening rule can be expressed as a time differential of the back stresses bip  and biq

defined in Eqs. (15) and (16), respectively: 
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 (31) 

in which the same properties as those expressed in Eqs. (22) to (24) has been applied for 
pf . Upon 

replacing the viscoplastic strain rate with their definitions in Eqs. (28) and (29) in which ZO condition 

is imposed, the kinematic hardening rule transforms to: 
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 (32) 
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Eq. (32) is a system of the logistic differential equations in terms of back stresses, meaning that the p-

q stress state acts as an attractor for the back stresses whose evolution over time is exponential. As a 

result, after sufficient deformation or elapsed time during the creep/relaxation process, the short-term 

memory of material in terms of the relative location of back stresses with the current stress state in 

stress space diminishes. At such bounding states (states with faded short-term memory), like the CS or 

the creep/relaxation after a long time, the response of the bounding surface model is quite similar to 

the previous version of the model (Dadras-Ajirlou et al. 2022). This is because based on Eq. (32), the 

back stresses asymptotically approach the current stress state (the stable steady state of the logistic 

differential equation (32)) during sustained monotonic loading resulting in both infinitesimal inelastic 

strain rates (Eqs. (28) and (29)) and dissipation shares for the mechanisms other than the bounding 

mechanism. Consequently, the properties related to these bounding states are the same as in the 

previous version of the model. In this regard, under a pure creep process, isotropic hardening, Eq. 

(30), can be understood as the evolution of the material’s resistance to further compression over 

relatively long time, i.e., the long-term memory of the material. 

It is now evident that by implementing the choices made in the previous section under the condition of 

ZO and arriving at the viscoplastic flows (Eqs. (26)-(29)) and the kinematic hardening rule (Eq. (32)), 

a unique CS envelope as a bounding condition can emerge. At the CS, where the material 

continuously deforms under constant stress state  q Mp , the back stresses are asymptotically 

attracted towards the constant stress state. In this case, according to Eq. (32), 
bip p  and 

biq q , and 

subsequently based on Eqs. (28), (29), and (19), 0p

vi , 0p

si  i N , and M , respectively. As 

a result, the determining internal variables at the CS are the internal variables associated with the 

bounding condition  i N  whose volumetric rate is asymptotically zero, with the deviatoric rate 

continuously evolving, according to Eqs. (26) and (27) respectively. Indeed, at the CS, the response of 

the bounding surface model is asymptotically equal to the response of the basic model (Dadras-

Ajirlou et al. 2022). 

Similarly, the response of the bounding surface model is asymptotically equal to the response of the 

basic model under creep process, meaning that the material properties for the creep process remain 

consistent with those established previously based on the time resistance concept (Janbu 1969, Janbu 

1985, Vermeer and Neher 1999, Grimstad et al. 2010, Jostad and Yannie 2017). Further details are 

provided in the following. 

Fig. 1 displays the performance of the kinematic hardening rule (Eq. (32)) during a creep process 

under a certain constant p-q stress state. The largest surface refers to the bounding condition, and the 

two small, dashed surfaces denote the two additional mechanisms incorporated into the dissipation or 

force potential. The corresponding viscoplastic flows are also shown in Fig. 1 where the solid grey 
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vector is associated with the flow at the bounding condition (Eqs. (26) and (27)) and the dashed 

vectors correspond to the two additional mechanisms (Eqs. (28) and (29)). The solid black surface 

defined by Eq. (18) is always convex since it is a conic combination of the bounding and the two 

additional mechanisms in the forms of the MCC-type ellipsoids. The solid black vectors represent the 

overall viscoplastic flow as the resultant of all viscoplastic flows shown in grey colour. As observed, 

due to creep, the two back stresses are approaching the current p-q stress state, causing two kinematic 

surfaces and their corresponding viscoplastic flows to converge and eventually diminish. 

Consequently, the short-term memory of the material fades from Fig. 1a to Fig. 1d. 

It is important to note that the kinematic and bounding surfaces depicted in Fig.1 are merely 

theoretical representations and are not actual components of the proposed model. The sole surface 

with a physical significance is the dynamic surface, shown by the solid black curve defined in Eq. 

(18), encompassing all back stresses. Based on Eq. (18), the kinematic surfaces can be expressed as: 

2 2

,
bi bi

eq i

i i

p p q q
p p

K p MK p

     
     
     

 (33) 

where ,eq ip  is the equivalent pressure or size of the ith dynamic kinematic surface that is function of 

distance between the current stress state and the ith back stress. 

In the context of viscoplasticity, the kinematic surfaces shown in Fig. 1 are not necessarily 

always bounded by the bounding surface. In fact, due to ZO condition (Eq. 17), the bounding surface 

only bounds the back stresses after a sufficiently long elapsed time and reduction in rate of change of 

material state. For instance, as shown in Fig. 2, during reversed loading or stress relaxation 

immediately after fading of the short-term memory during the recent sustained loading, a large 

domain of the kinematic surfaces can be located outside the bounding surface (generation of a new 

short-term memory). This is because the distance between the current stress state and the back stress 

state suddenly increases. However, after sufficient lapse of time and decrease in the rate of change of 

stress, the back stresses are asymptotically attracted to the current stress state and subsequently to the 

bounding surface which always passes through the origin and current stress state (due to 

unidirectionality condition imposed for the bounding internal variable in the force potential, as 

explained at the end of preceding section). 

4. Generalised force and flow potentials 

In this section, the force potential defined in Eq. (4), and subsequently, the flow potential computed in 

Eq. (12) as the conjugate of the force potential, are generalised to incorporate the spacing ratio. This 

extension offers flexibility to adjust the distribution of deviatoric isotaches and enhances the model’s 

predictions of shearing behaviour under different loading rates for different types of clays. 
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Continuing in line with previous works (Dadras-Ajirlou et al. 2022, Dadras-Ajirlou et al. 2023), the 

force potential is generalised by incorporating a transition function (T) and the spacing ratio (R) as: 

        
1

2 2 2 2
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n
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p p p p p

vN vN sN i vi i si
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 
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 


 (34) 

where T is a variant of the logistic function with the state variable S as a varying input: 

 1 tanh
2 2

R R
T S

 
   

   

 (35) 

in which R is greater than one and the state variable S is defined as: 

2 2
M

S
M





   
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  
 (36) 

where   is defined in Eq. (19). 

S is a state variable since based on Eqs. (13)-(16), S, under ZO condition (Eq. (17)), is linked to the 

Helmholtz free energy representing the current state of the material. The state variable S is indeed the 

distance of the current state of the material from the CS emerging as a bounding condition after 

sustained continuous deformation (details in the preceding section). The function T defined in Eq. 

(34) is called the transition function (Dadras-Ajirlou et al. 2022) due to the property of hyperbolic 

tangent function (tanh) that smoothly connects the contractant  M   and the dilatant  M 

zones, separated by the critical state line passing through the desired spacing ratio  eqq M p R  

shown in Fig. 3b through the evolution of  . 

It should be also noted that the force potential z or the dissipation function d in Eq. (34), which 

quantifies the amount of dissipated energy, are positive semi-definite for any rates of internal 

variables, like those defined previously in Eqs. (1) and (4). In this regard, it should be also emphasised 

that the extreme pure delayed plastic swelling (where p approaches zero) is discarded in all force 

potentials as a possible dissipative process. With these considerations in mind, by following 

procedures similar to those in the previous section, the flow potential can be obtained after a 

moderately tedious algebra as: 
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1
n

n
eqpn

w rp
n p

  
   

      

 (37) 

with the following definition for the equivalent pressure in the dissipative stress space: 
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 (38) 

where   is the stress ratio in the dissipative stress space: 
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 (39) 

Notice that T defined in Eq. (35) is the function of current stress state (through   in Eq. (36)) causing 

the inelastic flow to be practically non-associated, as in the basic model (Dadras-Ajirlou et al. 2022). 

Fig. 3 demonstrates the effect of spacing ratio R on the relative location of critical space. As observed, 

the bounding surface (solid grey curve), which controls the CS as a bounding condition, has passed 

the CS at the desired relative location. 

It is essential to highlight that incorporating the spacing ratio in the isotache viscoplasticty using the 

commonly employed approach of Collins and Hilder (2002) and Collins (2003) in plasticity, where 

the volumetric and shearing dissipative mechanism is scaled by a function of the pre-consolidation 

pressure  0p , results in the loss of uniqueness of the CS envelope under different loading rates. This 

has been demonstrated by Grimstad et al. (2020), Grimstad et al. (2021), and Dadras-Ajirlou et al. 

(2023). 

5. Model parameters 

The proposed hyper-viscoplastic model has eight dimensionless material parameters, as detailed in 

Table 2. In comparison to the previous version of the model (Dadras-Ajirlou et al. 2022), only two 

additional parameters are introduced to control the kinematic hardening and capture hysteresis 

behaviour. These parameters can readily be determined through conventional triaxial, oedometer, or 

isotropic compression tests. 

The rate sensitivity parameter (n) and a reference strain rate (reference isotache r), as mentioned 

previously, control the isotache scaling of a reference power  0rp . Following the approach of 

Grimstad et al. (2010) and Jostad and Yannie (2017), among others, n is defined as: 

1n


 
 


 (40) 
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where   is the creep index. Based on the previous discussion, since the creep process occurs 

exclusively at the bounding condition,   should be evaluated from a creep test. In this regard, Jostad 

and Yannie (2017), among others, presented a clear procedure for estimation of   based on the time 

resistance concept in which 1   is the slope of creep response in terms of strain rate against the 

elapsed time. 

r is the average volumetric strain rate under the creep process at a certain stress ratio. It can be 

estimated from conventional 24-hour incremental loading oedometer or isotropic compression tests. 

For instance, the creep strain rate under the sustained 0K  stress state in the oedometer test, where the 

short-term memory has been faded, can be computed as: 

0

0 0
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1

0
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 (41) 

The creep strain rate under 0K  stress state, based on Bjerrum’s equivalent time concept (Bjerrum 

1967), can be defined as (Jostad and Yannie 2017): 

p

v oed





  (42) 

where  is the equivalent time normally equal to 24 hours. Now by assuming 0eqp p  after 24 hours 

0K compression, the reference isotache (r) can be computed by combining Eqs. (41) and (42) as: 

0
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 (43) 

Note that in Eq. (43), the derivative is first taken with respect to the spherical dissipative stress 

associated with the bounding condition  pN . Then the 0K  stress state is applied by imposing the ZO 

condition: 
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 (44) 

where 0K  is the radial to the axial stress ratio under sustained oedometric loading estimated by the 

model, not the oedometer test. To incorporate a material representative value for 0K , the proposed 

model can be enriched with an extra degree of freedom as practised by Collins and Hilder (2002) and 

Rollo and Amorosi (2020), among others. 
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pk
 
and pg , as mentioned earlier, control the performance of the kinematic hardening rule. Since 

kinematic hardening rule plays a crucial role in determining the reversible response through the 

release and storage of inelastic free energy (hysteresis), pk and pg  should be calibrated alongside 

their counterparts,  and g , which govern the release and storage of the elastic free energy. In the 

best scenario, pk and   can be first calibrated based on an isotropic hysteresis response, and then pg  

and g  are calibrated for a shear hysteresis response. This calibration process has been employed for 

the HKMD since both isotropic and shear hysteresis responses were available. It’s also important to 

highlight that in the bounding surface form, unlike the multi-surface form (e.g., Puzrin and Houlsby 

(2001, 2003), Einav and Puzrin (2004), and Apriadi et al. (2013)), all dissipative mechanisms are 

coupled. They are neither mutually exclusive nor sequential. As a result, the number of internal 

variables considered significantly influences the values of pk and pg . Based on the authors’ 

experience, between five to ten numbers of internal variables are sufficient for effectively capturing 

nonlinear and hysteresis behaviour, even for very small loading cycles. Potentially, even smaller 

numbers of internal variables may be sufficient if kinematic hardening moduli associated with a 

certain internal variable (or back stress) are discreetly calibrated (no use of weight functions), as 

shown by Houlsby and Richard (2023). This will remain to be explored further in future endeavours. 

6. Evaluation of model 

In this section, the efficacy of the proposed model in simulating the response of the reconstituted 

HKMD (Yin and Zhu 1999, Zhu 2000, Yin et al. 2002) and a saturated compacted clay (Hicher 2016) 

under different loading conditions is explored. The model parameters for these clayey soils are 

presented in Table 2. 

The first test to consider is the 24-hour isotropic consolidation test on HKMD which includes an 

unloading-reloading cycle. Based on this test, which is completely uncoupled from the shear 

behaviour, the parameters pk and   are calibrated as those presented in Table 2. As shown in Fig. 4, 

the model response can reasonably capture the discrete experimental response, including the 

unloading-reloading cycle. 

Next, to calibrate the parameters pg , g , and R, a shearing test with loading and unloading cycles is 

simulated. The available test for HKMD is an undrained triaxial test with complex loading stages 

detailed in Table 3. Fig. 5 shows the comparison with the test data and their simulation using the 

calibrated parameters. Despite minor differences from the lab data, the overall performance of the 

model is remarkable, especially for the unloading-reloading responses which are challenging to 

capture. 
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Now, to evaluate the performance of the proposed model across different stress level, the responses of 

a set of undrained triaxial with different initial conditions are predicted. These tests have been 

conducted on samples with different over-consolidation ratios  maxOCR p p . Following the 

original report (Zhu 2000), to construct the history of material and achieve the desired OCRs before 

the undrained triaxial shearing, the isotropic loading and unloading stages, both under 36 hours, are 

first performed. Fig. 6 displays the comparison between the measured and predicted responses. As can 

be observed, the model can function under different initial stress states before shearing, thanks to the 

logistic differential form of the kinematic hardening rule (Eq. (32)). Considering the challenge of 

capturing the behaviour of HKMD as shown in earlier attempts (Yin et al. (2002), Bodas Freitas et al. 

(2011), Islam and Gnanendran (2017), Yang et al. (2016), Shahbodagh et al. (2020), Mánica et al. 

(2021), Yao et al. (2015), Qiao et al. (2016), and Bathayian and Maleki (2023)), the overall 

performance of the model in both rate- dependent monotonic and hysteresis behaviour of HKMD is 

reasonably good. 

To assess the proposed model’s effectiveness in capturing the effects of recent loading, 

simulations are extended using the tests conducted by Hicher (2016) on a saturated compacted clay 

from an earth dam core at a depth between 5 and 8 m. This experimental study is unusual and 

provides insights into the influence of recent loading history on the creep and stress relaxation 

behaviour of clay. The measurable parameters of the model in Table 2 are selected based on the 

values reported by Li et al. (2022) and Shi et al. (2023). 

The first sets of tests to consider are the undrained triaxial tests under various loading rates. The 

comparison between the test and simulation results is illustrated in Fig 7. Fig. 8 shows the comparison 

for creep test under axisymmetric undrained condition at different deviatoric stress level obtained 

under strain rate of 1%/min. These results indicate the capability of the model in capturing the 

conventional rate and creep behaviour of the saturated compacted clay based on selected values for 

parameters, particularly the single viscous parameter (μ). 

The results of the undrained triaxial test, showing the effects of recent loading history on the time-

dependent behaviour, are compared with the simulation results in Fig. 9. This test, conducted at strain 

rate of 1%/min, includes two unloading-reloading cycles with nine stress relaxation phases 

(represented by markers SR 1 to 9) conducted at various stages of the loading, unloading, and 

reloading processes. Notably, after each loading-unloading cycle, the difference between the test 

results and simulation in the loading processes increases. Interestingly, the test exhibits a stiffer 

response than the simulation, even for strains below 2%, contrary to the triaxial test under the same 

conditions in Fig. 7, where the simulation shows a stiffer response, particularly for strains below 2%. 
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The detailed effect of recent loading history on relaxation behaviour, in terms of deviatoric stress 

increment, is depicted for each phase in Fig. 10. The relaxation immediately after loading at phases 

SR 1, SR 3, and SR 7 resulted in a decrease in deviatoric stress in both the test and simulation results. 

In contrast, immediately after unloading at phases SR 2 and SR 9, deviatoric stress increases in both 

the test and simulation. Interestingly, at intermediate stages of the unloading and reloading processes, 

specifically at phases SR 5 and SR 6, the relaxation in both the test and simulation exhibits an 

opposite response compared to those occurring at SR 3 and SR 2, respectively, which occurred at the 

initial stages of the unloading and reloading processes. Particularly noteworthy are the relaxation 

phases SR 4 and SR 8, where the model was less successful in capturing the response. In these phases, 

occurring after stress decrease due to relaxation in phases SR 3 and SR 7 followed by slight unloading 

(0.1% decrease of axial strain), deviatoric stress initially increases and then decreases. The model can 

capture this particular behaviour to some extent for phase SR 8, but for phase SR 4, it is unsuccessful. 

However, overall, the model performs reasonably well in capturing hysteresis, rate, and time-

dependent behaviour with the recent loading history effect, especially when compared to the limited 

attempts in the literature (Li et al. 2022, Shi et al. 2023) to predict the challenging behaviour of this 

clay (Hicher 2016) under complex loading conditions. 

 

7. Conclusion 

This study has extended the previously developed hyper-viscoplastic model (Dadras-Ajirlou et al. 

2022) by incorporating inelastic free energy and the bounding surface concept (Houlsby and Richards 

2023) to capture the nonlinear and hysteresis behaviour of clay. The models are mathematically rigor 

and are guaranteed to obey the laws of thermodynamics since they have been built entirely within the 

hyperplasticity framework (Houlsby and Puzrin 2006) by specifying two potential functions, one for 

reversible and the other for irreversible behaviour. In addition, the proposed model with inelastic free 

energy complies with the critical state soil mechanics (CSSM) and the isotache concept. As a result, 

the main limitation of the basic hyper-viscoplastic model (Dadras-Ajirlou et al. 2022, Dadras-Ajirlou 

et al. 2023), namely the discard of inelastic free energy for securing a unique critical state (CS) 

envelope, has been lifted. Another salient feature of the model is the pressure dependency (a common 

feature of geomaterials behaviour) in both reversible and irreversible behaviour. There are overall 

eight dimensionless material parameters in the proposed model. Three of these parameters pertain to 

the bounding conditions of the pure creep and the CS and can be straightforwardly measured from the 

conventional laboratory tests. While some of the other five parameters can be estimated from 

laboratory tests, it is recommended to calibrate them collectively against the conventional undrained 

triaxial, oedometer or isotropic compression tests with at least a cycle of unloading and reloading. The 

efficacy of the model in capturing the hysteresis and the effect of recent loading history on the time-
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dependent behaviour of clays has been demonstrated by simulating a set of laboratory tests on the 

reconstituted Hong Kong Marine Deposits (Yin and Zhu 1999, Zhu 2000, Yin et al. 2002) and a 

saturated compacted clay (Hicher 2016). 

Clearly, the ultimate goal of any constitutive model is its application in solving engineering boundary 

value problems. To this end, the numerical integration of the incremental formulation over strain and 

time increments is crucial. Based on the simple incremental formulation of the proposed model, the 

most commonly used algorithms, such as explicit modified-forward Euler with error control (Sloan 

1987) or implicit backward Euler (e.g., Simo and Hughes (1998) and Heeres et al. (2002)), can be 

employed for the numerical integration. In fact, their application in the integration of the proposed 

model is straightforward because of deliberate omission of the yield criterion for pragmatic reasons. 

In addition to these conventional algorithms, integration of the model can be undertaken directly from 

the hyperplasticity relationships, rather the incremental formulation, as shown by Ghoreishian Amiri 

et al. (2023). 
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Notations 

d Scalar valued dissipation function 

f Helmholtz free energy potential 

g Dimensionless coefficient for elastic shear modulus 

iH  Weight function 

iK  Weight function 

pg  Dimensionless coefficient for kinematic hardening modulus 

pk  Dimensionless kinematic coefficient for hardening modulus 

M Slope of critical state line in p-q stress space 

n Rate sensitivity parameter (dimensionless) 

OCR Over consolidation ratio 

p Mean effective pressure 

0p  isotropic pre-consolidation pressure 

ap  Reference pressure (atmospheric pressure) 
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bp  Spherical back stress 

eqp  Equivalent pressure 

q Deviatoric stress invariant 

bq  Deviatoric back stress 

R Spacing ratio 

r Arbitrary reference strain rate 

S State variable 

T Transition function 

w Flow potential 

z Force potential 

, p

s s   Total and plastic deviatoric strains 

, p

v v   Total and plastic volumetric strains 

  Stress ratio in p-q stress space 

  Stress ratio in dissipative stress space 

  Swelling index 

  Compression index 

  Creep index 

  Arbitrary reference equivalent time (normally 24 hrs.) 

,p q 
   

 Spherical and deviatoric dissipative stresses 
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Table 2. Dimensionless parameters of the model and their values for HKMD and a compacted clay 

(CC) 

Model 

parameters 
Description  Required test HKMD

* 
CC

** 

Calibrated parameters for N = 10 (ten numbers of internal varaibles) 

κ
 

Swelling index  
IC or Oedometer tests 

with URC 
0.0102 0.01 

g 
shear modulus 

coefficient 
 

T(U) or Oedometer 

tests with URC 
125 100 

kp 
kinematic hardening 

coefficient 
 

T(U) or Oedometer 

tests with URC 
4000 700 

gp
 kinematic hardening 

coefficient 
 

T(U) or Oedometer 

tests with URC 
900 350 

R Spacing ratio  T(U) 2.175 2.1 

Laboratory estimated parameters 

µ Creep index  
IC or Oedometer 

creep tests 
0.0025 0.003 

λ Compression index  IC or Oedometer tests 0.0792 0.092 

      

M 
Slope of critical state line 

in p-q stress space 
 T(U) 1.265 1.07 

* The measured parameters are taken from original reports (Yin and Zhu 1999, Zhu 2000, Yin et al. 

2002). 

** The measured parameters are taken from Shi et al. (2023). 

Abbreviations: IC, Isotropic Consolidation (IC); T(U), Triaxial (Undrained preferably); URC, 

Unloading Reloading Cycle 

Table 3. Loading history of the multi-stage triaxial compression test on HKMD (Yin et al. 2002) 

Schedul

e 

Loadin

g 

Unloadin

g 

Reloadin

g 

Relaxatio

n 

Loadin

g 

Relaxatio

n 

Loadin

g 

Relaxatio

n 

Axial 

strain 

rate 

(1/min) 

0.1% −0.1% 0.1% 0 0.01% 0 0.001% 0 

Duratio

n (min) 
29 7 20 2540 232 1320 830 705 
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Figure captions 

Fig. 1. Attraction of back stresses by current stress state and erase of short-term memory during a pure 

creeping process a-b-c-d. Back stresses are shown by plus and asterisk signs and M = 1.2. 

Fig. 2. Generation of new short-term memory due to the reversed loading immediately after the state 

shown in Fig. 1d. Note that M = 1.2 and back stresses shown by plus and asterisk signs are 

overlapping due to their attraction during the previous creeping process. 

Fig. 3. Effect of the spacing ratio R = 3 on the bounding and kinematic surfaces during a creep process 

a-b with (a) short-term memory and (b) faded short-term memory. Note that M = 1.2, the back 

stresses are shown by plus and asterisk signs, and eqp  is the equivalent pressure of the 

bounding surface defined exclusively based on the current stress state (as in Dadras-Ajirlou et 

al. (2022)) without any back stresses. 

Fig. 4. Comparison between the experimental (Yin et al. 2002) and the simulated 24 h isotropic 

loading and unloading test on reconstituted HKMD. 

Fig. 5. Comparison between the experimental (Yin et al. 2002) and the simulated results of multi-

stage undrained triaxial compression test on reconstituted and normally consolidated HKMD 

in terms of: (a) deviatoric stress against axial strain; (b) excess pore water pressure against 

axial strain; (c) deviatoric stress against mean effective stress. 

Fig. 6. Comparison between the experimental (Yin et al. 2002) and the simulated undrained triaxial 

compression tests on reconstituted HKMD with different OCRs under constant axial strain 

rate of 1·5%/h in terms of (a) the stress–strain response and (b) the normalised effective stress 

path. Note that maxp  is the maximum isotropic consolidation pressure, the initial stress for 

OCR = 1 is p = 400 kPa, and for the other OCRs is p = 100 kPa. 

Fig. 7. Comparison between the experimental (Hicher 2016) and the simulated undrained triaxial 

compression tests on saturated compacted clay under different strain rates in terms of (a) 

deviatoric stress versus axial strain response and (b) the effective stress path in p-q stress 

space. 

Fig. 8. Comparison between the experimental (Hicher 2016) and the simulated undrained triaxial 

creep tests at different deviatoric stresses obtained under strain rate of 1%/min in terms of (a) 

axial strain and (b) excess pore water pressure versus time. 

Fig. 9. Comparison between the experimental (Hicher 2016) and the simulated undrained triaxial test 

under strain rate of 1%/min with two unloading-reloading cycles and nine relaxation phases 

(SR 1- SR 9) conducted at different stages of the test 

Fig. 10. Comparison between the experimental (Hicher 2016) and the simulated nine undrained 

triaxial relaxation phases (SR 1- SR 9) along different stages of the undrained triaxial test 

with complex loading schemes presented in Fig. 9 
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