
Received 18 March 2024, accepted 3 April 2024, date of publication 11 April 2024, date of current version 19 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387856

An Evaluation of Multi-Label Classification
Approaches for Method-Level
Code Smells Detection
PRAVIN SINGH YADAV 1, RAJWANT SINGH RAO 1,
AND ALOK MISHRA 2, (Senior Member, IEEE)
1Department of Computer Science and Information Technology, Guru Ghasidas Vishwavidyalaya Bilaspur, Bilaspur 495009, India
2Faculty of Engineering, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway

Corresponding author: Alok Mishra (alok.mishra@ntnu.no)

ABSTRACT (1) Background: Code smell is the most popular and reliable method for detecting potential
errors in code. In real-world circumstances, a single source code may have multiple code smells. Multi-
label code smell detection is a popular research study. However, limited studies are available on it, and
there is a need for a standardized classifier for reliably identifying various multi-label code smells that
belong to the method-level code smell category. The primary goal of this study is to develop a rule-based
method for detecting multi-label code smells. (2)Methods: Binary Relevance, Label Powerset, and Classifier
Chain methods are utilized with tree based single-label algorithms, including some ensemble algorithms
in this research paper. The chi-square feature selection technique is applied to select relevant features. The
proposed model is trained using 10-fold cross-validation, Random Search cross-validation parameter tuning,
and different performancemeasures are used to evaluate themodel. (3) Results: The proposedmodel achieves
99.54% of the best jaccard accuracy for detecting method-level code smells using the Classifier Chain
method with the Decision Tree. The Decision Tree model incorporating a multi-label classifier outperforms
alternative approaches to multi-label classification. Single-label classifiers produced better results after
considering the correlation factor. (4) Conclusion: This study will facilitate scientists and programmers by
providing a systematic method for detecting various code smells in software projects and saving time and
effort during code reviews by detecting multiple problems simultaneously. After detecting multi-label code
smell, programmers can create more organized, easier-to-understand, and trustworthy programs.

INDEX TERMS Code smell, cross-validation, multi-label code smell detection, parameter tuning, random
search cross-validation, Z-score.

I. INTRODUCTION
Multi-label classification involves predicting the presence or
absence of multiple labels for an instance of source code;
unlike traditionalmulti-class problems, only one label is asso-
ciated with a single instance [1]. Multi-label classification
is more general because the real world often has multiple
semantic attributes or categories. In recent years, multi-label
classification has garnered significant attention across differ-
ent research domains.

Various machine learning methods like Random For-
est (RF), Extreme Gradient Boosting (XGB), Decision

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

Tree (DT), Gradient Boosting (GB), and Artificial Neural
Network (ANN) are utilized with multi-label classification
methods such as Binary Relevance (BR), Label Powerset
(LP), and Classifier Chain (CC). All machine learning meth-
ods with Binary Relevance (BR) multi-label classifiers are
denoted with the ‘‘BR_’’ prefix, and similarly, the ‘‘LP_’’ and
‘‘CC_’’ prefixes have the same meaning.

During software maintenance, changes are made to the
program so it can function in an entirely new environ-
ment. Suboptimal software design and bad implementation
approaches are two common causes of increasedmaintenance
effort [2], [3].

Manual detection strategies based on code smell recogni-
tion were utilized in multiple approaches. To the best of our

53664

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5489-6047
https://orcid.org/0000-0001-6993-8927
https://orcid.org/0000-0003-1275-2050
https://orcid.org/0000-0003-3264-185X

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

knowledge and the available literature, Metrics-based code
smell detection [4] and machine learning-based code smell
detection [5], [6] are a few examples of methods that employ
automatic detection techniques.

It is also unclear what defines a ‘‘code smell’’; different
studies have used varied threshold values for the metrics used
to identify instances that demonstrate code smells.

A. PROBLEM STATEMENT
Researchers have analyzed different code smells and reached
different conclusions. It is common for instances to belong
to more than one class in real-world datasets. However,
multi-label code smell has not received much attention from
researchers, as shown in Table 1. There are several factors that
affect the difference between results, and a few significant
factors are listed below:

• A dataset that needs to be correctly normalized may
dominate the learning process and bias the model.

• Including irrelevant features in the model’s training
process may cause the building of an improper model.

• Data leakage is another factor that can have an impact
on the performance of a model. To conduct an accurate
performance analysis, the testing data must be com-
pletely unknown to the model.

B. MOTIVATION
The research conducted by Fontana et al. [7] has established
a significant basis for analyzing code smells. Nevertheless,
the datasets these researchers utilize have demonstrated a
restricted scope regarding their utility in real-life situations.
To address this, Nucci et al. [8] updated the Fontana et al.
[7] datasets to reflect the real-world situation better. On the
other hand, their results raise issues about the generalizability
of Fontana et al. [7] initial findings. This motivates further
research in the area of code smell detection and classification.
More specifically, it is necessary to study the generalizability
of current code smell detection methods that better perform
on real-world code. The effect of code smells on software
quality and maintainability should also be investigated.

This study presents various approaches to utilizing label
dependencies for multi-label classification tasks effectively.
The proposed approach captures the relationships between
labels and software metrics for multi-label prediction.

C. THE CONTRIBUTIONS OF THIS STUDY
The contributions are as follows:

• A multi-label method-level code smell dataset is uti-
lized for this experimental work, and a multi-label
dataset shows a real-world scenario.

• The paper presents various decision tree-based algo-
rithms with Binary Relevance, Label Powerset, and
Classifier Chain methods designed to address the
multi-label classification problem. The proposed
method offers a systematic approach to capture the
dependencies among labels.

• The output is shown in tabular form that can be easily
interpreted. It is an easy-to-understand way that helps
in decision-making.

• To enhance the quality of the dataset, Z-score normal-
ization for standardization is employed; furthermore,
10-fold cross-validation is applied. This combination
helps to achieve a smoother dataset, enabling more
effective training and accurate predictions.

• The chi-square feature selection technique is applied to
select relevant features from the dataset.

• Assess the practical effectiveness by performing a
comprehensive range of experiments and employing
various evaluation metrics. The experimental outcomes
have shown that the proposed method yields superior
outcomes.

D. RESEARCH QUESTIONS
To study the multi-label code smell detection approach, the
following research questions (RQ) have been identified:
RQ1 Which machine learning approach provides the best

multi-label code smell detection results?
Motivation: Tree-based algorithms perform better in code

smell detection [9]. Alazba et al. [10], Reis et al. [11], and
Aljamaan et al. [12] presented ensemble approaches hav-
ing outstanding results in single-label code smell detection.
This paper utilized BR_RF, BR_XGB, BR_DT, BR_GB,
BR_ANN, LP_RF, LP_XGB, LP_DT, LP_GB, LP_ANN,
CC_RF, CC_XGB, CC_DT, CC_GB, and CC_ANN method
to check the effectiveness of machine learning approach in
multi-label classification.
RQ2 Does using a collection of software metrics selected

by the feature selection/extraction technique improve the
multi-label code smell detection performance?

Motivation: In various studies, Alazba et al. [10] utilized
the Gain Ratio, and Mhawish et al. [9] utilized Genetic
Algorithm (GA) Naïve Bayes and GA-CFS and demonstrated
the significance of feature selection/extraction techniques
in software metrics selection for single-label code smell
detection. This paper utilizes the chi-square feature selection
method to check the effectiveness of the feature selection
technique for detecting multi-label code smell.

RQ3What would be the effectiveness of machine learning
classifier performance in multi-label code smell detection
while considering correlation?

Motivation: Guggulothu et al. [13] presented some clas-
sifier performance after considering correlation and showed
that they found good results after considering correlation.
This paper utilized machine learning and ensemble classi-
fiers to check the efficacy after considering correlation in
multi-label code smell prediction.

The remaining sections are structured as follows.
Section II introduces the multi-label classification-related
work. Section III discusses the proposed methodology.
Section IV discusses the results of the experiments. Section V
presents threads and validity, and Section VI discusses the
conclusion of this experimental work.

VOLUME 12, 2024 53665

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

II. LITERATURE REVIEW
Multi-label classification has gained popularity in numer-
ous fields, including text classification [14] and image
classification [15]. The field of software engineering also
usesmulti-label classification.Multi-label versus single-label
classifications of software system failure reports were studied
by Feng et al. [16].

There are numerous methods for identifying code smells.
Our efforts focus on machine learning methods to identify
suspicious code.

Using 27 design metrics derived from a tool, Maneerat
et al. [17] gathered datasets to evaluate seven code smells and
apply seven machine learning techniques for detection.

Fontana et al. [6] used a machine learning technique that
rates the severity of code smells to assist developers in
assigning values to classes and functions. They employed
techniques from various classification methods.

The previously reported research only considered one label
for code smell detection. In this respect, Guggulothu et al.
[13] have employed multi-label categorization strategies.
Di Nucci et al. [8] addressed the limitations observed in a

prior experiment. They used the same seventy-four systems
and experimental setup to test their model; the main differ-
ence was in the training dataset, where they included more
realistic examples of each code smell kind. However, their
findings indicated that the model’s performance could have
been more accurate than the original study. As a result, the
authors concluded that applying machine learning techniques
for code smell detection requires further investigation and
consideration.

The proposed research differs from the existing literature
in two significant aspects: first, an extra step is added to the
process using a feature selection strategy, and second, various
machine learning algorithms are incorporated for detecting
the code smells. Table 1 comprises a brief description of the
approaches used.

III. PROPOSED METHODOLOGY
The proposed work represents a method-level multi-label
code smell prediction framework, a dataset by Guggulothu
et al. [13] is utilized for this experiment. As represented in
Figure 1, the two method-level code smells (Long method
and Feature envy) are merged to build the dataset. The dataset
is divided into two parts; some preprocessing is applied to
both parts, and further feature selection, parameter tuning,
and performance evaluation are applied, as discussed in detail
below. Jupyter Notebook 6.5.2, Scikit-learn 1.2.2, skmulti-
learn 0.2.0, Pandas 1.5.3, NumPy 1.26.4, Keras 2.12.0, and
tensorflow 2.12.0 packages are utilized to develop Python
code.

A. DATASET CHOICE AND ILLUSTRATION
The Long method and Feature envy datasets from
Guggulothu et al. [13] were utilized in this study. The
dataset is publicly available on https://github.com/thiru578/
Multilabel-Dataset. The dataset is a multi-label dataset that

represents real-world situations. Initially, the Fontana et al.
dataset [7] had 420 instances, one label, and 82 software
metrics. Later, Guggulothu et al. [13] modified the Fontana
et al. [7] dataset and removed irrelevant software metrics such
as classes, projects, and packages. As a result, the final dataset
has 445 instances, two labels, and 46 software metrics. Out
of these, 100 instances have both code smells, 102 instances
have any one of the two code smells, and 243 instances have
no code smell.

• Long method- A Long method is a method-level code
smell that extensively uses data from other classes, has
much code, is complicated, and is hard to recognize [9].

• Feature envy- Feature envy is a method-level code
smell. In place of their data, these methods extensively
use data from other classes. Utilizing characteristics
entered via accessor methods, they lean toward utilizing
features of other classes [9].

Multi-label method-level code smell dataset statistics-
Table 2 provides an overview of essential parameters of
the multi-label dataset that show the characteristics and are
critical in measuring the imbalance ratio. There are extra
metrics besides the traditional ones for multi-label datasets,
such as the mean imbalance ratio (MeanIR) and coefficient of
variation of the imbalance ratio per label (CVIR) [38]. Car-
dinality is the average number of active labels per instance;
density is a dimensionless measure obtained by dividing the
cardinality by the total number of labels. The dataset has
four possible label combinations consisting of two labels.
The MeanIR and the CVIR provide insights into the dataset’s
balancing; generally, an imbalance is indicated by a MeanIR
greater than 1.5 and a CVIR greater than 0.2 Charte et al.
[38]. The balanced nature of the utilized multi-label dataset
is supported by its MeanIR of 1.079 (below 1.5) and CVIR of
0.102 (below 0.2).

MeanIR =
1

|K |

K∑
k=1

(IRLbl (k)) (1)

=
1 + (162/140)

2
= 1.079

CVIR =
IRLblσ
MeanIR

(2)

=
0.110
1.079

= 0.102

where IRLblσ =

√√√√ K∑
k=k1

(IRLbl (k) − MeanIR)2

|K | − 1

B. TRAIN TEST SPLIT
Train test split is essential to separate training data from
test data to save the model from data leakage. This exper-
iment uses the hold-out method with an 80%-20% ratio to
train test split. In the initial dataset, Guggulothu et al. [13]
contain 445 instances and 47 features; after the training test

53666 VOLUME 12, 2024

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

TABLE 1. Comparison of earlier approaches used to detect code smells.

TABLE 2. Statistics of multi-label method-level code smell dataset.

split, the training set has 356 instances, and the test set has
89 instances, as shown in Figure 1.

C. NORMALIZATION
The feature ranges in the datasets used are not uniform,
so feature normalization should be applied before applying
the machine learning technique. A normalization method,
the Z-score feature scaling methodology, was used in this
paper. It sets the dataset mean to 0 and the standard deviation
to 1 [39].

Z − score = (x − µ)/σ (3)

VOLUME 12, 2024 53667

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

FIGURE 1. Proposed model for multi-label code smell detection.

where x = Original value, µ = Mean of data, σ = Standard
deviation of data.

D. CROSS-VALIDATION
In this experimental work, 10-fold cross-validation is applied,
which is essential to train the model correctly. In cross-
validation, the model is trained with different combinations
of training sets. The model is trained in ten iterations; during
each cycle, a portion serves as test data, while the remaining
portion serves as train data. The ultimate value of accuracy is
determined by taking the mean of all iterations. The outcome

is produced after ten runs of the 10-fold cross-validation pro-
cedure, which effectively takes the randomness into account.

E. FEATURE SELECTION
Dewangan et al. [29], [36] utilized chi-square feature selec-
tion in software metrics selection for single-label code
smell detection and found better results. Chi-square fea-
ture selection is crucial in multi-label code smell detection
for its ability to identify the most discriminative features
relevant to each label, aiding in the accurate classifica-
tion of multi-label code smell. In this experimental work,

53668 VOLUME 12, 2024

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

the chi-square feature selection method is applied; select-
ing relevant features while removing unnecessary ones is
a crucial process in feature selection. By computing the
chi-square statistic between each feature and each label,
chi-square feature selection determines the significance of
features for multi-label classification. The chi2 function
from scikit-learn is used for this purpose. Features with
higher chi-square values are more significant for multi-label
code smell prediction. Seven features were selected using
the feature selection method. Table 3 shows the selected
features. The details about software metrics and custom
metrics are shown in Table 4 and Table 5, respectively. Met-
rics definitions are available at https://github.com/bniyaseen/
codesmell/blob/master/metricdefinitions.pdf. The general
formula for chi-square [36]:

Chi − square =

∑ (O− E)2

E
(4)

where O=Observed frequency, and E=Expected frequency.

TABLE 3. Selected features using the chi-square feature selection
method.

F. CLASSIFIER USED
Several methods deal with multi-label classification, such as
problem transformation, algorithm adaptation, and ensemble
methods. This experimental work uses three problem trans-
formation methods of multi-label classification (BR, LP, CC)
with single-label machine learning methods (RF, XGB, DT,
GB, ANN) to predict multi-label method-level code smell.

Multi-label classifier-
• Binary relevance (BR) –The method converts the
multi-label dataset into n-binary datasets, where n is the
label count. Subsequently, a combined output is pro-
duced by the binary classifiers. Label correlation is not
taken into account by this strategy [1].

• Label powerset (LP) - In this transformation, the
multi-label dataset becomes a multi-class dataset, each
representing a distinct set of labels [1].

• Classifier chain (CC) –N classifiers are involved in this
method. The initial step is to train the classifier using the
initial input. Iteratively, the input is supplemented with
its prior binary prediction outcome [1].

Machine learning method –
• Random forest (RF) - The random forest approach is a

machine learning tool for solving classification issues;

TABLE 4. Software metrics with description [7], [9].

it takes the average or mean value of the predictions
made by each decision tree and uses it to generate
the final output, which can enhance accuracy while
reducing dataset overfitting [29] In this experiment,
the models’ parameters, Max Depth, Number of trees,
Criterion, and Class weight are well-tuned for better
results.

• Extreme gradient boosting (XGB) - This algorithm,
also known as XGBoost, is a supervised machine
learning algorithm based on trees. In order to ensure
the intended result, it integrates the predictions of
multiple weaker models. An optimization framework
and regularized learning of goal functions are used in
this process [40]. This experiment achieved Improved
results by fine-tuning the following model parameters:
Max Depth, Learning rate, and Number of trees.

• Decision tree (DT) - A decision tree is a hierarchical
structure in which each leaf node usually represents
a result or class label, and the inside nodes reflect
decisions depending on the values of attributes. The

VOLUME 12, 2024 53669

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

TABLE 5. Custom metrics with description [7], [9].

values of attributes are evaluated at each internal node,
which affects the variables [29]. The parameters of
the models, including the Maximum depth of the tree,
Criterion, the strategy used to choose the split, Mini-
mum Number of samples required to split, Minimum
Number of samples required to be a leaf node, and
Minimum impurity split, have been fine-tuned in this
experiment to achieve better outcomes.

• Gradient boosting (GB) - One of the most influential
ensembles of machine learning approaches is the Gra-
dient boosting (GB) algorithm. With its adaptability,
GB can be used for both continuous target variables,
as in regression, and categorical ones, as in classifi-
cation tasks, helping to reduce algorithmic bias and
improve accuracy [9]. In this model, Learning rate,
Max Depth, and number of trees are essential param-
eters that are correctly tuned for better results.

• Artificial neural network (ANN) - AnANN, or neural
network, is a mathematical model that takes design
principles from the architecture and operation of nat-
ural networks in the brain. It manipulates data using
interconnected artificial neurons, a technique in artifi-
cial neural computation [30]. This experiment uses the
input layer, output layer, and two hidden layers; the relu
activation function is utilized with adam optimizer and
binary cross entropy as the loss function.

G. PARAMETER OPTIMIZATION
This experiment utilizes the Random Search cross-validation
(CV) method to tune the model better and find the best
parameters. Table 6 shows the parameters with starting and
end values.

TABLE 6. Parameter tuning using random search CV with range and step.

Table 6 contains some parameters of the machine learning
algorithm that do not have numerical values. These parame-
ters include the criterion, class weight, strategy for choosing
the split, and activation function. Instead of having start,
end, and step values, these parameters have a set of possible
values.

H. PERFORMANCE EVALUATION
This experiment uses six evaluation approaches: jaccard
accuracy, accuracy, hamming loss, precision, recall, and f1
score. Performance evaluation is essential to measure the
correctness of themodel. The performance evaluationmetrics
are-

Jaccard accuracy - The jaccard accuracy metric measures
the percentage of correct predictions for a given set of labels.
This metric is mainly used in multi-label classification [1],
which is calculated as follows:

Jaccard Accuracy =
1
k

k∑
i=1

|(Zi
⋂
Yi)|

|(Zi
⋃
Yi)|

(5)

where Zi = the predicted label set, Yi = the truth label set,
and k = the total number of instances.
Accuracy -Accuracy quantifies how well a model does in

making accurate predictions across all labels [29], which is
calculated as follows:

Accuracy =
Number of correct predictions
Total Number of predictions

(6)

Hamming loss - Hamming loss is used to quantify the
typical mislabeled cases across all labels. This score takes

53670 VOLUME 12, 2024

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

into account both correct and incorrect label predictions,
as well as missed labels. This parameter’s value should be
decreased as classification performance improves [1]. The
hamming loss can be expressed as the symmetric difference
between the grounded truth label set and the predicted set.

Hamming loss =
1
k

k∑
i=1

1
r

|Zi1Yi| (7)

where Zi is the predicted label set, Yi = the truth label set,
k = the total number of instances, and r = the total number
of labels.

Precision - Precision, sometimes known as a positive pre-
dictive value, is a metric for assessing a model’s accuracy
on positive predictive performance [29]; use the following
formula:

Precision (P) =
Total positive correct predictions

Total number of positive predictions
(8)

Recall- Recall, sometimes known as true positive rate, is a
metric for assessing a model to identify positive instances
correctly [41].

Recall (R) =
Total positive correct predictions

Total Number of correct predictions
(9)

F1 score - The f1 score is applicable to assess the model’s
overall performance. It is the harmonic mean of precision and
recall [1].

F1 score =
2XPXR
P+ R

(10)

IV. EXPERIMENTAL RESULT
A. PERFORMANCE OF MACHINE LEARNING APPROACH
IN MULTI-LABEL CODE SMELL DETECTION
In order to answer RQ1, this paper utilized five different
machine learning models (RF, XGB, DT, GB, ANN) along
with a multi-label classifier (BR, LP, CC) to evaluate the
efficacy of every method. Additionally, a chi-square feature
selection method was utilized to determine the most suitable
metrics, as listed in Table 3. Tables 7 to 15 provide a compre-
hensive overview of the experimental results for eachmethod.

Table 7-9 presents the performance of five machine learn-
ing methods that detect multi-label code smell using BR,
LP, and CC multi-label classifiers, respectively. The exper-
iment compares the results obtained with and without a
feature selection strategy, using three evaluation metrics:
jaccard accuracy, accuracy, and hamming loss. The clas-
sifiers BR_DT, LP_DT, and CC_DT achieved the highest
jaccard accuracy of 99.24%, 99.39%, and 99.54%, respec-
tively, considering both with and without feature selection.
The hamming loss values for the classifiers BR_DT, LP_DT,
and CC_DT are 0.28%, 0.22%, and 0.22% respectively with
feature selection.

Table 10-12 shows findings from the research that assessed
the efficacy of five machine learning methods in detecting
multi-label code smell. The study used BR, LP, and CC
multi-label classifiers with and without feature selection. The

FIGURE 2. Result of code smell detection with and without feature
selection.

tables compare the performance of the methods using three
evaluation metrics: precision, recall, and f1 score, all using
micro averaging. While considering micro averaging with
an f1 score, it is observed that after feature selection, the
performance of all classifiers increases except for the BR_GB
and CC_DT.

Table 13-15 presents the results of five machine learning
techniques applied to the BR, LP, and CC multi-label clas-
sifiers, both with and without feature selection methodology.
The objective was to predict multi-label code smell, and three
evaluation metrics based on macro averaging were used to
compare performance: precision, recall, and f1 score. While
considering macro averaging with an f1 score, it is observed
that after feature selection, the performance of all classifiers
increases except for the CC_RF and CC_DT.

The DT model with a multi-label classifier has proven to
be more effective than other methods for multi-label classifi-
cation in terms of performance. This is because the DTmodel
has the ability to generate precise and easy-to-understand
decision rules directly from the data. Additionally, DT is less
likely to overfit and can capture complex relationships within
the dataset, resulting in higher accuracy.

B. EFFECT OF FEATURE SELECTION IN MULTI-LABEL CODE
SMELL DETECTION
In response to RQ2, this experimental work applied the
chi-square feature selection technique, identifying seven soft-
ware metrics as more relevant than others. Figure 2 compares
the jaccard accuracy of different classifiers with and without
feature selection. It was observed that the performance of the
XGB and DT classifiers remained unchanged after feature
selection for all multi-label classifiers used in this paper.
The LP_RF model showed no difference in response before
and after feature selection, while the BR_RF and CC_RF
models showed a positive impact after feature selection. The
BR_ANN, LP_ANN, and CC_ANNmodels performed better
after feature selection. Only the BR_GBmodel showed nega-
tive performance after feature selection, while the GB model
showed constant performance in the rest of the cases.

Feature selection with a multi-label classifier has been
shown to be more effective than using all available features in
multi-label classification. This is because by focusing only on
themost crucial features, computation is accelerated, and effi-
ciency is enhanced. Prioritizing significant features simplifies

VOLUME 12, 2024 53671

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

TABLE 7. BR multi-label classifier performance for detecting code smells with and without feature selection.

TABLE 8. LP multi-label classifier performance for detecting code smells with and without feature selection.

TABLE 9. CC multi-label classifier performance for detecting code smells with and without feature selection.

TABLE 10. Microaveraging the performance of BR with various classifiers for detecting code smells with and without feature selection.

research efforts, resulting in higher accuracy without exces-
sive computing stress. This ultimately enables improved
efficiency and better performance.

C. IMPACT OF CORRELATION IN MULTI-LABEL CODE
SMELL DETECTION
To address RQ3, various single-label machine learning meth-
ods and multi-label classifiers, including BR, LP, and CC,

were employed. After analyzing the results in Tables 7 to 9,
it was observed that LP and CC outperformed the BRmethod
in terms of evaluation measures such as jaccard accuracy,
accuracy, and hamming loss. LP and CC methods produced
better results than BR due to their use of correlation factors in
classification, which BR disregards. The classifier’s ability to
detect multi-label code smells is enhanced when correlations
between code smells are considered.

53672 VOLUME 12, 2024

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

TABLE 11. Microaveraging the performance of LP with various classifiers for detecting code smells with and without feature selection.

TABLE 12. Microaveraging the performance of CC with various classifiers for detecting code smells with and without feature selection.

TABLE 13. Macroaveraging the performance of BR with various classifiers for detecting code smells with and without feature selection.

TABLE 14. Macroaveraging the performance of LP with various classifiers for detecting code smells with and without feature selection.

D. PERFORMANCE COMPARISON WITH PREVIOUS PAPER
RESULTS
Table 16 compares different approaches to achieve jaccard
accuracy in a method-level multi-label dataset. Kiyak et al.
[1] and Guggulothu et al. [13] used the CC algorithm with
the RF algorithm and LC with the B-J48 pruned method,
respectively, and achieved 93.6% and 97.5% accuracy using
all features. On the other hand, the proposed approach only

used seven features and achieved 99.54% accuracy using the
CC algorithm with the DT method. Comparing our method
to others’ reveals that it performs better.

Multi-label classifiers with feature selection techniques
have been applied, and the combination of methods obtained
better results than other authors. Feature selection reduces
redundant features, and the selected feature may cause to give
better accuracy. The proposed approach achieved superior

VOLUME 12, 2024 53673

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

TABLE 15. Macroaveraging the performance of CC with various classifiers for detecting code smells with and without feature selection.

TABLE 16. Performance comparison with previous paper results.

FIGURE 3. Performance comparison with other author results.

results using only seven features, thus significantly reducing
computation time and saving valuable time and effort for
researchers in this field.

Figure 3 shows a graphical representation of the pro-
posed approach’s results compared to other authors’ results.
Kiyak et al. [1] did not mention the number of features,
and Guggulothu et al. [13] used all 46 features for their
experiment. The proposed approach used only 7 features and
got better results than others.

V. THREATS OF VALIDITY
This study acknowledges that there may be some limita-
tions to the proposed investigation but also suggests ways to
overcome those restrictions. The study uses two code smells
from Guggulothu et al. [13] dataset related to method-level
code smells. It was created to represent a real-world use
case by merging method-level datasets from Fontana et al.
[7]. These datasets contain several features, mostly software
metrics, which can display varying degrees of significance
and correlation. The dataset was normalized using Z-score

normalization, and the feature count was reduced using the
chi-square feature selection methodology. However, there is
potential for further enhancement in accuracy using other
methods. Although the study’s results may not apply to all
industries, there is a need to work on multi-label datasets
covering a wide range of code smells; the researchers plan
to conduct similar studies on real-world industrial initiatives.

VI. CONCLUSION
This study aims to address the challenge of detecting
multi-label code smells in method-level code by using a com-
bination of machine learning techniques, including ensemble
techniques. There are very few studies in this field, and
they do not include ensemble techniques. The study used
five single-label machine learning techniques and three
multi-label classifiers to identify the Long method and Fea-
ture envy code smells. The dataset was normalized using the
Z-score approach, and the chi-square feature selection tech-
nique was applied to select essential features. The proposed
model was trained using 10-fold cross-validation, applied
Random Search CV parameter tuning, and assessed using
various metrics such as jaccard accuracy, accuracy, hamming
loss, precision, recall, and f1 score.

The Random Forest method combined with Label Pow-
erset and Chain Classifier produced the jaccard accuracy of
98.44%. The Extreme Gradient Boosting approach with the
Chain Classifier resulted in a jaccard accuracy of 98.59%.
The Decision Tree method combined with the Chain Clas-
sifier achieved an impressive jaccard accuracy of 99.54%,
while the Chain Classifier with the Gradient Boosting
approach achieved a jaccard accuracy of 99.39%. The Artifi-
cial Neural Network method combined with Label Powerset,
and Chain Classifier approaches demonstrated a jaccard
accuracy of 67.17%.

The study found that feature selection positively impacted
Binary Relevance and Classifier Chain with the Random For-
est model. After considering feature selection, the Artificial
Neural Networkmodel showed improved performance. Addi-
tionally, all single-label classifiers produced better results
after considering the correlation factor. The Label Pow-
erset and Classifier Chain multi-label classifiers achieved
better jaccard accuracy than the Binary Relevance clas-
sifier. The DT model with a multi-label classifier has

53674 VOLUME 12, 2024

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

proven more effective than other methods for multi-label
classification.

The study’s findings can help software practitioners accu-
rately classify multi-label code smells. The importance of
feature selection was emphasized in this research, which
provided a framework for future software development and
contributed to existing literature. For this experiment, a freely
available dataset was used that is limited to only two code
smells occurring at the method-level. These code smells
were selected based on their correlation to ensure reliable
results. Although expanding the dataset to include addi-
tional code smells presents challenges, future research could
involve exploring other multi-label datasets to validate fur-
ther and extend this study’s findings. However, additional
research and scientific experiments are required to evaluate
the effectiveness of these classifiers. The researchers plan to
incorporate alternative algorithms into future research initia-
tives to enhance and improve the outcomes.

ACKNOWLEDGMENT
The authors would like to thank the editors and the anony-
mous reviewers whose insightful remarks and ideas have
enhanced the quality of the study.

REFERENCES
[1] E. O. Kiyak, D. Birant, and K. U. Birant, ‘‘Comparison of multi-label

classification algorithms for code smell detection,’’ in Proc. 3rd Int. Symp.
Multidisciplinary Stud. Innov. Technol. (ISMSIT), Oct. 2019, pp. 1–6, doi:
10.1109/ISMSIT.2019.8932855.

[2] P. Rai, A. Pradhan, M. Pradhan, A. Chettri, and B. Limboo, ‘‘Comparative
study on various techniques used in examination system a survey,’’ Int.
J. Sci. Res. Comput. Sci. Eng., vol. 7, no. 2, pp. 24–28, Apr. 2019, doi:
10.26438/ijsrcse/v7i2.2428.

[3] F. N. Colakoglu, A. Yazici, and A. Mishra, ‘‘Software product qual-
ity metrics: A systematic mapping study,’’ IEEE Access, vol. 9,
pp. 44647–44670, 2021, doi: 10.1109/ACCESS.2021.3054730.

[4] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, and
W. Oizumi, ‘‘JSpIRIT: A flexible tool for the analysis of code smells,’’
in Proc. 34th Int. Conf. Chilean Comput. Sci. Soc. (SCCC), Nov. 2015,
pp. 1–6, doi: 10.1109/SCCC.2015.7416572.

[5] U. Azadi, F. A. Fontana, and M. Zanoni, ‘‘Poster: Machine learning based
code smell detection through WekaNose,’’ in Proc. IEEE/ACM 40th Int.
Conf. Softw. Eng., Companion (ICSE-Companion), Gothenburg, Sweden,
May 2018, pp. 288–289.

[6] F. Arcelli Fontana andM. Zanoni, ‘‘Code smell severity classification using
machine learning techniques,’’ Knowl.-Based Syst., vol. 128, pp. 43–58,
Jul. 2017, doi: 10.1016/j.knosys.2017.04.014.

[7] F. Arcelli Fontana, M. V.Mäntylä, M. Zanoni, and A.Marino, ‘‘Comparing
and experimenting machine learning techniques for code smell detection,’’
Empirical Softw. Eng., vol. 21, no. 3, pp. 1143–1191, Jun. 2016, doi:
10.1007/s10664-015-9378-4.

[8] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
‘‘Detecting code smells using machine learning techniques: Are we there
yet?’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Mar. 2018, pp. 612–621, doi: 10.1109/SANER.2018.8330266.

[9] M. Y. Mhawish and M. Gupta, ‘‘Predicting code smells and analysis of
predictions: Using machine learning techniques and software metrics,’’
J. Comput. Sci. Technol., vol. 35, no. 6, pp. 1428–1445, Nov. 2020, doi:
10.1007/s11390-020-0323-7.

[10] A. Alazba and H. Aljamaan, ‘‘Code smell detection using feature selection
and stacking ensemble: An empirical investigation,’’ Inf. Softw. Technol.,
vol. 138, Oct. 2021, Art. no. 106648, doi: 10.1016/j.infsof.2021.106648.

[11] J. P. D. Reis, F. B. E. Abreu, and G. D. F. Carneiro, ‘‘Crowdsmelling:
A preliminary study on using collective knowledge in code smells detec-
tion,’’ Empirical Softw. Eng., vol. 27, no. 3, pp. 1–35, May 2022, doi:
10.1007/s10664-021-10110-5.

[12] H. Aljamaan, ‘‘Voting heterogeneous ensemble for code smell detection,’’
in Proc. 20th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2021,
pp. 897–902, doi: 10.1109/ICMLA52953.2021.00148.

[13] T. Guggulothu and S. A. Moiz, ‘‘Code smell detection using multi-label
classification approach,’’ Softw. Quality J., vol. 28, no. 3, pp. 1063–1086,
Sep. 2020, doi: 10.1007/s11219-020-09498-y.

[14] A Modular Deep Learning Approach for Extreme Multi-Label
Text Classification. Accessed: Dec. 4, 2023. [Online]. Available:
https://www.researchgate.net/publication/332932101_A_Modular_De
ep_Learning_Approach_for_Extreme_Multi-label_Text_Classification

[15] C. Li, C. Liu, L. Duan, P. Gao, and K. Zheng, ‘‘Reconstruction regularized
deep metric learning for multi-label image classification,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2294–2303, Jul. 2020, doi:
10.1109/TNNLS.2019.2924023.

[16] Y. Feng, J. Jones, Z. Chen, and C. Fang, ‘‘An empirical study on software
failure classification with multi-label and problem-transformation tech-
niques,’’ in Proc. IEEE 11th Int. Conf. Softw. Test., Verification Validation
(ICST), Apr. 2018, pp. 320–330, doi: 10.1109/ICST.2018.00039.

[17] N. Maneerat and P. Muenchaisri, ‘‘Bad-smell prediction from software
design model using machine learning techniques,’’ in Proc. 8th Int. Joint
Conf. Comput. Sci. Softw. Eng. (JCSSE), May 2011, pp. 331–336, doi:
10.1109/JCSSE.2011.5930143.

[18] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä, ‘‘Code
smell detection: Towards a machine learning-based approach,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance, Sep. 2013, pp. 396–399, doi:
10.1109/ICSM.2013.56.

[19] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro, ‘‘Expe-
rience report: Evaluating the effectiveness of decision trees for detecting
code smells,’’ in Proc. IEEE 26th Int. Symp. Softw. Rel. Eng. (ISSRE),
Nov. 2015, pp. 261–269, doi: 10.1109/ISSRE.2015.7381819.

[20] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, ‘‘Deep learning
code fragments for code clone detection,’’ in Proc. 31st IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Sep. 2016, pp. 87–98.

[21] D. K. Kim, ‘‘Finding bad code smells with neural network models,’’
Int. J. Electr. Comput. Eng., vol. 7, no. 6, p. 3613, Dec. 2017, doi:
10.11591/ijece.v7i6.pp3613-3621.

[22] A. Kaur, S. Jain, and S. Goel, ‘‘A support vector machine based approach
for code smell detection,’’ in Proc. Int. Conf. Mach. Learn. Data Sci.
(MLDS), Dec. 2017, pp. 9–14, doi: 10.1109/MLDS.2017.8.

[23] H. Liu, Z. Xu, andY. Zou, ‘‘Deep learning based feature envy detection,’’ in
Proc. 33rd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2018,
pp. 385–396, doi: 10.1145/3238147.3238166.

[24] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, ‘‘Comparing
heuristic and machine learning approaches for metric-based code smell
detection,’’ in Proc. IEEE/ACM 27th Int. Conf. Program Comprehension
(ICPC), May 2019, pp. 93–104, doi: 10.1109/ICPC.2019.00023.

[25] A. Jesudoss, S. Maneesha, and T. Lakshmi naga durga, ‘‘Identifi-
cation of code smell using machine learning,’’ in Proc. Int. Conf.
Intell. Comput. Control Syst. (ICCS), May 2019, pp. 54–58, doi:
10.1109/ICCS45141.2019.9065317.

[26] T. Guggulothu and S. A. Moiz, ‘‘Detection of shotgun surgery and
message chain code smells using machine learning techniques,’’ Int.
J. Rough Sets Data Anal., vol. 6, no. 2, pp. 34–50, Apr. 2019, doi:
10.4018/ijrsda.2019040103.

[27] M. Y. Mhawish and M. Gupta, ‘‘Generating code-smell prediction rules
using decision tree algorithm and software metrics,’’ Int. J. Comput. Sci.
Eng., vol. 7, no. 5, pp. 41–48, May 2019, doi: 10.26438/ijcse/v7i5.4148.

[28] H. Gupta, L. Kumar, and L. B. M. Neti, ‘‘An empirical framework for code
smell prediction using extreme learning machine,’’ in Proc. 9th Annu. Inf.
Technol., Electromech. Eng.Microelectron. Conf. (IEMECON), Mar. 2019,
pp. 189–195, doi: 10.1109/IEMECONX.2019.8877082.

[29] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, ‘‘A novel approach
for code smell detection: An empirical study,’’ IEEE Access, vol. 9,
pp. 162869–162883, 2021, doi: 10.1109/ACCESS.2021.3133810.

[30] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, ‘‘A machine-learning based
ensemble method for anti-patterns detection,’’ J. Syst. Softw., vol. 161,
Mar. 2020, Art. no. 110486, doi: 10.1016/j.jss.2019.110486.

[31] I. Kaur and A. Kaur, ‘‘A novel four-way approach designed with ensem-
ble feature selection for code smell detection,’’ IEEE Access, vol. 9,
pp. 8695–8707, 2021, doi: 10.1109/ACCESS.2021.3049823.

[32] M.M.Draz,M. S. Farhan, S. N. Abdulkader, andM.G. Gafar, ‘‘Code smell
detection using whale optimization algorithm,’’Comput., Mater. Continua,
vol. 68, no. 2, pp. 1919–1935, 2021, doi: 10.32604/cmc.2021.015586.

VOLUME 12, 2024 53675

http://dx.doi.org/10.1109/ISMSIT.2019.8932855
http://dx.doi.org/10.26438/ijsrcse/v7i2.2428
http://dx.doi.org/10.1109/ACCESS.2021.3054730
http://dx.doi.org/10.1109/SCCC.2015.7416572
http://dx.doi.org/10.1016/j.knosys.2017.04.014
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1109/SANER.2018.8330266
http://dx.doi.org/10.1007/s11390-020-0323-7
http://dx.doi.org/10.1016/j.infsof.2021.106648
http://dx.doi.org/10.1007/s10664-021-10110-5
http://dx.doi.org/10.1109/ICMLA52953.2021.00148
http://dx.doi.org/10.1007/s11219-020-09498-y
http://dx.doi.org/10.1109/TNNLS.2019.2924023
http://dx.doi.org/10.1109/ICST.2018.00039
http://dx.doi.org/10.1109/JCSSE.2011.5930143
http://dx.doi.org/10.1109/ICSM.2013.56
http://dx.doi.org/10.1109/ISSRE.2015.7381819
http://dx.doi.org/10.11591/ijece.v7i6.pp3613-3621
http://dx.doi.org/10.1109/MLDS.2017.8
http://dx.doi.org/10.1145/3238147.3238166
http://dx.doi.org/10.1109/ICPC.2019.00023
http://dx.doi.org/10.1109/ICCS45141.2019.9065317
http://dx.doi.org/10.4018/ijrsda.2019040103
http://dx.doi.org/10.26438/ijcse/v7i5.4148
http://dx.doi.org/10.1109/IEMECONX.2019.8877082
http://dx.doi.org/10.1109/ACCESS.2021.3133810
http://dx.doi.org/10.1016/j.jss.2019.110486
http://dx.doi.org/10.1109/ACCESS.2021.3049823
http://dx.doi.org/10.32604/cmc.2021.015586

P. S. Yadav et al.: Evaluation of Multi-Label Classification Approaches

[33] H. Gupta, T. G. Kulkarni, L. Kumar, L. B. M. Neti, and A. Krishna,
‘‘An empirical study on predictability of software code smell using deep
learningmodels,’’ in Proc. Int. Conf. Adv. Inf. Netw. Appl., in Lecture Notes
in Networks and Systems, vol. 226, 2021, pp. 120–132, doi: 10.1007/978-
3-030-75075-6_10.

[34] N. A. A. Khleel and K. Nehéz, ‘‘Deep convolutional neural network model
for bad code smells detection based on oversampling method,’’ Indonesian
J. Electr. Eng. Comput. Sci., vol. 26, no. 3, p. 1725, Jun. 2022, doi:
10.11591/ijeecs.v26.i3.pp1725-1735.

[35] A. Abdou and N. Darwish, ‘‘Severity classification of software code
smells using machine learning techniques: A comparative study,’’ J. Softw.,
Evol. Process, vol. 36, no. 1, p. e2454, Jan. 2024, doi: 10.1002/smr.2454.

[36] S. Dewangan, R. S. Rao, S. R. Chowdhuri, and M. Gupta, ‘‘Severity
classification of code smells using machine-learning methods,’’ Social
Netw. Comput. Sci., vol. 4, no. 5, pp. 1–20, Jul. 2023, doi: 10.1007/s42979-
023-01979-8.

[37] R. S. Rao, S. Dewangan, A. Mishra, and M. Gupta, ‘‘A study of dealing
class imbalance problem with machine learning methods for code smell
severity detection using PCA-based feature selection technique,’’ Sci. Rep.,
vol. 13, no. 1, pp. 1–18, Sep. 2023, doi: 10.1038/s41598-023-43380-8.

[38] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, ‘‘Addressing
imbalance in multilabel classification: Measures and random resam-
pling algorithms,’’ Neurocomputing, vol. 163, pp. 3–16, Sep. 2015, doi:
10.1016/j.neucom.2014.08.091.

[39] T. Tanaka, I. Nambu, Y. Maruyama, and Y. Wada, ‘‘Sliding-window nor-
malization to improve the performance of machine-learning models for
real-time motion prediction using electromyography,’’ Sensors, vol. 22,
no. 13, p. 5005, Jul. 2022, doi: 10.3390/s22135005.

[40] Y.Wang, Z. Pan, J. Zheng, L. Qian, andM. Li, ‘‘A hybrid ensemble method
for pulsar candidate classification,’’ Astrophys. Space Sci., vol. 364, no. 8,
pp. 1–13, Aug. 2019, doi: 10.1007/s10509-019-3602-4.

[41] L. Yu and A. Mishra, ‘‘Experience in predicting fault-prone software mod-
ules using complexity metrics,’’ Qual. Technol. Quant. Manage., vol. 9,
no. 4, pp. 421–434, Jan. 2012, doi: 10.1080/16843703.2012.11673302.

PRAVIN SINGH YADAV received the M.C.A.
degree from the Department of Computer Sci-
ence and Information Technology, Guru Ghasidas
Vishwavidyalaya, Bilaspur, Chhattisgarh, India,
in 2013. He is currently a Research Scholar with
the Department of Computer Science and Informa-
tion Technology, GuruGhasidasVishwavidyalaya.
His research interests include code smell predic-
tion and machine learning.

RAJWANT SINGH RAO received the Ph.D.
degree from the Department of Computer Science,
Institute of Science, Banaras Hindu University,
Varanasi, India. He is currently an Assistant
Professor with the Department of Computer Sci-
ence and Information Technology, Guru Ghasidas
Vishwavidyalaya (a central university), Bilaspur,
Chhattisgarh, India. His research interests include
design patterns mining, code smell detection, and
machine learning.

ALOK MISHRA (Senior Member, IEEE) is cur-
rently a Professor in data management and soft-
ware engineering with Norwegian University of
Science and Technology (NTNU), Norway. His
research interests include software engineering,
artificial intelligence, and cyber security. He is
actively involved in editing special issues of
reputed journals in his areas of research interest.
In teaching, he has received Excellence in Online
Education Award by U21Global Singapore, while

in research, he has been awarded by Scientific and Research Council of
Turkey and Board of Management of University for outstanding publications
in science and social science citation indexed (Thomson Reuter) journals.
He was a recipient of many scholarships, international awards, and research
projects. He is an Editorial Board Member of many reputed journals, includ-
ing Computer Standards & Interfaces (Elsevier), ICT Express, Software
Impacts, and Data Technologies and Applications.

53676 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-030-75075-6_10
http://dx.doi.org/10.1007/978-3-030-75075-6_10
http://dx.doi.org/10.11591/ijeecs.v26.i3.pp1725-1735
http://dx.doi.org/10.1002/smr.2454
http://dx.doi.org/10.1007/s42979-023-01979-8
http://dx.doi.org/10.1007/s42979-023-01979-8
http://dx.doi.org/10.1038/s41598-023-43380-8
http://dx.doi.org/10.1016/j.neucom.2014.08.091
http://dx.doi.org/10.3390/s22135005
http://dx.doi.org/10.1007/s10509-019-3602-4
http://dx.doi.org/10.1080/16843703.2012.11673302

