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 Sammendrag 
 
Dyp læring av diffusjonsparametere fra magnetisk 

resonansavbildning 
 
 
 

Kreft er en fremtredende årsak til for tidlig dødelighet over hele verden og kan ofte forebygges 

gjennom tidlig oppdagelse. Magnetisk resonansavbildning (MRI) er en viktig modalitet i 

etterforskningen av mange typer kreft, på grunn av dens sterke følsomhet for bløtvevskontrast. 

Utover denne evnen kan MR gi kvantitativ eller parametrisk informasjon om biofysiske 

vevsegenskaper og mikrostrukturelle prosesser, inkludert molekylær diffusjon og 

vevsperfusjon. Bruk av passende matematiske modeller for MR-data gjør det mulig å ekstrahere 

disse kvantitative egenskapene gjennom en prosess kjent som modelltilpasning. 

I dag er den konvensjonelle MR-tilnærmingen for å vurdere vevsperfusjonsegenskaper for 

kreftdeteksjon og behandlingsovervåking dynamisk kontrastforsterket MR (DCE-MRI). 

Innhenting av DCE-MRI-data krever imidlertid injeksjon av et kontrastmiddel, typisk 

gadolinium. Denne tilnærmingen kan utgjøre kontraindikasjoner for personer med 

nyreinsuffisiens, i tillegg til de som er gravide eller ammer. Nyere funn indikerer også mulig 

avsetning av gadolinium i hjernen, noe kan vekke bekymringer om denne tilnærmingen.  

Som et tillegg til DCE-MRI har diffusjonsvektet MR (DWI) vist seg å gi økt spesifisitet i 

kreftdiagnostikk. DWI bruker den tilfeldige bevegelsen til vannmolekyler, også kjent som 

diffusjon, for å generere bildekontrast. Ved å skaffe bilder ved flere diffusjonsvektinger (b-

verdier), kan en diffusjonsmodell brukes på signalforfallet for hver voksel. Tilpasning av den 

klassiske mono-eksponentielle modellen til DWI-dataene gir den tilsynelatende 

diffusjonskoeffisienten (ADC), en metrikk som reflekterer vanndiffusiviteten i det observerte 

vevet. ADC har vist seg verdifull i tumordeteksjon, samt i karakterisering og vurdering av 

behandlingsrespons ved onkologisk avbildning. 

I virkeligheten introduserer mikrosirkulasjonen av blod i kapillærnettverket en 

perfusjonskomponent i tillegg til  diffusjon, noe som bidrar til signalforfall i DWI, hvilket har 
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potensial til å eliminere behovet for DCE-MRI. Bieksponentiell intravoksel inkoherent 

bevegelse (IVIM)-modellen tar hensyn til denne perfusjonskomponenten. IVIM-modellen gir i 

tillegg til diffusjonskoeffisienten også perfusjonsrelaterte parametere som den raskere pseudo-

diffusjonskoeffisienten D* (koblet til kapillærstrøm) og perfusjonsfraksjonen f. Tilpasning av 

IVIM-modellen til diffusjonsdata er imidlertid et utfordrende omvendt problem, først og fremst 

på grunn av små perfusjonsfraksjoner og det lave signal-til-støyforholdet (SNR) som er iboende 

til DWI. Dette fører til betydelige unøyaktigheter i perfusjonsrelaterte parametere ved bruk av 

konvensjonelle tilpasningsmetoder, og hindrer klinisk bruk av IVIM. Følgelig er alternative 

tilpasningsmetoder nødvendig for å lette den praktiske kliniske implementeringen av IVIM. 

Innenfor dette dynamiske feltet for medisinsk bildebehandling har en transformativ revolusjon 

blitt utløst av den forbedrede datakraften som er opplevd det siste tiåret, og har gitt opphav til 

moderne metoder og algoritmer drevet av kunstig intelligens (AI) og dyp læring. Disse 

banebrytende teknikkene gjør det mulig for datamaskiner å oppdage kompliserte mønstre i store 

datasett. Som svar på disse fremskrittene hadde denne avhandlingen som mål å undersøke 

bruken av dyp læring for generering av klare, detaljerte bilder av perfusjonsbaserte biomarkører 

fra DWI, med hovedvekt på å forbedre parameterestimering for IVIM-modellen innen DWI. 

Innenfor konteksten av dyp læringsparameterestimering, utforsket denne avhandlingen ulike 

metoder, inkludert ulike læringsstrategier, undersøkelse av ulike trenings- og testdata, 

utforskning av nettverksarkitekturer og optimalisering av hyperparametere. 

Denne avhandlingen er basert på tre artikler. I Paper I ble en tidligere uovervåket vokselvis dyp 

læring IVIM-tilpasningstilnærming forfinet ved å optimalisere ulike nettverkshyperparametere. 

Den optimaliserte tilnærmingen adresserte uventede korrelasjoner i den opprinnelige 

suboptimale uovervåkede tilnærmingen. Som et resultat viste den optimaliserte tilnærmingen 

forbedret nøyaktighet, uavhengighet og konsistens av både diffusjons- og perfusjonsrelaterte 

parametere. Dessuten, i simuleringer og in-vivo-data fra pasienter med kreft i bukspyttkjertelen, 

viste den optimaliserte tilnærmingen overlegen ytelse sammenlignet med toppmoderne IVIM-

tilpasningsmetoder, der den viste de mest detaljerte, og betydelig mindre støyende 

parameterbildene. Spesielt utmerket den seg ved å oppdage de mest signifikante endringene i 

IVIM-parametre gjennom kjemoradioterapi. 

Imidlertid avslørte påfølgende forskning mot Paper II at den optimaliserte, uovervåkede 

dyplæringstilnærmingen viste dårlig anatomisk generalisering når den ble brukt på hjernen. I 

mellomtiden viste annen forskning at veiledede dyplæringstilnærminger kan gi resultater  

treningsdata, noe som også krever etterforskning i sammenheng med IVIM-modellering. Det 
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er viktig å merke seg at disse overvåkede tilnærmingene er optimalisert ved å bruke 

parameterverdier som grunnsannhet. Imidlertid mangler estimater av jordsannhetsparametere 

ofte på grunn av den dårlige karakteren til signalanalyseproblemet i DWI. Følgelig blir disse 

grunnsannhetsparameterestimatene syntetisk generert ved å simulere parameterestimater i 

henhold til en fordeling, slik som en enhetlig fordeling, eller alternativt utledet fra 

konvensjonelle estimatorer anvendt på de originale signaldataene. 

Basert på disse funnene, undersøkte Paper II virkningen av sentrale treningsfunksjoner, 

inkludert effekten av treningsdata og treningslengde, på både uovervåket og overvåket læring 

for vokselvis dyp læring IVIM parameterestimering. Funnene viste at utvidelse av trening 

utover «tidlig stopp» kunne adressere parameterkorrelasjoner og redusere feil, og tilby et 

alternativ til den uttømmende hyperparameteroptimaliseringen av Paper I. Imidlertid resulterte 

forlenget trening  i økt følsomhet for støy for de uovervåkede estimatene, som lignet minste 

kvadraters estimering. Derimot viste overvåkede estimater en høyere presisjon, men også en 

merkbar skjevhet mot gjennomsnittet av treningsfordelingen som kan føre til potensielt 

villedende parameterbilder. Dette førte til konklusjonen at selv om vokselvis dyplæringsbasert 

modelltilpasning gir løfte for IVIM-parameterestimering, er en nøye evaluering av designvalg 

og deres innvirkning på tilpasningsytelse og skjevheter avgjørende. 

Mens Paper I og Paper II grundig undersøkte vokselvis dyplæringstilnærminger som behandler 

voksler som uavhengige, er vevsmikromiljøet faktisk typisk lokalt homogent.. I disse vevene 

endres ikke mikromiljøegenskaper tilfeldig mellom tilstøtende voksler. Derfor bør utnyttelse 

av disse potensielle korrelasjonene mellom relevante signaler i nabovoksler forbedre 

modellparametertilpasningen. 

I Paper III omfattet undersøkelsen fire delstudier som undersøkte måter å inkorporere slik 

romlig informasjon for dyp læringsparameterestimering i biofysisk modellering, spesifikt brukt 

på IVIM-modellen i DWI. Denne studien avslørte at trening overvåket på romlig korrelerte 

syntetiske data i patcher effektivt utnytter romlig informasjon og fører til tilsynelatende redusert 

støyfølsomhet, i likhet med å ta signalgjennomsnittet. Dette resulterte i forbedret 

estimatornøyaktighet og redusert iboende overvåket skjevhet. Spesielt ble ingen merkbare 

forbedringer observert for uovervåket læring. Dessuten overgikk oppmerksomhetsmodeller 

(transformatorer) konvolusjonsbaserte nettverk for dette formålet. Den nylig foreslåtte 

nabolagsoppmerksomheten tillot trening på større mottakelige felt enn konvensjonell 

selvoppmerksomhet, noe som førte til forbedret estimatorytelse. Disse forbedringene ble 

kvantitativt demonstrert i nye fraktal-støy-parameterbilder som viste en  romlig korrelert 
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grunnsannhet. Kvalitative funn i in-vivo-hjerne-DWI-data var stort sett sammenlignbare med 

de kvantitative evalueringene i simuleringer. I tillegg demonstrerte studien ytterligere måter å 

forbedre metoden på ved å utnytte tilleggsinformasjon fra testsettet, inkludert underliggende 

romlig variasjon og underliggende parameterverdifordelinger. Disse lovende tilnærmingene har 

potensial til å bli utvidet til enhver biofysisk modell brukt på signaldata, og strekker seg utover 

omfanget av MR. 

Som konklusjon har denne doktorgradsavhandlingen betydelig fremmet feltet 

dyplæringsdiffusjonsparameterestimering. Disse bidragene markerer et betydelig skritt mot den 

praktiske implementeringen av komplekse diffusjonssignalanalyseproblemer, som IVIM, i 

kliniske omgivelser. 
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 Summary 
 
Deep learning diffusion parameters from magnetic 

resonance imaging 
 
 
 

Cancer is a prominent cause of premature mortality worldwide and often preventable through 

early detection. Magnetic resonance imaging (MRI) is a vital modality in the investigation of 

many types of cancers, due to its strong sensitivity to soft tissue contrast. Beyond this capability, 

MRI can provide quantitative or parametric information about biophysical tissue properties and 

microstructural processes, including molecular diffusion and tissue perfusion. Utilizing 

appropriate mathematical models for MRI data enables the extraction of these quantitative 

characteristics through a process known as model fitting. 

Today, the conventional MRI approach for assessing tissue perfusion characteristics for cancer 

detection and treatment monitoring is dynamic contrast-enhanced MRI (DCE-MRI). However, 

the acquisition of DCE-MRI data necessitates the injection of a contrast agent, typically 

gadolinium. This approach may pose contraindications for individuals with renal insufficiency, 

as well as those who are pregnant or breastfeeding. Additionally, recent findings indicating 

gadolinium deposition in the brain raise concerns about the desirability of this approach. 

As an adjunct to DCE-MRI, diffusion-weighted MRI (DWI) has been shown to provide 

increased specificity in cancer diagnosis. DWI utilizes the random motion of water molecules, 

also known as diffusion, to generate image contrast. By acquiring images at multiple diffusion-

weightings (b values), a diffusion model can be applied to the signal decay for each voxel. 

Fitting the classical mono-exponential model to the DWI data yields the apparent diffusion 

coefficient (ADC), a metric reflecting water diffusivity in the observed tissue. ADC has proven 

valuable in tumor detection, characterization, and assessing treatment response in oncological 

imaging.  

In reality, the microcirculation of blood in the capillary network introduces a perfusion 

component alongside diffusion, contributing to signal decay in DWI, which has the potential to 
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obviate the need for DCE-MRI. The biexponential intravoxel incoherent motion (IVIM) model 

takes this perfusion component into account. The IVIM model provides besides the diffusion 

coefficient also perfusion-related parameters such as the faster pseudo-diffusion coefficient D* 

(linked to capillary flow) and the perfusion fraction f. However, fitting the IVIM model to 

diffusion data is a challenging ill-posed inverse problem, primarily due to small perfusion 

fractions and the low signal-to-noise ratio (SNR) inherent to DWI. This leads to substantial 

inaccuracies in perfusion-related parameters when using conventional fitting approaches, 

impeding the clinical adoption of IVIM. Consequently, alternative fitting methods are 

necessary to facilitate the practical clinical implementation of IVIM. 

Within this dynamic field of medical imaging, a transformative revolution has been sparked by 

the enhanced computing power experienced over the past decade, giving rise to modern 

methodologies and algorithms driven by artificial intelligence (AI) and deep learning. These 

cutting-edge techniques enable computers to discover complicated patterns in large data sets. 

In response to these advancements, this thesis aimed to investigate the application of deep 

learning for the generation of clear, detailed maps of perfusion-based biomarkers from DWI, 

with a primary emphasis on enhancing parameter estimation for the IVIM model within DWI. 

Within the context of deep learning parameter estimation, this thesis explored various 

methodologies, including diverse learning strategies, examination of various training and test 

data, exploration of network architectures, and optimization of hyperparameters. 

This thesis is based on three papers. In Paper I, a prior unsupervised voxelwise deep learning 

IVIM fitting approach was refined by optimizing various network hyperparameters. The 

optimized approach successfully addressed unexpected correlations in the original suboptimal 

unsupervised approach. As a result, the optimized approach exhibited improved accuracy, 

independence, and consistency of both diffusion and perfusion-related parameters. Moreover, 

in simulations and in vivo data from pancreatic cancer patients, the optimized approach 

demonstrated superior performance compared to state-of-the-art IVIM fitting methods, where 

it showed the most detailed and significantly less noisy parameter maps. Notably, it excelled in 

detecting the most significant changes in IVIM parameters throughout chemoradiotherapy.  

However, subsequent research towards Paper II revealed that the optimized unsupervised deep 

learning approach exhibited poor anatomy generalization when applied to the brain. 

Meanwhile, other research demonstrated that supervised deep learning approaches may exhibit 

training data bias, which also warranted investigation in the context of IVIM modeling. It is 

important to note that these supervised approaches are optimized utilizing parameter values as 
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ground truth. However, ground truth parameters estimates are often lacking due to the ill-posed 

nature of the signal analysis problem in DWI. Consequently, these ground truth parameter 

estimates are synthetically generated by simulating parameter estimates according to a 

distribution, such as a uniform distribution, or alternatively, derived from conventional 

estimators applied to the original signal data. 

Based on these findings, Paper II explored the impact of key training features, including the 

effect of training data and training length, on both unsupervised and supervised learning for 

voxelwise deep learning IVIM parameter estimation. The findings showed that extending 

training beyond early stopping could address parameter correlations and reduce errors, offering 

an alternative to the exhaustive hyperparameter optimization of Paper I. However, prolonged 

training resulted in increased sensitivity to noise for the unsupervised estimates, which 

resembled those obtained by least squares fitting. In contrast, supervised estimates displayed a 

higher precision, but also a notable bias towards the mean of the training distribution that could 

lead to potentially deceptive parameter maps. This led to the conclusion that while voxelwise 

deep-learning-based model fitting holds promise for IVIM parameter estimation, a careful 

evaluation of design choices and their impact on fitting performance and biases is essential. 

While Paper I and Paper II extensively investigated voxelwise deep learning approaches that 

treat voxels as independent, it is essential to recognize that the tissue microenvironment is 

typically locally homogeneous. In these tissues, microenvironmental properties do not change 

randomly between adjacent voxels. Therefore, leveraging these potential correlations between 

relevant signals in neighboring voxels should enhance model-parameter fitting. 

In Paper III, the investigation encompassed four sub-studies exploring means to incorporate 

such spatial information for deep learning parameter estimation in biophysical modeling, 

specifically applied to the IVIM model in DWI. This study revealed that training supervised on 

spatially-correlated synthetic data in patches effectively leverages spatial information with 

apparently reduced noise sensitivity, akin to signal averaging. This resulted in improved 

estimator accuracy and decreased inherent supervised bias. Notably, no noticeable 

improvements were observed for unsupervised learning. Moreover, attention models 

(transformers) outperformed convolution-based networks for this purpose. The recently 

proposed neighborhood-attention permitted training on larger receptive fields than 

conventional self-attention, leading to improved estimator performance. These improvements 

were quantitatively demonstrated in novel fractal-noise parameter maps that provided spatially-

correlated ground truth. Qualitative in vivo findings in brain DWI data were broadly 
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comparable to the quantitative evaluations in simulations. Additionally, the study demonstrated 

further means to enhance the method by leveraging additional information from the test set, 

including underlying spatial variation and underlying parameter value distributions. These 

promising approaches have the potential to be extended to any biophysical model applied to 

signal data, extending beyond the scope of MRI. 

In conclusion, this doctoral thesis has substantially advanced the field of deep learning diffusion 

parameter estimation. These contributions mark a substantial step towards the practical 

implementation of complex diffusion signal analysis problems, like IVIM, in clinical settings.  
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Symbols and Abbreviations 
 

13C    Carbon-13 
15N    Nitrogen-15 
1H    Hydrogen-1 
1D   One-dimensional 
2D   Two-dimensional 
3D   Three-dimensional 
ADC   Apparent diffusion coefficient 
AI    Artificial Intelligence 
b    diffusion-weighting 
B0    Main magnetic field strength 
B1    Strength of temporarily applied radiofrequency pulse 
CNN   Convolutional neural network 
CRT   chemoradiotherapy 
CVNET   Coefficient of variation of the networks 
D    Diffusion coefficient 
D*   Pseudo-diffusion coefficient 
DCE   Dynamic contrast-enhanced 
DNN   Deep neural network 
DTI   Diffusion tensor imaging 
DWI   Diffusion-weighted imaging 
ETK   Extended Tofts-Kety 
f    Perfusion fraction 
FID   Free induction decay 
G    Gradient strength 
ISMRM International Society for Magnetic Resonance in Medicine 
IVIM   Intravoxel incoherent motion 
IVIM-NEToptim Optimized unsupervised approach proposed in Paper I  
IVIM-NETorig Original unsupervised approach proposed by Barbieri et 

al. in 2020 
K    Key 
LSQ   Least squares 
Mt    Non-zero net magnetization vector 
Mxy   Non-zero net transverse (x-y) magnetization vector  
Mz    Non-zero net longitudinal (z) magnetization vector  
M0  Non-zero net magnetization vector under thermal 

equilibrium 
MLP   Multi-layer perceptron 
MR   Magnetic resonance 
MRI   Magnetic resonance imaging 
MRM   Magnetic Resonance in Medicine 
MSE   Mean squared error 
NLP   Natural language processing 
NMR   Nuclear magnetic resonance 
NODDI   Neurite orientation dispersion and density imaging 
NRMSE   Normalized root-mean-square error 
ODD   Out-of-distribution 
PDAC   Pancreatic ductal adenocarcinoma 
PGSE   Pulsed gradient spin-echo 
PNR   Parameter-to-noise ratio 
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Q    Query 
RF   Radio frequency 
RMSE   Root-mean-square error 
ROI   Region of interest 
ReduceLROnPlateau Reduce learning rate on plateau 
S0    Diffusion signal at zero diffusion-weighting (b = 0) 
S(b)   Diffusion signal at certain diffusion-weighting 
SMT   Spherical mean technique 
SNR   Signal-to-noise ratio 
Swin   Hierarchical vision transformer using shifted windows 
t    Time 
T1    Longitudinal spin-lattice 
T2    Transversal spin-spin 
TE   Echo time 
TR   Repetition time 
V    Value 
ViT   Vision transformer 
WMTI   White matter tissue integrity 
MDAPE   Median absolute percentage error 
MDPE    Median percentage bias 
MAPE    Mean absolute percentage error 
wSD   Within-subject standard deviation 
ω0    Larmor frequency 
θ     Set of parameters 
γ    Gyromagnetic ratio 
ρ    Spearman’s correlation  
δ    Duration of the diffusion gradient 
Δ    Time between the two diffusion gradients 
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 Chapter 1 
 Introduction 
 
 
 

1.1 Introduction to cancer 

Cancer comprises a collection of diseases characterized by irregular cell proliferation, capable 

of infiltrating or metastasizing to distant body regions. Due to genetic and epigenetic alterations 

(mutations) during cell proliferation, abnormal cells emerge and form a mass called a tumor, 

disrupting the body homeostasis (1). The molecular and cellular features which ensures the 

survival, proliferation and metastasis of cancer cells are referred to as the hallmarks of cancer 

in ‘The hallmarks of cancer’ by Hanahan and Weinberg (2–4). Currently (4), the core hallmarks 

comprise: evading growth suppressors, avoiding immune destruction, enabling replicative 

immortality, tumor promoting inflammation, activating invasion and metastasis, inducing or 

accessing vasculature, genome instability and mutation, resisting cell death, deregulating 

cellular metabolism, and sustaining proliferative signaling. In this latest elaboration of this 

concept (4), Hanahan proposed two additional emerging hallmarks: ‘unlocking phenotypic 

plasticity’ and ‘non-mutational epigenetic reprogramming’, along with two additional enabling 

characteristics: ‘polymorphic microbiomes’ and ‘senescent cells’. Apart from the cancer cells 

themselves, tumors contribute to a complex tumor microenvironment consisting of its own 

network of blood vessels, diverse cell types, extracellular matrix components, and signaling 

molecules. This intricate milieu promotes tumor functionality and ensuring its survival, and can 

vary substantially across distinct tumor types (5). 

Cancer is a leading cause of premature death worldwide. In the year 2020, there were 9.9 

million recorded cancer-related deaths, and an estimated 19.3 million new cancer cases 

emerged (6), with this incidence steadily rising every year. The worldwide cancer burden is 

projected to reach 28.4 million cases by the year 2040, marking a substantial 47% increase 

when compared to 2020, with mortality rates anticipated to remain relatively consistent (6). 
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Despite the intricate nature of cancer and the rising global incidence rates, mortality rates have 

shown a decline in recent years within highly developed countries in Europe and America (7,8). 

This positive trend can be attributed to advancements in screening, early detection, diagnosis, 

and treatment monitoring. 
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1.2 Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) is a powerful non-invasive imaging modality that produces 

detailed visualizations of human anatomy, along with insights into functional and physiological 

processes, all without subjecting individuals to ionizing radiation. MRI is typically employed 

for examining soft tissue conditions, due to its strong sensitivity to various tissue characteristics. 

These attributes establish MRI as an indispensable tool for both screening and diagnostic 

purposes. Furthermore, MRI offers many possibilities for treatment monitoring of various 

medical conditions, including cancer.  

This section outlines the fundamental principles of nuclear magnetic resonance (NMR) and 

MRI, the generation of MRI signal and relaxation mechanisms, and the principles of spatial 

encoding and image formation. Additionally, it provides a brief introduction to quantitative 

MRI techniques, with specific mention of dynamic contrast-enhanced MRI (DCE-MRI). The 

content provided in this section is primarily based on the book ‘MRI in practice’ by C. 

Westbrook and J. Talbot (9), unless otherwise specified. 

1.2.1 Fundamental principles of nuclear magnetic resonance (NMR) 

MRI relies on the foundational principles of nuclear magnetic resonance (NMR) first described 

by Felix Bloch and Edward Purcell in 1946 (10,11). They observed that after applying a strong 

external magnetic field, the energy of atomic nuclei can be increased when absorbing radio 

waves with the same frequency in a magnetic field. Subsequently, as the atomic nuclei return 

to their initial energy state, they emit radio waves that can be detected. The frequency of the 

emitted radio waves is a specific characteristic of atomic nuclei. These groundbreaking findings 

earned Bloch and Purcell the Nobel Prize in Physics in 1952. In the 1970s, Peter Mansfield (12) 

and Paul Lauterbur (13) made crucial achievements in applying the principles of NMR to create 

two-dimensional (2D) images by introducing gradients in the magnetic field, which served as 

the basis for MRI. Both Mansfield and Lauterbur were honored with the Nobel Prize in 2003 

for providing the foundation for the development of magnetic resonance into a valuable clinical 

imaging technique, known today as MRI.  

The fundamental principles of NMR and MRI are rooted in the quantum mechanical 

characteristics of atomic nuclei, which exhibit angular momentum or spinning motion, known 

as spin. Atomic nuclei are composed of protons and neutrons that have a spin of ½ or -½, with 

their spins oriented in opposite directions. Nuclei with an odd number of protons and neutrons 

cause a non-zero net spin, resulting in a magnetic moment. These are known as magnetic 
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resonance (MR) active nuclei that can be utilized in MRI. Important MR-active nuclei are 

hydrogen-1 (1H), Carbon-13 (13C), and Nitrogen-15 (15N). 1H atoms possess only a single 

proton and are widely represented in biological tissues. Therefore, 1H is particularly relevant in 

MRI of the human body.  

In the absence of an applied magnetic field, the spins of atomic nuclei are randomly oriented, 

as depicted in Figure 1.1A. When these atomic nuclei are placed within an MR scanner 

featuring a strong magnetic field B0, typically measured in Tesla (1.5T, 3T, 7T), the spins start 

to align either parallel or anti-parallel to the B0, as illustrated in Figure 1.1B. According to the 

thermal equilibrium theory, an increased number of magnetic moments will align parallel to B0. 

In this context, the net magnetization Mt will have an equilibrium M0 aligned with B0. The 

direction of B0 is generally referred to as the longitudinal direction or z-axis, while the plane 

perpendicular to it is termed the transverse (x-y) plane.  

 

Figure 1.1: (A) Random alignment of the magnetic moments of the atomic nuclei when 
no external field B0 is applied. (B) In the presence of B0, the magnetic moments align 
parallel or antiparallel to the magnetic field. In accordance with the thermal equilibrium 
theory, an elevated quantity of magnetic moments will orient themselves in parallel to B0. 
(C) Spin precision around B0 (z-axis) at the Larmor frequency ω0. This figure is adapted 
and modified from (9) with permission of John Wiley and Sons. 
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With the application of the magnetic field, the spins align and initiate rotation within a cone 

centered around the z-axis with a net longitudinal magnetization component Mz. This spinning 

rotation is known as spin precession (Figure 1.1C). The rate of rotation is termed the Larmor 

frequency ω0 and is directly proportional to the strength of the magnetic field, as described by 

the following equation: 𝝎𝟎  =  𝜸𝑩𝟎,                                       (1) 

where γ is the gyromagnetic ratio and depends on the nucleus. The γ of 1H is 42.58 MHz/T. 

1.2.2 Signal generation and relaxation 

In the MR scanner, the process of generating a signal, which is later transformed into an image, 

begins with disrupting the equilibrium M0 state. This disruption is achieved by delivering a 

radio frequency (RF) excitation pulse that is in resonance with the Larmor frequency. This 

perturbation leads to an absorption of energy by the protons, causing Mt to deviate from its 

alignment with B0. Following the RF excitation pulse, the magnetization vector will be at an 

angle relative to the longitudinal z-axis, which is referred to as the flip angle. A common 

excitation pulse is the 90° RF excitation pulse, aligning Mt with the transverse (x-y) plane, 

resulting in the complete loss of Mz and the establishment of the net transverse magnetization 

component Mxy. This 90° RF excitation pulse produces the highest MR signal. Another 

frequently employed RF pulse is the 180° RF pulse, often termed the 'inversion pulse,' as it 

completely reverses the longitudinal component. It is common to use both 90° and 180° RF 

pulses together in pulse sequences to create diverse tissue contrasts, as discussed in Section 

1.2.4. 

After the application of the RF pulse, the excited spins will try to return to their original energy 

state, aligning with B0, through a precession movement. This process is termed relaxation and 

occurs by two distinctive mechanisms operating simultaneously: longitudinal spin-lattice (T1) 

and transversal spin-spin (T2) relaxation. 

1.2.2.1 Longitudinal spin-lattice (T1) relaxation 

T1 relaxation is the result of the dissipation of energy exchange between protons and their 

surrounding lattice molecules. This energy dissipation leads to the restoration of the 

longitudinal component Mz to its equilibrium. The recovery process is expressed by an 

exponential function: 

𝑴𝒛(𝒕) = 𝑴𝟎 (𝟏 − 𝒆− 𝒕𝑻𝟏),                                   (2) 
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where T1 represents the T1 recovery time, which is the time it takes for Mz to recover by 63% 

within a tissue. The general shape of T1 relaxation is illustrated in Figure 1.2A.  

1.2.2.2 Transversal spin-spin (T2) relaxation 

T2 relaxation occurs due to the loss of Mxy, resulting from the dephasing of spins, where spins 

give their energy from the excitation pulse to neighboring spins. This decay is expressed by: 

𝑴𝒙𝒚(𝒕) = 𝑴𝟎𝒆− 𝒕𝑻𝟐 ,                                         (3)  

where t is time and T2 represents the T2 decay time, which is the time it takes for Mxy to dephase 

by 63%, leaving only 37% of the initial magnetization in the tissue. The general shape of T2 

relaxation is illustrated in Figure 1.2B. Both T1 and T2 times are intrinsic contrast parameters 

that are specific to the type of tissue, see Table 1.  

 

Figure 1.2: (left) T1 relaxation curve. The dotted line represents the T1 recovery time 
where 63% of the net longitudinal magnetization component Mz has been recovered. 
(right) T2 relaxation curve. The dotted line represents the T2 decay time where 37% of the 
net transverse magnetization Mxy has been recovered. This figure is adapted and modified 
from (9) with permission of John Wiley and Sons. 

Table 1: Typical T1 recovery time and T2 decay times at 1T. This table is adapted and 
modified from (9) with permission of John Wiley and Sons. 

Tissue T1 recovery time (ms) T2 decay time (ms) 

 

Water 2500 2500 
Fat 200 100 
CSF 2000 300 
White matter 500 100 
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1.2.2.3 Free induction decay (FID) 

Upon excitation, the Mxy induces a current voltage in the receiving coil of the MR scanner. This 

current voltage is the signal that will later be converted into an image. The T2 decay leads to a 

decrease in this current voltage, known as free induction decay (FID), see Figure 1.3. The FID 

is caused by loss of precession of Mxy as it spirals up from the transverse x-y plane to its original 

alignment with B0. In an ideal scenario, only spin-to-spin interactions affect T2 decay, but in 

reality, local field inhomogeneities in B0 affect the original T2 decay, accelerating the decay 

process. Therefore, the FID is affected by both spin-to-spin T2 decay and T2 decay from local 

field inhomogeneities (T2’). This combined decay is expressed as T2*: 𝟏𝑻𝟐∗ = 𝟏𝑻𝟐 + 𝟏𝑻𝟐′,                                        (4)   
which is effectively evaluated through the FID curve from the MRI scanner.   

 

Figure 1.3: The free induction decay (FID). After the application of a 90° excitation 
pulse, the Mxy has a maximum amplitude as all the spins rotate in phase in this plane. 
During the relaxation phase, the amplitude of Mxy decays as the magnetic moments move 
out of phase with each other. The resulting signal decay is the FID. The FID is 
characterized by both T2 decay and additional dephasing caused by local field 
inhomogeneities (T2’), resulting in an overall T2* signal decay that is the signal decay of 
the FID. This figure is adapted and modified from (14), CC-BY-2.0. 
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1.2.3 Spatial encoding and image formation 

In the MR scanner, the RF excitation pulse induces resonance in the nuclei resulting in the 

generation of transverse magnetization Mxy. The transverse magnetization induces a signal in 

the receiver coils that is also positioned in the transverse x-y plane. This signal takes the form 

of an alternating voltage with a frequency matching the Larmor frequency, regardless of the 

origin of the signal. Since all magnetic moments precess at the same Larmor frequency within 

a uniform magnetic field, the signal also oscillates at this frequency. Consequently, the signal 

lacks spatial information and must undergo spatial encoding to create an image.  

Signal localization is achieved through the application of gradients in gradient coils. These 

gradients are applied in a linearly sloped manner to control the spatial inhomogeneity, resulting 

in a sloped magnetic field strength in the MR scanner. As denoted from eq. (1), the Larmor 

frequency ω0 is directly proportional to B0. So, variations in the B0 also alter the precessional 

frequency. In order to acquire a 2D image, three gradients are applied to spatially encode the 

signal: the slice selection gradient, frequency-encoding gradient and phase-encoding gradient. 

These gradients are illustrated in Figure 1.4A for a spin-echo pulse sequence (a series of RF 

pulses; see next subsection 1.2.4). Each of these gradients is applied along a different plane or 

axis (x, y or z).  

The slice selection gradient gradually alters the precessional frequencies of the magnetic 

moments within the selected scan plane, usually the z-axis. A specific slice is selectively excited 

by applying an RF excitation pulse with a frequency matching the precessional frequencies of 

magnetic moments within that slice. The thickness of the slice is determined by the bandwidth 

(frequency range) of the slice selection gradient and the strength of the gradient. A thinner slice 

necessitates a steeper slope or a narrower transmit bandwidth, which enhances spatial 

resolution. The slice-rephasing lobe (not shown in Figure 1.4) typically follows the slice-

selection gradient to address phase dispersion occurring simultaneously with the application of 

the main slice-select gradient. The absence of this rephasing lobe would result in intravoxel 

phase dispersion, resulting in a loss of signal. 

After the spins are excited for a given slice, the position of the signal along both axes of the 

slice needs to be encoded (usually the x-y plane). Before any other gradient is applied, all 

precessional frequencies are synchronized and in phase with each other. By applying the phase-

encoding gradient, the precessional frequencies will change along the axis to which it is applied. 

As the precessional frequency changes, also the phase along their precessional path changes. 

Once the phase-encoding gradient is turned off, the magnetic moments exhibit different phase 
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shift along the direction the phase-encoding is applied, while the precessional frequencies of 

the magnetic moments along its perpendicular axis remain unchanged. Subsequentially, by 

applying the frequency-encoding gradient along the axis perpendicular to the phase-encoding 

gradient, the precessional frequencies change along the axis the frequency-encoding gradient is 

applied. Typically, the longest axis of the anatomy performs frequency-encoding, usually 

termed the x-axis, while the shorter axis conducts phase encoding, often called the y-axis. 

 

Figure 1.4: (A) Basic spin-echo pulse sequence containing an excitation pulse (90°) and 
a refocusing pulse (180°) to produce the echo. Corresponding illustrations of the FID and 
spatially encoding gradients (slice-gradient, phase encoding, and frequency encoding) are 
also shown. (B) An illustration of the magnetic moments during a spin-echo sequence as 
described in Section 1.2.4.1 This figure is adapted and modified from (9) with permission 
of John Wiley and Sons. 

Through the application of the phase-encoding gradient and frequency-encoding gradient, the 

resultant signal received by the receiver coils comprises numerous frequencies that correspond 

to the spatial location of each pixel within the slice. To acquire a high-resolution image, 

multiple signals are acquired with slight variations in the amplitude of the phase-encoding 

gradient throughout the pulse sequence (illustrated by the yellow ladder in Figure 1.4A), 

determining the degree of phase shift. Typically, in a pulse sequence, the amplitude of the 

frequency-encoding gradients remains consistent each time it is applied. Subsequently, the 

generated signals are sampled in the frequency domain, termed k-space (see Figure 1.5). Each 

horizontal line in k-space represents a different signal containing a different initial phase shift. 
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Applying the inverse Fourier transformation of the entire k-space produces the MR image 

(Figure 1.5). Note that every data point within the image encompasses both phase and frequency 

information derived from the entire slice at a specific moment within the sampling window. 

This process is repeated for each slice to generate a three-dimensional (3D) image from a set 

of 2D slices. Each 3D pixel represents a small volume element within the body, denoted as a 

voxel.  

 

Figure 1.5: An illustration of k-space of a singular slice with an illustrative representation 
of a brain tumor patient. (left) As illustrated in the diagrammatic representation of k-space, 
the frequency encoding data are positioned along the horizontal axis of k-space, and the 
data from the phase encoding are positioned along the vertical axis of k-space 
perpendicular to the frequency axis. (right) The application of the 2D inverse (fast) 
Fourier transform to k-space results in the generation of the final image. This figure is 
adapted and modified from (9) with permission of John Wiley and Sons. 

1.2.4 MRI pulse sequences 

MRI pulse sequences comprise a series of sequenced events involving RF pulses and gradients, 

designed to control the contrast in an image. These pulse sequences are methods to rephase the 

magnetic moments, which produces a measurable signal, often referred to as an ‘echo’. There 

are many types of pulse-sequences, but the spin-echo pulse sequence and the gradient echo 

pulse sequence are considered the fundamental MRI pulse sequences, and often serve as the 

basis for other MRI pulse sequences. 

1.2.4.1 Spin-echo pulse sequence  

The spin-echo sequence consists of two RF pulses, a 90° excitation pulse followed by a 180° 

refocusing pulse, as illustrated in Figure 1.4A. An illustration of the magnetic moments in a 

pulse sequence is provided in Figure 1.4B. In this sequence, the 90° excitation pulse is used to 

fully flip the Mt into the transverse plane, as illustrated in timepoint 1 of Figure 1.4B. This 

induces a voltage in the receiver coil. When the excitation pulse is switched off, the Mt will try 

to realign with B0 according to the FID. The T2* dephasing due to B0 field inhomogeneities 

occurs almost immediately, where some magnetic moments are dephasing faster (leading edge; 
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red in timepoint 2 of Figure 1.4B) than other slower magnetic moments (trailing edge; blue in 

timepoint 2 of Figure 1.4B). Subsequently, the 180° refocusing pulse is used to compensate for 

this dephasing. This 180° refocusing pulse flips the individual magnetic moments 180°, as such 

that the faster dephasing magnetic moments that were the leading edge now form the trailing 

edge (still red in timepoint 5 of Figure 1.4B). Conversely, the slower dephasing magnetic 

moments that were the trailing edge now form the leading edge (still blue in timepoint 5 of 

Figure 1.4B). Because the precession of the magnetic moments is the same, the trailing edge 

catches up with the leading edge. Then, when the magnetic vectors have fully rephased in the 

transverse plane (timepoint 6 of Figure 1.4B), the receiver coils receive maximum voltage, and 

a specific ‘spin-echo' after a specific echo time (TE) occurs. The 180° refocusing pulse is 

exactly done at half TE (TE/2). Within a pulse sequence, the time interval between two 

consecutive similar RF pulses is referred to as the repetition time (TR). The TE and TR are 

specific pulse sequence parameters of a scan protocol that determines the image contrast (see 

T1- and T2-weighted images; Section 1.2.4.3).  

Because the T2’ decay from field inhomogeneities is constant and the T2 decay of tissues is 

random, the spin-echo effectively compensates for T2’. As a result, the spin-echo sequence 

eliminates the effects of local field inhomogeneities on dephasing, yielding information solely 

about T2 and not T2*.  

In conventional spin-echo, only one phase-encoding step is executed during each TR, leading 

to one echo and filling of only one line in k-space. However, in clinical practice, fast or turbo 

spin-echo pulse sequences (15) are commonly used, where the number of phase-encoding steps 

per TR is substantially increased. This is achieved by using multiple 180° RF rephasing pulses 

to generate a series of echoes, known as an echo train. Each echo possesses a distinct amplitude 

of the phase encoding slope to fill a different line in k-space. Consequently, k-space is filled 

efficiently per TR, leading to reduced scan times. 

1.2.4.2 Gradient-echo sequence  

The gradient-echo sequence (Figure 1.6) consists of RF excitation pulses that are variable, 

typically with a flip angle of 90° or less. Following the first RF excitation pulse, T2* dephasing 

due to B0 field inhomogeneities occurs almost immediately similar as in the spin-echo sequence, 

and Mt will try to realign with B0 according to the FID. The frequency-encoding gradient 

introduces dephasing in the transverse magnetization. To generate a gradient-echo, the same 

frequency-encoding gradient with opposite polarity is used to rephase the transverse 
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magnetization. Unlike spin-echo pulse sequences, gradient-echo sequences do not inherently 

compensate for T2' magnetic field inhomogeneities. 

 

Figure 1.6: Basic gradient-echo pulse sequence, where the frequency-encoding gradient 
is employed for inducing dephasing and rephrasing to produce an echo. This figure is 
adapted and modified from (9) with permission of John Wiley and Sons. 

1.2.4.3 T1- and T2-weighted images  

As described in Section 1.2.2, the generation of MRI tissue contrast is substantially influenced 

by the intrinsic relaxation properties of tissues, particularly T1 (the recovery of longitudinal 

magnetization Mz) and T2 (the decay of transverse magnetization Mxy). Altering the TR and TE 

settings on the MR scanner enables the acquisition of distinct T1- and T2-weightings in an 

image, each emphasizing different aspects of tissue relaxation characteristics and providing 

critical information for clinical diagnosis. It is important to note that acquiring only single T1- 

and T2-weighted images is limited to qualitative analysis. 

To obtain T1-weighted images, the TR and TE settings are manipulated to emphasize the 

contribution of T1 relaxation. This is done by applying a short TE, which minimizes the 

influence of T2 decay, and a short TR, which allows for distinct tissue contrast based on their 

unique T1 recovery times. T1-weighted imaging is particularly valuable for visualizing 

anatomical structures. Conversely, for the acquisition of T2-weighted images, the MRI protocol 

involves a long TE and a long TR. The long TE ensures that T2 decay has a prominent influence 

on the signal, highlighting differences in T2 relaxation times among tissues. The long TR allows 
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for full T1 recovery, effectively minimizing the contribution of T1 to the image contrast. 

Consequently, T2-weighted images accentuate variations in tissue T2 relaxation. T2-weighted 

imaging is particularly sensitive to water content. Consequently, it is a valuable tool for 

identifying diseases characterized by changes in tissue structure or water content, such as 

edema, stroke, or brain tumors. 

In addition to T1- and T2-weighted images, a proton density-weighted image can be acquired, 

where both the influence of T1 and T2 relaxation needs to be minimized. This is achieved by a 

typically short TE and a long TR. The short TE ensures minimal T2 decay, while the long TR 

allows sufficient time for complete T1 recovery.  

1.2.5 Quantitative MRI 

In addition to the superior ability of MRI to define soft tissue structures and generate detailed 

anatomical images for qualitative analysis, MRI possesses the ability to provide quantitative or 

parametric information about biophysical tissue properties and microstructural processes, such 

as molecular diffusion, tissue perfusion, cell density, and microvessel structure. This field is 

known as quantitative MRI or multiparametric MRI, and represents a frontier of innovation that 

holds promise for healthcare (16,17). In quantitative MRI, appropriate mathematical models 

are employed to MRI signal data acquired through multiple measurements to extract these tissue 

properties, known as model fitting. This quantitative information can be utilized across a 

spectrum of healthcare applications, ranging from disease diagnosis, selection of treatments, 

and treatment monitoring.  

Several scan protocols can be used for quantitative MRI. This thesis primarily focuses on 

diffusion-weighted imaging (DWI), which is comprehensively described in the subsequent 

section (Section 1.3). For additional context, this section provides a concise overview of another 

frequently employed quantitative MRI method for tumor characterization: dynamic contrast-

enhanced MRI (DCE-MRI). It is worth noting that this thesis does not explore other quantitative 

MRI approaches, such as T2-mapping (18), which is sensitive to tissue water content, and MR 

Elastography (19,20), a technique for quantifying tissue stiffness by tracking the propagation 

of mechanical waves within the body. MR Elastography has demonstrated its utility in the 

diagnosis and assessment of conditions like liver fibrosis and cirrhosis (20). 

1.2.5.1 Dynamic contrast-enhanced MRI (DCE-MRI) 

Dynamic contrast-enhanced MRI (DCE-MRI) is the primary method for characterizing tissue 

microvasculature properties and providing perfusion-related parameters for cancer 
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characterization and monitoring of treatment response in the body (16,21–23). Acquiring DCE-

MRI data involves the injection of a contrast agent into the bloodstream, typically utilizing the 

paramagnetic gadolinium in clinical practice. The presence of gadolinium in the tissues alters 

the local magnetic field, leading to an accelerated return of nuclear spins to their equilibrium 

states and a subsequent reduction in T1 relaxation time. This reduction in T1 relaxation time 

translates into heightened signal intensity on T1-weighted images, forming the foundation of 

DCE-MRI. Beyond the critical T1 shortening effect, variations in the magnetic field induced by 

gadolinium also contribute to decreased T2 and T2* relaxation times (16,21–23). 

In DCE-MRI, a rapid T1-weighted imaging sequence is typically employed to capture a 

dynamic series of images during the passage of the contrast agent through the tissue of interest. 

This dynamic imaging approach allows for the temporal (in time) tracking of the distribution 

of the contrast agent. In the context of tumor assessment, the angiogenesis process often results 

in the development of new vessels characterized by increased permeability (4,24). As a 

consequence, these vessels exhibit a distinctive 'wash-in' and 'wash-out' pattern in response to 

the contrast agent. Thus, the temporal behavior in the tumor region on DCE-MRI manifests as 

a rapid signal increase (16,21–23).  

To extract quantitative information from the temporal intensity curve obtained in DCE-MRI, 

the Extended Tofts-Kety (ETK) model (25) is commonly employed. The ETK model offers 

valuable insights into the tumor vasculature, blood vessel permeability, and the 

extravascular/extracellular volume fraction. Of particular interest is the parameter Ktrans, which 

represents the volume transfer constant between blood plasma and the extravascular-

extracellular space, often referred to as permeability. Ktrans is particularly useful for 

characterizing the tumor microenvironment (26) as it differs substantially from normal soft 

tissue with respect to vascular structure and permeability (4,24).  

Despite the strong contrast and great sensitivity to tissue perfusion, DCE-MRI is not without 

limitations and potential implications. One prominent concern is that the involvement of 

gadolinium-based contrast agents may be nephrotoxic in patients suffering from renal 

insufficiency (27–29). Additionally, the use of gadolinium-based contrast agents in DCE-MRI 

poses a considerable risk for patients who are pregnant or breastfeeding, with potential 

implications for a range of inflammatory, dermal, rheumatological conditions, as well as the 

risk of stillbirth or neonatal death (29,30). Recent evidence has also indicated a gadolinium 

deposition in the brain and other organs, even among individuals with normal renal function 

(29,31,32). These considerations underscore the importance of exploring non-contrast-
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enhanced MRI techniques capable of providing information on tissue micro-environmental 

characteristics such as perfusion dynamics. 
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1.3 Diffusion-weighted imaging (DWI) 

As an adjunct to DCE-MRI, diffusion-weighted MRI (DWI) has been shown to provide 

increased specificity in cancer diagnosis by providing quantitative clinical biomarkers (33–36). 

Unlike DCE-MRI, which relies on invasive contrast agents, DWI utilizes the random motion 

of water molecules, also known as diffusion, to generate image contrast.  

This section describes the principles of Brownian motion and free diffusion, the basic diffusion 

pulse sequence, the apparent diffusion coefficient (ADC), and the mono-exponential ADC 

model for DWI data. This section is primarily based on information provided in the book 

‘Diffusion MRI: from quantitative measurement to in vivo neuroanatomy’ by H. Johansen-Berg 

and T. E. Behrens (37), unless otherwise specified. 

1.3.1 Brownian motion and free diffusion 

On a microscopic level, diffusion is the intermingling of (water) molecules that randomly move 

according to Brownian motion due to thermal energy within a medium, initially described by 

Robert Brown in 1827 (38). Brownian motion is the random motion of particles originating 

from their collision with other fast-moving particles, which is illustrated in Figure 1.7. Using 

Fick’s law (39,40), Albert Einstein (41,42) established a mathematical formulation of Brownian 

motion, which can be written as: 𝒙𝟐 = 𝟐𝑫𝒕,                                            (5) 

where 𝑥2 represents the mean squared displacement, D represents the diffusion coefficient and 

t is time. This equation was derived for the one-dimensional (1D) model, but can be generalized 

into n dimensions by: 𝒙𝟐 = 𝟐𝐧𝑫𝒕.                                       (6) 

On a macroscopic level in a free medium where there are no restrictions or barriers, there is so-

called ‘free diffusion’, where diffusion occurs uniformly in all directions, referred to as 

‘isotropic diffusion’.  In such circumstances, the movement of diffusing particles follows a 

Gaussian probability distribution and adheres to the Einstein equations above. 

1.3.2 The ‘basic’ diffusion sequence 

Modern diffusion measurements in NMR and MRI find their origin in the pioneering work of 

Stejskal and Tanner in 1965 (43), who introduced the 'pulsed gradient spin-echo' (PGSE) 

sequence. The concept of Stejskal and Tanner is based on the separation of stationary spins 

from their moving or diffusing counterparts within the magnetic field. 
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Figure 1.7: Illustration of Brownian motion. Brownian motion is a random, erratic 
movement of microscopic particles suspended in a fluid, driven by continuous collisions 
with surrounding fluid molecules. This figure is adapted and modified from (37) with 
permission of Elsevier. 

The PGSE sequence combines two diffusion gradients within a spin-echo framework, 

consisting of a 90° RF excitation pulse followed by a 180° refocusing pulse, as illustrated in 

Figure 1.8. These two diffusion gradients enable the differentiation between stationary and 

moving or diffusing spins within the voxel. The first diffusion gradient is placed before the 

180° pulse and induces a phase shift in the spins, setting the stage for the subsequent diffusion-

related effects. Following this, the second diffusion gradient is applied after the 180° pulse and 

serves as a phase reverser that compensates for the dephasing incurred by the static spins. 

However, for spins or particles that diffuse randomly through the excited volume, the second 

gradient will not fully reverse the changes induced by the first gradient. This incomplete 

restoration originates from the phase dispersion to other randomly moving spins, leading to 

signal attenuation.  

The attenuation in the diffusion signal depends on both the magnitude of diffusion and the 

amount of diffusion weighting, quantified by the b value [s/mm²] (43). The b value is a tunable 

parameter that depends on the strength (G) and duration (δ) of the diffusion gradients, and time 

spacing Δ between the two diffusion gradients. It is expressed by:  𝒃 = 𝜸𝟐𝑮𝟐𝛅𝟐 (𝚫 − 𝛅𝟑),                                   (7) 
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where γ represents the gyromagnetic ratio and depends on the atomic nucleus similar to eq. (1).  

In addition to the amount of diffusion weighting, the diffusion gradient possesses a 

directionality. This directionality is particularly relevant in tissues where the diffusion is not 

uniform in all directions as explained in the subsequent sections. 

 

Figure 1.8: A schematic of the pulsed gradient spin-echo (PGSE) sequence introduced 
by Stejskal and Tanner. This sequence incorporates two diffusion gradients, positioned 
both before and after the 180° refocusing pulse. The degree of diffusion-weighting, 
represented by the b value, is contingent on factors such as gradient strength (G), the 
duration of the diffusion gradient (δ), and the time spacing Δ separating the two diffusion 
gradients. This figure is adapted and modified from (37) with permission of Elsevier. 

1.3.3 The apparent diffusion coefficient (ADC) 

In DWI, the rate of diffusion of water molecules within tissues is quantitatively measured by 

the apparent diffusion coefficient (ADC). The term ‘apparent’ in the ADC is used to indicate 

that the measured diffusion is not always a direct reflection of the true molecular diffusion of 

water in tissues. Instead, it is influenced by various factors, such as tissue microstructure, cell 

membranes, and perfusion effects. The ADC provides valuable insights into the apparent 

diffusion rate within a given tissue, reflecting the net effect of all diffusion-related interactions 

within the tissue microenvironment. Hence, DWI allows us to study the underlying 

microstructure without the use of exogenous contrast agents (33–36,44).  

In tissues where the apparent diffusivity remains predominantly consistent across various tissue 

orientations within a voxel (i.e. demonstrating isotropic behavior), such as gray matter, it is 

generally sufficient to describe the diffusion properties with a single ADC. Conversely, in 

biological tissues like white matter, water movement is substantially affected by obstructions 

and constraints imposed by physiological barriers, such as cell membranes and fibers (Figure 

1.9). These factors result in distinct diffusion orientations, giving rise to what is known as 

'anisotropic diffusion.' In anisotropic diffusion, a singular ADC is insufficient for adequately 

characterizing the orientation-dependent movement of water. 
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Figure 1.9: (left) An illustration of diffusion that is hindered by biological cells. (right) 
Inside the biological cells, diffusion may be restricted by the cellular membranes. This 
figure is adapted and modified from (37) with permission of Elsevier. 

In the DWI images, the effect of ADC and anisotropy becomes more pronounced in the images 

as b values increase, resulting in tissues with elevated diffusion being seen as hypo-intense 

regions (i.e. low signal). Conversely, tissues with dense cellular packing, for instance tumors, 

appear as hyper-intense regions (i.e. high signal), exhibiting lower ADC values (34–36). 

1.3.4 The mono-exponential ADC Signal Model 

To obtain the ADC, a minimum of two measurements is required. Typically, these comprise: 

one baseline measurement with no diffusion weighting, denoted as b = 0 mm²/s and often 

referred to as S0; and a second measurement S(b) that is acquired at b > 0. Under the assumption 

that the displacement of water molecules is Gaussian, the signal attenuation is expressed by a 

mono-exponentially decay:  𝑺(𝒃) = 𝑺𝟎𝒆−𝒃𝑨𝑫𝑪.                                       (8)  

The above equation provides the ADC within each voxel in one direction, forming the basis for 

the generation of quantitative ADC maps. To account for anisotropic diffusion, diffusion 

gradients are applied in multiple directions with a minimum of three measurements. These 

diffusion gradients are typically orthogonal, aligning with the three spatial orientations (x, y, z), 

each yielding directional-specific ADC values: 𝑺𝒙𝒙(𝒃) = 𝑺𝟎𝒆−𝒃𝑨𝑫𝑪𝒙𝒙 ,                                              (9) 𝑺𝒚𝒚(𝒃) = 𝑺𝟎𝒆−𝒃𝑨𝑫𝑪𝒚𝒚 ,                                              (10)  𝑺𝒛𝒛(𝒃) = 𝑺𝟎𝒆−𝒃𝑨𝑫𝑪𝒛𝒛 .                                               (11)  

Subsequently, the individual directional-specific ADC images are combined into a unified set 

known as the trace image (see Figure 1.10), which provides a composite representation of the 
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mean diffusivity of the tissues that considers all spatial orientations. Mathematically, the trace 

image can be described by taking the geometric mean of the individual images obtained from 

the three orthogonal directions: 𝑺𝑻𝑹𝑨𝑪𝑬(𝒃) = √𝑺𝒙𝑺𝒚𝑺𝒛𝟑 = 𝑺𝟎𝒆−𝒃(𝑨𝑫𝑪𝒙𝒙+𝑨𝑫𝑪𝒚𝒚+𝑨𝑫𝑪𝒛𝒛)/𝟑 = 𝑺𝟎𝒆−𝒃𝑨𝑫𝑪𝒕𝒓𝒂𝒄𝒆 .            (12) 

Importantly, the mono-exponential ADC model characterizes diffusion behavior within tissues 

for b values typically below 1500 s/mm², it has limitations for higher b values (b > 1500 s/mm²). 

 

Figure 1. 10: The effect of altering the diffusion encoding direction on the Apparent 
Diffusion Coefficient (ADC). (A) ADC map of diffusion encoding applied in the left-
right direction. (B) ADC map of diffusion encoding applied in the anterior–posterior 
direction. (C) ADC map of diffusion encoding applied with direction in and out of the 
plane. (D) The trace image, showing the mean diffusivity of the three individual ADC 
images. Note the contrast reduction in the white matter in the trace image compared to 
the individual ADC maps. This figure is adapted and modified from (37) with permission 
of Elsevier. 

1.3.5 Advanced diffusion models 

In addition to the conventional mono-exponential ADC model, multi-compartment diffusion 

modeling offers the ability to characterize not only the ADC but also other properties such as 

cell size, axon diameter, orientation dispersion, and neurite density. At high b values (b > 1500 

s/mm²), non-Gaussian diffusion behavior prevails due to substantial interactions among 

compartments and barriers within tissues, rendering the assumed Gaussian diffusion and the 

mono-exponential ADC model invalid. To account for these complexities, non-Gaussian 

Kurtosis diffusion imaging has been proposed (45), which can provide more detailed 

information about tissue microstructure and can be particularly useful in regions with complex 

fiber orientations. Non-Gaussian Kurtosis diffusion imaging is beyond the scope of this thesis, 

as well as other popular biophysical models (mainly applied in the brain) including neurite 
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orientation dispersion and density imaging (NODDI) (46), spherical mean technique (SMT) 

(47), and white matter tissue integrity (WMTI) (48). 

Intriguingly, the DWI signal is not solely influenced by diffusion but also by blood flow, 

particularly noticeable at low b values (b < 1500 s/mm²). This phenomenon is explored in the 

subsequent section. 
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1.4 Intravoxel incoherent motion (IVIM) 

In 1986, Le Bihan et al. (44) discovered that within DWI, the overall signal attenuation is not 

only affected by molecular diffusion but also by microcirculation of the blood in the capillary 

network. This phenomenon, which arises from the complex interplay of perfusion-related 

motions, introduces an additional layer of complexity to the measured DWI signal. Le Bihan et 

al. termed this concept ‘Intravoxel Incoherent Motion’ (IVIM) within biological tissues. They 

observed that these perfusion-related motions exhibit a remarkable level of incoherence, 

mirroring the apparent distribution of the capillary network. Unlike DCE-MRI, which is reliant 

on exogenous contrast agents, IVIM is based on DWI which does not require any intravenous 

contrast agent to provide perfusion-related biomarkers.  

Despite IVIM’s early discovery in the 1980s, its journey to widespread clinical research was 

marked by controversy and skepticism (49). Advancements in imaging technology such as, 

echo-planar imaging (EPI) (50), which enables the rapid acquisition of a series of gradient 

echoes, and parallel imaging (51), which uses multiple receiver coils to simultaneously acquire 

data, have greatly accelerated image acquisition. These innovations have enabled the 

integration of IVIM imaging into clinical research, particularly for oncological applications 

(52). Here, IVIM imaging has been applied in various tissues in the body, including brain 

(53,54), pancreas (55,56), breast (57), prostate (58), head and neck (59), and liver (60).  

This section of the doctoral thesis describes the IVIM model used to derive quantitative 

diffusion and perfusion-related parameters from the DWI data. Moreover, it describes several 

conventional fitting methods to extract these parameters. This section is primarily based on 

information provided in the book ‘Intravoxel Incoherent Motion (IVIM) MRI: Principles and 

Applications’ by Le Bihan et al. (61), unless otherwise specified. 

1.4.1 The IVIM model 

In 1988 (62), Le Bihan et al. expanded on the groundbreaking work in 1986 (44), where they 

explained in more detail the mathematical basis of the bi-exponential IVIM model to DWI data. 

The IVIM model is illustrated in Figure 1.11. This model can be seen as a two-compartment 

extension of the mono-exponential ADC model. The first compartment represents molecular 

diffusion, characterized by relatively slow diffusivity (D; diffusion coefficient). The second 

compartment, often termed the microvascular or blood flow compartment, represents the 

dynamic interplay of blood within the microvascular network. Within this microvascular 

compartment, two essential components are relevant: a faster diffusion component (D*; 
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pseudo-diffusion coefficient), that is often associated with blood velocity information, and 

microvascular blood volume (f; signal fraction or often termed ‘perfusion fraction’) 

representing the signal contribution from the pseudo-diffusion component and provides 

information about the contribution of blood flow to the overall DWI signal in a voxel. With 

these parameters, the bi-exponential IVIM model is expressed as follows: 𝑺(𝒃) = 𝑺𝟎 ((𝟏 − 𝒇)𝒆−𝒃𝑫 + 𝒇𝒆−𝒃(𝑫∗+𝑫)).                               (13) 

However, in modern implementations, it is typical to omit the D in the second exponential term, 

given that D* predominantly influences this term, resulting in a simplified expression:  𝑺(𝒃) = 𝑺𝟎 ((𝟏 − 𝒇)𝒆−𝒃𝑫 + 𝒇𝒆−𝒃𝑫∗).                               (14) 

 

Figure 1.11: Plots illustrating the intravoxel incoherent motion (IVIM) effect across 
multiple b values (0 - 600 mm2/s). The signal exhibits a bi-exponential shape due to the 
independent contributions of tissue diffusion and blood flow components. At particularly 
low b values (b < 200), the IVIM effect becomes particularly noticeable as a deviation of 
the tissue diffusion signal decay (blue). The bottom-red plot represents the pseudo-
diffusion attenuation. This figure is adapted and modified from (52), CC-BY-4.0. 

Similar to the mono-exponential ADC model, the IVIM model relies on the assumption that the 

displacement of water molecules is Gaussian within tissue. This is particularly valid for b values 

below 1500 s/mm², with the IVIM model typically finding its application in the domain of b 

values below 1000 s/mm². In practice, multiple DWI images are acquired, often numbering 10 

to 20 b values, and with often more b values in the range of 0–200 s/mm2. This lower b value 

range offers valuable insights into perfusion dynamics.  
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1.4.2 Fitting methods for IVIM 

Extracting IVIM model parameters is typically done by fitting the IVIM model to the DWI 

data. However, this is a challenging ill-posed inverse problem (signal to parameters) where 

multiple sets of plausible parameters can explain the noisy DWI signals. This challenge 

primarily originates from two interrelated factors. First, the perfusion fraction f is generally 

lower than 30%, and often between 5 and 10% (63), particularly for applications in the brain 

(53,54). Due to these small perfusion fractions, the DWI signal predominantly comprises the 

diffusion component (D), with only a minimal contribution from the pseudo-diffusion 

component (D* and f). Coupled with the intrinsic challenge of a low signal-to-noise ratio (SNR) 

inherent to DWI, even minor fluctuations in signal measurements can escalate into substantial 

inaccuracies. Notably, D* is particularly sensitive to noise. These factors and challenges often 

lead to solutions converging to local minima rather than the global optimum. Yet, due to the 

factors described above, even finding the global optimum can yield highly uncertain parameter 

estimates.  

Several techniques are proposed to improve the precision and accuracy of primarily the 

perfusion-related parameters, f and D*. This section describes the most common fitting 

strategies, including some advanced Bayesian approaches.  

1.4.2.1 One-step nonlinear least-squares   

The most common approach to fit the IVIM model to the DWI data is employing ‘one-step’ 

nonlinear least squares (LSQ) based on the Levenberg-Marquardt algorithm (64,65) or trust-

region algorithm (66,67). These algorithms necessitate initial guesses (commonly setting D* at 

10 times higher than D) and can incorporate bound constraints. This method is the most 

straightforward as it simultaneously fits the parameters D, f, and D*. However, despite its 

apparent simplicity, using this voxelwise approach in practical applications frequently leads to 

imprecise parameter estimates. Consequently, it is widely acknowledged that the one-step LSQ 

fitting method often falls short for clinical IVIM imaging. 

1.4.2.2 Two-step nonlinear least-squares or segmented fitting 

In response to the instability and inaccuracy issues of the one-step LSQ approach, an extension 

known as the 'two-step' nonlinear least squares or segmented approach has been proposed (68). 

The segmented approach assumes that the value of D* is approximately one or two orders of 

magnitude greater than D, often expressed as D << D*. Therefore, the influence of D* can be 

considered negligible at sufficiently high b values, with the threshold frequently set at b = 200 

s/mm2. At these high b values, typically between 200 and 1000 s/mm2, the pseudo-diffusion 
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contribution diminishes to negligible levels, simplifying the IVIM model to a mono-exponential 

form:  𝑺(𝒃) = 𝑺𝟎(𝟏 − 𝒇)𝒆−𝒃𝑫 = 𝑺𝒊𝒏𝒕𝒆−𝒃𝑫,                                 (15) 

where Sint is the y-intercept at b = 0. In the first step of the segmented approach, the IVIM 

parameters are typically extracted by taking the natural logarithm of the data, where the slope 

of the data provides an estimate of D. The parameter f can be derived by extrapolating the 

mono-exponential fit to Sint, with f calculated as: 𝒇 = 𝑺𝟎−𝑺𝒊𝒏𝒕𝑺𝟎 ,                                          (16) 

In the second step of the segmented approach, the focus shifts to estimating D*. This is achieved 

by employing the LSQ algorithm for all b values, and is done by either fixing both D and f or 

fixing only D, based on the outcomes obtained in the first step of the segmented approach. In 

the latter case where only D is fixed, the values for both D* and f are estimated. 

Collecting a comprehensive IVIM dataset with 10 to 20 b value measurements is a time-

intensive endeavor. To reduce scan time, one could use a simplified version of the segmented 

approach that excludes the estimation of D*, and focuses solely on fitting D and f, using only 

the initial step of the segmented approach. A special case is the acquisition of only 3 b values, 

which has been shown to hold diagnostic value (69,70). 

Several studies that have compared the segmented approach to the one-step LSQ fitting (71–

74) clearly indicate that, although LSQ yields a superior fit to the data (with lower residuals in 

the sum of squares), the segmented approach has demonstrated greater robustness in parameter 

estimation, especially concerning the perfusion-related parameters. In this thesis, additional 

comparisons between LSQ and the segmented approach are provided.  

1.4.2.3 Bayesian interference 

An alternative and more advanced approach to IVIM parameter estimation involves employing 

Bayesian inference. Bayesian parameter estimation lies in the concept of a joint posterior 

parameter distribution. According to Bayes' theorem (75), the posterior distribution can be 

expressed as follows:  

𝑷(𝜽|𝒅𝒂𝒕𝒂) = 𝑷(𝒅𝒂𝒕𝒂│𝜽)×𝑷(𝜽)𝑷(𝒅𝒂𝒕𝒂) ,                                     (17) 

where θ is the set of parameters, P(data|θ) is the likelihood of observing the data given θ, P(θ) 

is the prior distribution for θ, and P(data) is the marginal likelihood (also known as the 
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evidence) and it acts as a normalizing constant. Within the Bayesian framework, an iterative 

process updates the posterior distribution, where the acquired posterior distribution serves as 

the new prior for the subsequent iteration. The final posterior distribution is used to obtain 

parameter estimates, often summarized by the mean or median value.  

The Bayesian approach to IVIM parameter estimation has several notable advantages that set 

it apart from the other fitting methods mentioned above. First, unlike conventional approaches 

that necessitate initial parameter guesses, Bayesian inference eliminates this requirement. This 

freedom from initial guesses mitigates the risk of converging into local minima during 

optimization. Second, Bayesian inference provides a measure of uncertainty (quantifies 

uncertainty) for each parameter estimate in the form of a probability distribution. Third, the 

Bayesian framework allows for the incorporation of prior information or assumptions, shaping 

the parameter estimation process based on additional knowledge. Studies comparing Bayesian 

methods to conventional approaches frequently noted parameter estimates that exhibit 

improved accuracy and precision (76,77).  

Alternative approaches within the Bayesian framework have also been proposed: a shrinkage 

prior (78), which aids in reducing the influence of outliers and noise, enhancing the robustness 

of parameter estimation; and a spatial homogeneity prior (79), assuming that neighboring 

voxels share similar parameter values and using this local information to generate smoother 

parameter maps, thereby reducing spatial variability.   

However, despite being recognized as a promising approach to enhance IVIM modeling, 

Bayesian interference has some limitations. Parameter estimates have still demonstrated limited 

repeatability and substantial variability, particularly for f and D* (80–82). Additionally, the 

computational demands associated with Bayesian methods, coupled with the relative 

unfamiliarity of such techniques, have hindered their widespread adoption in practical 

applications. Crucially, a comprehensive comparison study by While (83), encompassing both 

simulations and in vivo data, revealed that the use of Bayesian approaches in IVIM modeling 

may lead to biased parameter estimates or the disappearance of relevant features due to over-

smoothing. 

In summary, given the challenges concerning the mentioned estimators for IVIM, including 

sensitivity to noise and outliers, reliance on model assumptions, computational demands, 

inherent biases, and concerns regarding repeatability and variability, there is a need for 

alternative fitting approaches to facilitate the clinical implementation of IVIM.
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1.5 Artificial Intelligence 

In the last decade, significant advancements in big data capabilities and computational power 

have ushered in a new era of possibilities for Artificial Intelligence (AI). AI involves the 

development of computer systems capable of executing tasks requiring human-like intelligence, 

such as learning, problem-solving, and decision-making. These advancements have paved the 

way for a range of techniques and algorithms enabling computers to uncover intricate patterns 

within extensive datasets. The continuous evolution of AI, specifically in deep learning and 

artificial deep neural networks (DNNs), has been a driving force behind these breakthroughs. 

The conceptualization of DNNs traces its origins back to 1958 when Frank Rosenbalt 

introduced the notion of ‘Perception’ (84). However, it was only within the last decade that 

DNNs received scientific recognition when they outperformed other high-profile image 

analysis benchmarks. Perhaps the first is the renowned ImageNet Large-Scale Visual 

Recognition Challenge of 2012 (85), where a DNN outperformed the second-best error rate on 

the image classification task. 

Nowadays, the domain of AI stands as one of the most expansive fields of study, exerting a 

profound influence across every facet of our daily lives. Its impact spans wide-ranging 

applications, exemplified by innovations in natural language processing (NLP) (86), and speech 

recognition and synthesis (87,88). Beyond language, this wave of innovation has led to 

advances in computer vision - a field of artificial intelligence that enables machines to interpret 

and understand visual information. This extends to medical imaging, with every year yielding 

a growing number of AI-driven publications in the field of radiology (89).  

This doctoral thesis specifically focuses on the application of AI in diffusion parameter 

estimation, with a primary emphasis on fitting the IVIM model to DWI data. Within this 

context, this section of the thesis delves into the basic principles of DNNs and gives an overview 

of various network architectures, learning strategies, and hyperparameters. This section is 

primarily based on information provided in the book ‘Deep Learning’ by Goodfellow et al. 

(84), unless otherwise specified. 

1.5.1 Basic principles of deep neural networks 

Deep neural networks (DNNs) are composed of artificial neurons, also referred to as nodes or 

hidden units, which are motivated by the structure of biological neurons found in the human 

brain but are simplified mathematical entities. Figure 1.12 shows an illustration of an artificial 

neuron. In the context of DNNs, these neurons are typically organized into successive layers, 
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as exemplified in Figure 1.13 for a multi-layer perceptron (MLP) (Section 1.5.2), following a 

specific architecture. Each neuron within this architecture receives input from one or more other 

neurons and processes this input by computing a weighted sum, achieved through vector 

multiplication of the input with a weight matrix. The weight values or ‘weights’ of the weight 

matrix represent the strength of the connection between neurons, indicating the input's influence 

on the computational process. To introduce flexibility and enhance the ability of the network to 

generalize, a bias term is integrated into the weighted summation. Eventually, the result 

undergoes transformation through a nonlinear function known as the activation function, 

resulting in the output. These transformed outputs can be forwarded to another neuron in the 

subsequent layer, continuing this computational sequence. Mathematically, the output of an 

artificial neuron can be expressed by:  𝒚𝒋 = 𝒇(∑ 𝒙𝒊𝒏𝒊=𝟏 𝒘𝒊 + 𝒃),                                  (18) 

where each input xi has an associated weight wi. The sum of all weighted inputs plus a bias term 

b is then passed through a nonlinear activation function f, resulting in an output yi. 

 

Figure 1.12: Representation of an artificial neuron or hidden unit that serves as a building 
block of deep neural networks (DNNs). Every input, represented as xi, is assigned a 
corresponding weight, wi. The sum of these weighted inputs, xiwi, undergoes a 
transformation through a nonlinear activation function, denoted as f. This process converts 
the preactivation state of the neuron into an output, denoted as yj. To maintain simplicity, 
the inclusion of bias terms has been omitted. The resulting output, yj, subsequently acts 
as the input for an artificial neuron in the subsequent layer. This figure is adapted and 
modified from (90), CC-BY-4.0. 

Training a DNN is the process whereby the network learns to make accurate predictions or 

classifications based on input data. This training involves an iterative process of adjusting the 

internal parameters of the network such as the weights and biases. Before the start of the 

training, these parameters are initialized with random values. During the training process, data 

is introduced into the network through the 'input layer', which can be composed of various data 

types such as images, text, or numerical values. Each neuron in this layer represents a specific 

feature or input variable. Following this, the output from the input layer is forwarded to the 



 
Deep learning diffusion parameters from magnetic resonance imaging  

 
Introduction 

_______________________________________________________ 
 

47 

  

‘hidden layers’, consisting of multiple hidden units. These hidden layers transform the input 

data through a series of weighted connections and activation functions. The depth and width of 

the hidden layers contribute to the capacity of the network to learn intricate patterns. The final 

layer, often referred to as the ‘output layer’, produces the network's predictions. The number of 

units or neurons in this output layer depends on the nature of the task, with regression tasks 

having a single output neuron and classification tasks having one neuron per class. In deep 

learning diffusion and IVIM parameter estimation, the number of hidden units in the output 

layer often corresponds to the number of model-parameters being estimated.  

 

Figure 1.13: Example of a multi-layer perceptron (MLP). All artificial neurons within a 
layer are intricately linked to every neuron in the subsequent layer, forming a fully-
connected network. In the training phase, input data is fed into the input layer. It then 
traverses through the hidden layers before reaching the output layer. In the output layer, 
predictions are produced that represent a hierarchical representation of the input data. The 
difference between the predicted output and the actual label based on the loss function 
undergoes processing through an activation function. This dissimilarity is subsequently 
backpropagated to adjust the network's weights and biases using a gradient descent 
optimization algorithm, aiming to minimize the prediction error. This figure is adapted 
and modified from (91), CC-BY-4.0. 

Throughout the training process, predictions are generated based on the specific nature of the 

task. Subsequently, a loss function quantifies the difference between predicted and ground truth 

(actual values). Mean squared error (MSE) also termed L2-loss is a common choice as loss 

function in parameter estimation. Other loss functions include mean absolute error (L1), cross-

entropy loss, and Dice loss (91). Once the loss function is defined, a gradient descent 
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optimization algorithm, commonly referred to as an optimizer, is employed. Through a series 

of iterations and weight updates in a process known as backpropagation, the optimization 

algorithm strives to find the global minimum of the network's loss function. Eventually, if the 

training is performed correctly, the model converges, which leads to a DNN that can make 

accurate predictions when presented with new, unseen data.  

The successful deployment of DNNs often relies upon effectively managing two critical 

phenomena: underfitting and overfitting. Underfitting occurs when a DNN fails to capture the 

underlying patterns within the data effectively. In such instances, the model is often too 

simplistic to discern intricate relationships, resulting in suboptimal performance. This can be 

addressed by increasing the learning capacity of DNNs, i.e. increasing the number of hidden 

layers or hidden units (see also Section 1.5.4 below). Conversely, overfitting occurs when a 

network becomes too closely adapted to the training data so that it loses its applicability to 

unseen data. Mitigating overfitting is a challenge that involves finding a balance between model 

complexity and generalization. Several regularization methods have been proposed that could 

help to prevent overfitting, with a selection of them described in Section 1.5.4. 

1.5.2 Types of network architectures 

DNNs operate in network architectures that define the structure and connectivity of layers and 

artificial neurons. Network architectures serve as a blueprint for how information propagates 

within the network, how features are extracted and modified, and how predictions or decisions 

are made.  

Typical DNN architectures consist of an encoder and a decoder component. The encoder 

transforms input data into a lower-dimensional or latent representation, retaining essential 

information and valuable features. The decoder reconstructs this encoded representation into a 

format resembling the original input data. In deep learning diffusion parameter estimation, it is 

common to only utilize the encoder component of the DNN for the transformation of input data 

into a latent space representing the parameters of the biophysical model. Therefore, in the case 

of the IVIM model, the output often includes three units or neurons, representing D, f, and D*, 

and may also incorporate an additional fourth unit, representing S0. This S0 parameter enables 

the network to perform noise correction. 

This section explores three prominent network architectures: the multi-layer perceptron (MLP), 

convolutional neural networks (CNNs), and transformers. 
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1.5.2.1 Multi-layer perceptron (MLP) 

MLPs, also known as a feedforward neural networks or deep feedforward networks, are one of 

the simplest but most fundamental DNN architectures. It consists of multiple layers of artificial 

neurons, where each neuron is fully-connected to every neuron in the adjacent layers, as 

illustrated in Figure 1.13. MLPs are versatile and can be applied to a wide range of problems, 

including regression and classification tasks. They are particularly effective for structured data, 

where the relationships between features are not spatially or temporally dependent. MLPs for 

deep learning diffusion parameter estimation are extensively explored within this thesis.  

1.5.2.2 Convolutional neural networks (CNNs) 

CNNs (92,93) are a category of MLPs that employ convolution layers with predefined kernels 

to operate on image data within its hidden layers. CNNs are designed to learn hierarchical 

representations, capturing local patterns and spatial dependencies.  

The inherent inductive bias of CNNs, which is rooted in the assumptions of locality and weight 

sharing, along with their translational equivariance properties, enables them to identify patterns 

and features in images regardless of their position or translation. CNNs have revolutionized the 

field of computer vision, image-processing, and medical image analysis (91,94,95). Paper III 

explores CNNs for deep learning diffusion parameter estimation. 

A typical CNN architecture is depicted in Figure 1.15. The first hidden layer often consists of 

a convolutional layer to extract features from the input image. Convolution layers employ 

kernels applied to the input matrix (2D data), resulting in a smaller output matrix. This kernel 

represents a learnable weight matrix. To preserve the matrix size, padding can be employed 

around the input matrix, i.e. enlarging the image. Zero padding is the most common type of 

padding where the input image is surrounded by zeros. Subsequent hidden layers often 

encompass additional convolution layers, pooling layers, or fully-connected layers. By stacking 

multiple convolutional layers, the network can capture a hierarchy of features. This enables the 

learning of features and patterns at different levels. Early layers tend to capture simple features 

like edges, corners, and textures, while deeper layers progressively learn more complex and 

abstract features.  

Following the application of a convolution layer, CNNs often incorporate pooling layers to 

reduce the spatial dimensions of the feature maps. Common pooling techniques include max 

pooling, which selects the maximum value within a kernel, and average pooling, which 

computes the average of the values within the kernel. The final layers typically consist of fully-
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connected layers responsible for making predictions or classifications based on the extracted 

features. 

 

Figure 1.14: Building blocks of a typical CNN. A CNN consists of an input layer (in this 
case a brain scan), followed by several convolution layers and pooling layers. At the end, 
CNNs typically have fully-connected layers that compute the final output. This figure is 
adapted and modified from (91), CC-BY-4.0. 

1.5.2.3 Transformers 

Transformer neural networks (96), also known as transformers or attention models, were first 

introduced in the renowned paper of Vaswani et al. (96) ‘Attention Is All You Need’. The 

typical transformer architecture comprises an encoder stack and a decoder stack, as depicted in 

Figure 1.16. The decoder stack consists of a part that is solely a decoder component, which is 

followed by an encoder-decoder component that combines the outcomes of the encoder stack 

and the decoder component. Since the introduction of transformers, they have emerged as a 

groundbreaking innovation in the fields of natural language processing (NLP) and sequential 

data (86). Perhaps the most well-known application of transformers for NLP is the powerful 

tool ‘Chat-GPT’, a language model trained on massive text datasets in multiple languages, 

capable of generating human-like responses to text. Recently, transformers have also garnered 

substantial interest in computer vision applications (97).  

Transformers are based on attention mechanisms that can capture long-range dependencies 

within sequences. This doctoral thesis, in particular Paper III, explores the concepts of self-

attention (96) and the recently proposed neighborhood-attention (98) within transformers for 

deep learning parameter estimation. 



 

  

 

Figure 1.1: The transformer architecture, consisting of an encoder component, a decoder 

component and an encoder-decoder component. This figure is adapted and modified from 

(91), with permission of Google. 

Self-attention 

Central to transformers is the concept of self-attention (96), allowing each element in a 

sequence to weigh its relationships with all other elements in the same sequence. In the 

transformer, prior to the application of the self-attention module, the input sequence undergoes 

an initial step involving embedding and positional encoding. This process generates embedding 

vectors for each element within the sequence. Within the self-attention module, the embedded 

sequence proceeds through a linear layer, which generates three separate matrices, known as 

Query (Q), Key (K), and Value (V) matrices. In essence, self-attention involves a series of 

learnable transformations, embeddings, and matrix multiplications utilizing these Q, K, and V 

matrices. Self-attention is mathematically expressed as follows: 

self-attention(Q,K,V)= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 (𝑸𝑲𝑻√𝒅 ) 𝑽,                              (1) 

where d is the embedding dimension and T a transpose operation. 
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When determining self-attention, a ‘factor’ matrix is derived through the dot product of the 

Query and Key matrices. Conceptually, Q can be interpreted as a series of elements for which 

attention is computed, while the elements in K represent those to which Q directs its attention. 

Therefore, the dot product between the Query and Key matrices quantifies the relevance 

between each pair of elements. The outcome undergoes a SoftMax operation, which normalizes 

the factor matrix into a probability distribution ranging from 0 to 1, summing all scores up to 

1. Multiplying the output of the Softmax with the Value matrix (i.e. the sequence itself) yields 

a weighted sum (also known as the attention score) of all elements within the Value matrix. 

This attention score serves as the output of the self-attention module. Following the attention 

module, the outcome is processed by fully-connected layers to transform the attention score 

into an appropriate output for further processing.  

Transformers typically employ multi-headed attention, where the attention mechanism is 

applied multiple times in parallel, each with a different set of learned weight matrices for Q, K, 

and V. These different sets of weights allow the model to attend to different parts of the input 

sequence and capture different patterns or relationships within the data. 

In a transformer architecture (Figure 1.16), self-attention is applied at two key locations: in the 

encoder stack, where the source sequence pays attention to itself; and at the initial part of the 

decoder stack (decoder component), where the target sequence pays attention to itself. 

Additionally, attention is also performed later in the decoder stack, specifically in the encoder-

decoder component, called encoder-decoder attention. Here, the Query matrix is derived from 

the target sequence (output decoder self-attention) and the Key and Value matrices from the 

source sequence (output encoder self-attention). Hence, it computes the relevance of each 

element in a target sequence to each element in the source sequence. A transformer model can 

encompass multiple attention blocks in each of these transformer components to improve its 

overall capacity and performance. 

Despite the widespread utility of self-attention models in NLP tasks (86), applying self-

attention to vision-related tasks poses challenges (97). In the self-attention concept, each token 

within the sequence can attend to any other token within that same sequence, irrespective of 

their relative positions or the sequence order, as it is permutation-invariant. This characteristic 

results in a quadratic increase in complexity with respect to the number of tokens. This 

quadratic nature results in high memory demands, especially when applying self-attention 

modules to images, as memory requirements scale with the number of pixels. This prevents 

self-attention modules from being easily applicable to computer vision tasks (97). Recent 
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innovations have introduced variants of attention mechanisms that address some of these 

challenges (99,100), among them the concept of neighborhood-attention (98). 

Neighborhood-attention 

Neighborhood-attention, as introduced by Hassani et al. (98), represents a modified variant of 

self-attention that localizes attention to the nearest neighboring pixels. This approach involves 

a sliding window operation using the Q, K, and V pixels within a kernel. The definition of 

neighborhood-attention, as outlined in the paper of Hassani et al., can be described as:   

neighborhood-attentionk(i) = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝑨𝒊𝒌√𝒅 𝑽𝒊𝒌,                             (20) 

with i being the i-th pixel to which neighborhood-attention is being applied, 𝐴𝑖𝑘 is the dot 

product of the i-th input Query projection with the Key projections of its k nearest neighbors 

within the applied kernel, d represents the embedding dimension, and 𝑉𝑖𝑘 represents the i-th 

input’s k nearest neighboring Value projections. The computation of 𝐴𝑖𝑘 can be expressed as: 

𝑨𝒊𝒌 = [   
 𝑸𝒊𝑲𝝆𝟏(𝒊)𝑻 + 𝑩(𝒊,𝝆𝟏(𝒊))𝑸𝒊𝑲𝝆𝟐(𝒊)𝑻 + 𝑩(𝒊,𝝆𝟐(𝒊))⋮𝑸𝒊𝑲𝝆𝒌(𝒊)𝑻 + 𝑩(𝒊,𝝆𝒌(𝒊))]  

  ,                                       (21)  

where 𝜌𝑗(𝑖) denotes i’s j-th nearest neighbor. This calculation is a modification of the dot 

product of Q and K within self-attention, where in the context of neighborhood-attention, it is 

restricted to the k nearest neighbors of pixel i. 𝑉𝑖𝑘 can be expressed as:  𝑽𝒊𝒌 = [𝑽𝝆𝟏(𝒊)𝑻  𝑽𝝆𝟐(𝒊)𝑻  … 𝑽𝝆𝒌(𝒊)𝑻   ]𝑻.                                     (22) 

As neighborhood-attention exclusively operates on the nearest neighbors, it introduces local 

inductive biases and maintains translational equivariance, a characteristic shared with CNNs. 

Additionally, it conserves memory usage, by only considering the attention matrix for the k 

nearest neighbors, which stands in contrast to self-attention where all pixels in the image are 

involved in the computation. 

Neighborhood-attention finds its integration within NATTEN, a Python package that 

incorporates specialized C++ and Cuda kernels specifically designed for neighborhood-

attention. Through NATTEN, neighborhood-attention transformers, which are hierarchical 

transformers constructed with multiple neighborhood-attention blocks, can run fast with 

efficient memory utilization. In the original paper of Hassani et al., these neighborhood-

attention transformers outperformed or were comparable to other sliding-window attention 
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(Swin) transformers (99) and convolution-based models (ConvNeXt) (101) in downstream 

vision tasks such as image classification and segmentation. 

1.5.3 Types of learning strategies 

There are several types of learning strategies in terms of the level of supervision for training 

DNNs. This section describes supervised learning, unsupervised learning, and semi-supervised 

learning.  

1.5.3.1 Supervised learning 

Supervised learning is one of the most common learning strategies for training DNNs. In this 

approach, the network is provided with a labeled dataset. The primary objective of supervised 

learning is to learn a mapping from inputs to outputs that minimizes the discrepancy between 

predicted and actual targets or ground truth. When provided with sufficient labeled data, 

supervised learning can yield high-quality models with strong predictive capabilities. However, 

there are challenges associated with this approach. Accessing labeled data can be time-

consuming and expensive. Furthermore, in many applications, obtaining ground truth 

annotations can be impractical or infeasible.  

In the context of supervised learning for diffusion parameter estimation, the network is trained 

using the biophysical model-parameters as ground truth. Typically, the input of the network 

comprises the measured or simulated DWI signals, while the output of the network are 

parameter estimates for the biophysical model. A supervised network is optimized using a loss 

function, often the MSE, between the network’s output parameters �̂�𝑛𝑒𝑡 and the ground truth 

parameters �̂�, denoted in this thesis as “parameters-MSE”: 

parameters-MSE = 𝑳(�̂�, �̂�𝒏𝒆𝒕) = ∑ ‖�̂� − �̂�𝒏𝒆𝒕‖𝟐𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 .                        (23) 

In IVIM parameter estimation, these �̂� and �̂�𝑛𝑒𝑡 typically include D, f, and D*, and optionally 

S0. 

One of the major challenges in supervised learning in the context of diffusion and IVIM 

parameter estimation is the scarcity of reliable ground truth data, primarily due to the ill-posed 

nature of the inverse problem. Conventional fitting methods, such as least squares and other 

estimators, are known to be highly sensitive to noise and rely on specific assumptions (Section 

1.4.2), rendering them unsuitable to serve as ground truth for training supervised networks. An 

alternative approach for generating ground truth for training supervised networks is to consider 

synthetic data. Within this thesis, supervised learning is thoroughly explored for deep learning 
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diffusion parameter estimation. Paper II explores supervised learning in the context of IVIM 

parameter estimation using MLPs and conducts a thorough exploration of the limitations 

associated with this learning strategy. Paper III explores whether incorporating spatial 

information can enhance supervised deep learning diffusion parameter estimation, with 

application to IVIM. 

1.5.3.2 Unsupervised learning 

An alternative to relying on labeled data is unsupervised learning. In unsupervised learning, the 

objective of the network is to discover underlying patterns or structures within the data without 

the use of explicit target labels. Clustering is a common example of unsupervised learning, 

where samples are automatically grouped into clusters based on their most distinct features. 

Unsupervised learning has the advantage of not requiring labeled data, making it suitable for 

scenarios where ground truth is challenging or unavailable. However, because there is no 

guidance of labeled data, it is challenging to assess the quality of learned representations.  

In the context of unsupervised learning for diffusion parameter estimation, the network is 

trained using the measured or simulated DWI signals as ground truth. Similar to supervised 

learning, the input of the network encompasses the measured or simulated DWI signals, and its 

output provides parameter estimates for the biophysical model. However, in unsupervised 

learning, these parameter estimates are used to predict DWI signals, denoted as Snet(b), by 

utilizing the biophysical model, such as the IVIM model. Subsequently, the unsupervised 

networks are optimized using a loss function, typically the MSE, between the input signal S(b) 

and the predicted signal Snet(b), denoted in this thesis as “signals-MSE”: 

signals-MSE = 𝑳(𝑺(𝒃), 𝑺𝒏𝒆𝒕(𝒃)) = ∑ ‖𝑺(𝒃) − 𝑺𝒏𝒆𝒕(𝒃)‖𝟐𝒃∈𝑩 .                             (24) 

As these unsupervised networks employ the biophysical model to predict signals for network 

optimization, they are often referred to as 'physics-informed' DNNs. 

This doctoral thesis explores various aspects of unsupervised learning for deep learning 

diffusion and IVIM parameter estimation. Paper I identifies specific issues associated with a 

prior unsupervised approach for IVIM parameter estimation (102), and subsequently addresses 

them by introducing various network hyperparameters. Paper II conducts a thorough 

exploration of the limitations associated with unsupervised learning for IVIM parameter 

estimation. Lastly, Paper III investigates whether incorporating spatial information can enhance 

unsupervised deep learning diffusion parameter estimation, with application to IVIM.   
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1.5.3.3 Semi-supervised learning 

Semi-supervised learning combines elements of both supervised and unsupervised learning to 

address some of the limitations of each approach. In this paradigm, a model is trained on a 

dataset containing a small portion of labeled data and a more extensive set of unlabeled data.  

Semi-supervised learning typically involves two stages. First, the network is trained in a general 

supervised manner using the available labeled data. Subsequently, this model is used to predict 

labels for the unlabeled data, a process known as pseudo-labeling. After labeling the unlabeled 

data, the model is retrained on the entire dataset, comprising both the original labeled data and 

the newly pseudo-labeled data. By leveraging the abundance of unlabeled data, this approach 

can make efficient use of limited labeled data, potentially leading to improved model 

performance.  

Semi-supervised learning is particularly valuable when labeled data is scarce or expensive to 

obtain. However, the quality of the ‘pseudo-labels’ assigned to the unlabeled data is not assured, 

which can substantially affect the effectiveness of semi-supervised learning. Semi-supervised 

learning is not explored in this thesis. 

1.5.4 Hyperparameters 

In addition to the different network architectures and learning strategies, the effectiveness of 

DNNs is also determined by a set of tunable network parameters, known as hyperparameters. 

Hyperparameters can be thought of as the configuration settings that control various aspects of 

the network’s training process, and they must be carefully tuned to achieve optimal 

performance. This section outlines several hyperparameters that have a substantial impact on 

the training process of the network. Papers I and II explore these hyperparameters thoroughly 

with the application to deep learning IVIM parameter estimation. 

1.5.4.1 Training hyperparameters: learning rate, optimizer, batch size 

Perhaps the most crucial DNN training hyperparameter for achieving training stability and 

optimal convergence is the learning rate. The learning rate controls the step size at which the 

optimizer updates the intrinsic network parameters.  

As mentioned in Section 1.5.1, the optimizer determines the update rule for adjusting the 

network's parameters during training. The optimizer strives to find the optimal set of network 

parameters that results in the best possible network performance. Several optimizers have been 

proposed (103). One of the most commonly used optimizers is Adam (104), which is an 

adaptive optimization algorithm that adjusts learning rates for each parameter individually, 
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incorporates momentum to accelerate convergence, and includes bias correction to stabilize 

training.  

Another important hyperparameter is the batch size, which determines how many data samples 

are processed together in each forward and backward pass during training. A smaller batch size 

provides a more frequent update to the model but may lead to noisy gradients, while a larger 

batch size offers more stable updates but requires higher memory capacity. The choice of batch 

size often involves trade-offs between training speed and convergence stability, and tuning the 

learning rate (105). For example, a large batch size may require a smaller learning rate to avoid 

overshooting, while a small batch size may require a larger learning rate to escape local minima. 

1.5.4.2 Network hyperparameters: hidden units, hidden layers, activation function 

The number of hidden units and number of hidden layers are network hyperparameters that 

control the learning capacity of the DNN. In general, a larger network has a stronger capacity 

for learning features in the data but also takes a longer time to train. The number of hidden units 

in each layer defines the capacity of the network to capture and represent features in the data. 

A higher number of units can lead to overfitting if not adequately regularized, while a lower 

number may result in underfitting. In addition, the depth of a network, defined by the number 

of hidden layers, substantially impacts its representational power. Deeper networks can model 

intricate features but may suffer from vanishing gradients during training.  

Another crucial hyperparameter within the network architecture is the activation function that 

introduces non-linearity to the DNN, enabling it to model complex relationships within the data. 

Common activation functions include the sigmoid function and exponential linear unit (106).  

1.5.4.3 Regularization: batch normalization, dropout, early stopping 

There are several regularization techniques proposed to mitigate overfitting, a phenomenon 

where the model performs well on training data but fails to generalize effectively to unseen 

data. These regularization techniques are tools in the DNN toolkit and require tuning to achieve 

the desired regularization effect. Therefore, we also refer to them in this thesis as 

hyperparameters.  

Two widely used regularization techniques are batch normalization and dropout. Batch 

normalization (107) normalizes the activations of a layer across a mini-batch of data during 

training. It ensures that activations have a consistent mean and variance, and therefore stabilizes 

training and often accelerates convergence. Dropout (108) is a regularization technique that 

addresses overfitting by randomly deactivating a subset of hidden units during each forward 
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and backward pass. This probabilistic strategy generates an ensemble of sub-networks during 

training, thereby enhancing the robustness of the network and reducing its dependence on 

specific neurons. 

Another approach to regularize DNNs and prevent overfitting is through ‘early stopping’. 

During training, an early-stopping criterion continuously monitors the performance of the 

model on a test dataset. If this performance begins to decrease, the training process is stopped 

after a specified number of epochs (typically set at 10 epochs). This technique aims at 

preventing the model from over-optimizing on the training data, enhancing its capacity to 

generalize to unseen data. 
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 Chapter 2 
 Objectives 
 
 
 

The overarching objective of this doctoral thesis was to explore the use of deep learning to 

estimate clear, detailed maps of perfusion-based biomarkers from diffusion-weighted magnetic 

resonance imaging (DWI). The primary goal was to enhance parameter estimation for the 

intravoxel incoherent motion (IVIM) model within DWI, where successful outcome will allow 

for better cancer diagnosis and treatment monitoring, without the need for contrast injection. 

The specific aims of this thesis were to: 

• Enhance a prior promising unsupervised deep learning IVIM fitting approach by 

optimizing several network hyperparameters through extensive simulations, and 

compare the optimized approach to other conventional fitting approaches using in vivo 

data from pancreatic cancer patients (Paper I). 

• Perform a comprehensive analysis of deep learning IVIM parameter estimation by 

exploring the impact of training features (including training distribution) for both 

unsupervised and supervised learning using simulations and in vivo data from brain 

cancer patients (Paper II). 

• Develop novel deep learning approaches to parameter estimation that can leverage 

spatial information to improve estimator performance, with application to diffusion 

modeling and IVIM (Paper III). 
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 Chapter 3 
 Summary of papers 
 
 
 

This chapter summarizes the importance of each research paper in this thesis, helping to provide 

a foundational understanding of the core themes, methods, and outcomes explored in each 

work. The full papers are presented in their published or submitted format at the end of this 

thesis. 
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3.1. Paper I 

Improved unsupervised physics-informed deep learning for intravoxel incoherent 

motion modeling and evaluation in pancreatic cancer patients 

Misha Pieter Thijs Kaandorp, Sebastiano Barbieri, Remy Klaassen, Hanneke W. M. van 

Laarhoven, Hans Crezee, Peter T. While, Aart J. Nederveen, Oliver J. Gurney-Champion 

Magnetic Resonance in Medicine, 86(4), 2250-2265.  

The intravoxel incoherent motion (IVIM) model for diffusion-weighted imaging (DWI) 

demonstrates great promise in the estimation of predictive and prognostic cancer imaging 

biomarkers. However, conventional IVIM fitting approaches such as conventional LSQ and 

Bayesian approaches exhibit long fitting times and demonstrate poor image quality or biased 

parameter estimates, thereby preventing clinical implementation of IVIM. Recent work by 

Barbieri et al. (102) introduced an unsupervised deep learning approach for IVIM fitting, 

denoted as IVIM-NETorig. This unsupervised approach demonstrated superior performance in 

terms of both accuracy and fitting time compared to the LSQ and Bayesian approaches. 

However, that study focused only on volunteer data and limited its exploration of network 

hyperparameters. Moreover, initial observations of Paper I identified unexpected parameter 

correlations between the perfusion-related parameter estimates. Therefore, the aim of Paper I 

was to optimize IVIM-NETorig by exploring modifications of the network’s architecture and 

several hyperparameters in simulations. We evaluated our optimized approach using in vivo 

data from patients with pancreatic ductal adenocarcinoma (PDAC), i.e. pancreatic cancer, 

receiving neoadjuvant chemoradiotherapy (CRT).  

We initially implemented IVIM-NETorig (102), which was an MLP (Section 1.5.2.1), with three 

hidden layers, where the number of hidden units was equal to the number of b values. We 

considered many variants of this original IVIM-NET by introducing and altering various 

hyperparameters. These hyperparameters included:  

• An extra fit parameter S0 to allow the network to correct for noise. 

• Sigmoid activation functions at the end of the network instead of absolute 

activation functions. 

• Varying the number of hidden layers. 

• Adding dropout regularization (108) (Section 1.5.4.3). 

• Adding batch normalization (107) (Section 1.5.4.3). 
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• A novel parallel network design, where each parameter is predicted in parallel by 

independent subnetworks. 

• Tuning the learning rate for optimal convergence.  

All networks were trained in the same unsupervised manner (Section 1.5.3.2). The training was 

stopped when there was no improvement in the test loss over a continuous span of 10 epochs, 

e.g. early stopping (Section 1.5.4.3).  

In simulations, we sampled IVIM parameters from a uniform distribution: 0.5×10-3≤D≤3×10-3 

mm2/s, 5≤f≤55%, 10×10-3≤D*≤100×10-3 mm2/s, and S0=1. These were used to generate 

100,000 DWI signals, considering 12 b values (0, 5, 10, 20, 30, 40, 60, 150, 300, 500, 700 

mm2/s) using eq. (14). Rician noise was added to the signals such that they possessed a relative 

SNR of 20. As this is an unsupervised approach, training was done on the same data as the 

evaluation data (i.e. test data). We trained and tested our various networks with different 

hyperparameter configurations on this simulated data. We assessed the performance of these 

networks in terms of accuracy, independence, and consistency by calculating the normalized 

root-mean-square error (NRMSE), Spearman’s correlation ρ, and the coefficient of variation 

(CVNET), respectively. The best-performing network, referred to as IVIM-NEToptim, was 

compared to a LSQ approach and a Bayesian approach at different SNRs.  

Subsequently, IVIM-NEToptim‘s performance was evaluated using an independent in vivo 

dataset comprising 23 patients with PDAC. Among these patients, fourteen had not undergone 

any treatment between two scan sessions, and nine had received CRT between these sessions. 

Our evaluation included a qualitative analysis of the parameter maps, focusing on feature clarity 

and visually assessing the consistency of the fit to the IVIM signal in pairs of neighboring 

voxels. Additionally, we conducted a quantitative assessment by evaluating test-retest 

repeatability. This involved calculating the intersession within-subject standard deviation 

(wSD) for each IVIM parameter using the data from the patients with repeated baseline scans. 

Bland-Altman plots were generated using data from both patient cohorts to identify significant 

parameter changes following CRT. Comparisons were also made to LSQ and a Bayesian 

approach.  

Figure 3.1 shows a subset of the results of the simulation study in Paper I. The originally 

proposed unsupervised approach, IVIM-NETorig, exhibited strong correlations between the 

perfusion-related parameters (ρ(D*,f) = 0.74). IVIM-NEToptim resolved these correlations 

(ρ(D*,f) = 0.22) (Figure 3.1A) by having a network consisting of a parallel network design 

architecture with two hidden layers, batch normalization, dropout of 10%, sigmoid constraints, 
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the inclusion of the fit parameter S0, and a learning rate of 3×10−5. IVIM-NEToptim demonstrated 

improved accuracy to IVIM-NETorig (NRMSE(D) = 0.177 vs 0.196; NRMSE(f) = 0.220 vs 

0.267; NRMSE(D*) = 0.386 vs 0.393). Furthermore, it demonstrated substantially better 

accuracy in comparison to conventional LSQ and Bayesian approaches, particularly at low SNR 

(Figure 3.1B).  

Figure 3.2 shows a subset of the results of the in vivo study in Paper I. Deploying IVIM-NETopim 

to in vivo data from PDAC patients produced more detailed and significantly less noisy 

parameter maps than the other conventional fitting methods (Figure 3.2A). Furthermore, IVIM-

NEToptim detected the most significant parameter changes in D and f across the entire cohort 

undergoing CRT (Figure 3.2B). 

In conclusion, this study improved the accuracy, independence, and consistency of both 

diffusion and perfusion-related parameters from IVIM-NET by changing the network 

architecture and tuning hyperparameters. When deploying IVIM-NEToptim to in vivo DWI data 

from pancreatic cancer patients, IVIM-NEToptim demonstrated to be considerably faster and to 

produce less noisy and more detailed parameter maps compared to alternative state-of-the-art 

fitting methods. Furthermore, in this cohort, IVIM-NEToptim had a substantially better test-retest 

repeatability and was able to detect the most individual patients with significant changes in the 

IVIM parameters throughout radiotherapy. Therefore, in Paper I, we recommended IVIM-

NEToptim for accurate, informative, and consistent IVIM fitting to DWI data. 

 

Figure 3.1: A subset of the results of the simulation study performed in Paper I. (A) D* 
plotted against f for IVIM-NETorig (left) and IVIM-NEToptim (right). The ground truth 
parameter values are presented in gray. (B) NRMSE (left), ρ(D,f) (center), and CVNET 
(right) plots of the estimated D* IVIM parameter computed at several SNRs for the least 
squares (LS; blue), Bayesian (brown), IVIM-NETorig (orange), and IVIM-NEToptim 
(green) approaches to IVIM fitting. The 5 to 95 percentiles of IVIM-NET for 50 repeated 
pieces of training are plotted as error bars and the median value is used for the line plot. 
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The plots show that IVIM-NETorig is highly inconsistent in producing IVIM parameters 
for multiple repeated trainings at all SNRs, and that IVIM-NEToptim outperforms IVIM-
NETorig. As the least squares and Bayesian approaches are deterministic, their CVNET was 
zero and not plotted. The least squares and Bayesian approaches were superior at high 
SNR. Note the clear parameter correlations between the perfusion-related parameter 
estimates (ρ(D*,f)) in IVIM-NETorig, and their absence for IVIM-NEToptim. 

 

Figure 3.2: A subset of the results of the in vivo study on pancreatic ductal 
adenocarcinoma (PDAC) patient data performed in Paper I. (A) IVIM parameter maps of 
the least squares, Bayesian, and IVIM-NEToptim approaches for a PDAC patient of the 
treated cohort before chemoradiotherapy. The red ROI represents the PDAC (tumor), and 
the green ROI represents 2D homogenous liver tissue. The two highlighted blue regions 
correlate to the voxels from the log-plots (not illustrated; see the full version of Paper I). 
In the parametric maps computed by IVIM-NEToptim, the tissues appear more 
homogeneous, particularly in the liver, the kidneys, and around the tumor ROI. (B) Bland-
Altman plots of the least squares, Bayesian, and IVIM-NEToptim approaches showing the 
mean and difference (∆) between the intersession repeatability patients (black crosses) 
and the mean and ∆ between pre- and post-treatment patients (colored symbols), which 
represents the treatment effects. The dotted lines indicate the 95% confidence intervals of 
the test-retest data. Colored measurements that exceed the 95% confidence intervals were 
considered significant to treatment response. IVIM-NEToptim detected the most patients 
with significant parameter changes (10 significant parameter changes) after 
chemoradiotherapy. In comparison, the least squares and Bayesian approaches detected 
only two and three significant parameter changes, respectively. 
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3.2. Paper II 

Deep learning intravoxel incoherent motion modeling: Exploring the impact of 

training features and learning strategies 

Misha Pieter Thijs Kaandorp, Frank Zijlstra, Christian Federau, Peter T. While 

Magnetic Resonance in Medicine, 90(1), 312-328.  

While the improved unsupervised deep learning approach of paper I, IVIM-NEToptim, 

successfully addressed unexpected parameter correlations in the originally proposed 

unsupervised approach (102) and demonstrated improved estimator performance using in vivo 

data from pancreatic cancer patients, its application to the brain revealed poor anatomy 

generalization and elevated D* values (109). Other research indicated that supervised deep 

learning approaches (Section 1.5.3.1) may exhibit training data bias (110). Therefore, the aim 

of paper II was to explore the impact of key training features, including the effect of the training 

data, for both unsupervised and supervised learning for IVIM model fitting. The main 

motivation of this work was not to develop a network that could improve IVIM parameter 

estimation, but rather to investigate the possible limitations of voxelwise deep learning IVIM 

parameter estimation. 

One in vivo data set and two synthetic data sets were used in training and evaluating 

unsupervised and supervised networks: 

1. In vivo data from glioma patients: This data set consisted of 28 glioma patients 

acquired at 16 b values: 0, 10, 20, 40, 80, 110,140, 170, 200, 300, 400, 500, 600, 700, 

800, 900 mm2/s. 

2. Uniform distribution (synthetic): IVIM parameters were sampled from a uniform 

distribution: 0≤S0≤1, 0×10-3≤D≤3×10-3 mm2/s, 0≤f≤50%, and 3×10-3≤D*≤100×10-3 

mm2/s, wherefrom 100,000 DWI signals were generated using eq. (14), considering 

similar 16 b values as described above. Rician noise was added to the signals such that 

when S0=1 the SNR was 200. 

3. Patient distribution (synthetic): To provide a realistic patient distribution, we obtained 

IVIM parameter combinations from the segmented fit applied to the in vivo data. We 

then used these parameter combinations to simulate DWI signals.  

In our first experiment, the primary focus was to evaluate the influence of the learning rate, 

network size, and the suitability of the early-stopping criterion. For this purpose, we 
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implemented the original network of IVIM-NETorig (102) and altered these hyperparameters. 

These networks were trained and tested on the synthetic uniform distribution (dataset (2) 

above). We trained these networks to full convergence, surpassing the early-stopping point, 

which is different from both the original unsupervised approach (102) and the approaches 

described in Paper I, including IVIM-NEToptim. Assessment encompassed an evaluation of 

network stability, loss convergence, and generalizability for both unsupervised and supervised 

learning. We used the hyperparameters corresponding to the most stable network in further 

experiments.  

Four further networks were trained by considering the two different learning strategies 

(unsupervised, supervised) and the two synthetic data sets above (uniform distribution, patient 

distribution). These networks were evaluated at different validation points during training, 

including the early-stopping point. We compared the parameter estimates with the ground truth 

for individual data points of the uniform distribution test set. We further qualitatively assessed 

each network by evaluating parameter maps and root-mean-square error (RMSE) for a 

representative slice of a synthetic glioma patient (dataset (3) above). In addition, we evaluated 

the performance of our simulated networks using the in vivo data from glioma patients (dataset 

(1) above) to demonstrate their suitability in clinical settings. In these evaluations, we also 

compared the networks to an unsupervised network directly trained on the in vivo signals, LSQ, 

the segmented approach, and IVIM-NEToptim. 

In simulations, we showed that both unsupervised and supervised learning benefited from 

utilizing a network with more hidden units, particularly a number that exceeded the number of 

b values. Important to note is that this is a different approach than was used in the previous 

studies of Barbieri et al. (102) and Paper I, which set the number of hidden units to be equal to 

the number of b values. This increase in the number of hidden units ensured that the network 

had sufficient learning capacity and resulted in enhanced convergence speed. Additionally, 

using a lower learning rate ensured stable convergence.  

Figure 3.3 shows a subset of further results of the simulation study in Paper II. This figure 

shows that extending the training process beyond early stopping resulted in reduced parameter 

correlations and parameter error, providing an alternative to exhaustive hyperparameter 

optimization. However, extensive training resulted in an increased sensitivity to noise, 

especially for parameter estimates with low SNR or low f (inherent uncertainty). Here, 

unsupervised parameter estimates exhibited variability similar to conventional LSQ fitting. 

Conversely, supervised learning demonstrated enhanced precision but was prone to a bias 
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towards the mean of the training distribution, which resulted in relatively smooth, yet possibly 

deceptive parameter maps. The in vivo results (Figure 3.4) were in broad agreement with the 

simulations, where fitting residuals were almost identical between approaches, particularly for 

the unsupervised networks. In addition, IVIM-NEToptim demonstrated inferior performance 

compared to the alternative approaches. 

While the apparent sensitivity to noise in unsupervised learning may be undesirable, it could be 

argued that the corresponding variability observed in the parameter maps is indicative of the 

underlying uncertainty, which is indeed useful information. This uncertainty is exemplified by 

the contrasting D* maps between approaches, despite the similar residual maps (Figure 3.4), 

and illustrates the difficulty in estimating D* in the brain.  

In conclusion, this study explored the impact of key training features in unsupervised and 

supervised learning for IVIM model fitting. It underscored that the effectiveness of these 

learning strategies is heavily dependent on design choices and emphasized the importance of 

conducting a thorough evaluation when using either approach. This comprehensive evaluation 

is essential for identifying and addressing potential biases in the process. 
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Figure 3.3: This figure shows a subset of the results of the simulation study performed in 
Paper II. It shows scatter plots of estimated parameter values (D, f, D*) against ground 
truth (left), and IVIM parameter maps and RMSE maps (calculated between the predicted 
DWI signal and the measured DWI signal) for a representative slice of a synthetic glioma 
patient (right). Both scatter plots and parameter maps are displayed at the early-stopping 
point (Earlystop10) and at epoch 50000, representing full convergence. These maps are 
displayed for the four networks trained either unsupervised or supervised on synthetic 
data from either the uniform distribution (denoted ‘Uniform’ vertically) or patient 
distribution (denoted ‘Patient’ vertically). Corresponding least squares solutions (bottom) 
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and ground truth parameter maps (right top) are also shown. The red arrow in the RMSE 
maps indicate out-of-distribution data for the uniform distribution. The purple arrow in 
the ground truth b=0 image indicates the location of a tumor. The figure shows that at the 
early-stopping point both unsupervised and supervised learning are biased towards the 
mean of the training distribution. Extending the training beyond early stopping 
demonstrated that unsupervised approaches mimic least squares fitting, while for 
supervised learning the bias towards the training distribution remains. 

 

Figure 3.4: IVIM parameter maps and RMSE maps (calculated between the predicted 
DWI signal and the measured DWI signal) for a representative slice from the in vivo 
glioma patient data. These maps are displayed for the four networks trained either 
unsupervised or supervised on synthetic data from either the uniform distribution or 
patient distribution, plus an extra network that is trained directly on the in vivo signals 
(unsupervised). For the unsupervised network trained directly on the in vivo data (left), 
maps corresponding to three stopping points are displayed (Early stopping, Epoch-5000, 
and Epoch-50000), whereas the maps shown for the four synthetically-trained networks 
(right) are after training for 50,000 epochs. Corresponding maps are also shown for least 
squares (top left), the segmented approach (top right), and IVIM-NEToptim (bottom left). 
The purple arrow in the D map for the segmented approach indicates the location of a 
tumor.  
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3.3. Paper III 

Incorporating spatial information in deep learning parameter estimation with 

application to the intravoxel incoherent motion model in diffusion-weighted MRI 

Misha Pieter Thijs Kaandorp, Frank Zijlstra, Davood Karimi, Ali Gholipour, Peter T. While 

Submitted to Medical Image Analysis (Dec. 2023) 

The tissue microenvironment is generally characterized by local homogeneity, with properties 

like diffusion and perfusion maintaining consistency between adjacent voxels (17). Leveraging 

potential correlations between relevant signals in neighboring voxels should therefore enhance 

model-parameter fitting. However, estimators like LSQ and voxelwise deep neural networks, 

such as MLPs, do not incorporate such spatial information (see also Paper II). Contrastingly, 

CNNs and attention models (transformers) (96) are capable of incorporating such spatial 

information. In the context of parameter estimation, transformers have demonstrated superior 

performance over CNNs in capturing spatial correlations when applied to diffusion tensor 

imaging (DTI) (111). In this approach, networks were trained using a reconstructed high-quality 

DTI as ground truth for upscaling low-quality data. Yet, obtaining such high-quality can be 

challenging in many signal analysis problems, and noise may still influence the acquired data. 

In contrast, simulating training data allows the generation of any conceivable MRI signal from 

representative ground truths, and realistic correlations between neighbors can be introduced in 

a realistic fashion.  

Building upon these observations, in paper III we explored means to incorporate spatial 

information into deep learning parameter estimation in biophysical modeling by training on 

synthetic data in patches. We demonstrated this approach for the IVIM model in DWI. The 

details of these investigations are outlined in four sub-studies: 

1. Exploration of network architectures and learning strategies 

In the first sub-study, various network architectures were explored for their potential to 

incorporate spatial information through either unsupervised or supervised training. The 

architectures included a voxelwise network (conventional MLP), a convolution-neighborhood 

network (MLP with a 2D-convolution in its first layer with kernel size 3), and a transformer-

neighborhood network (employing self-attention). See Section 1.5.2 for more information 

about these architectures. These networks underwent training, both unsupervised or supervised, 

on DWI signals simulated by uniformly sampling 3×3 patches of IVIM parameters: 0≤S0≤1, 

0×10-3≤D≤3×10-3 mm2/s, 0≤f≤50%, and 3×10-3≤D*≤100×10-3 mm2/s, considering 16 b values 
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(0, 10, 20, 40, 80, 110,140, 170, 200, 300, 400, 500, 600, 700, 800, 900 mm2/s) using eq. (14). 

Rician noise was added to the signals such that when S0=1 the SNR was 200. Each patch was 

generated with a random number of neighbors correlated to its center (neighbors-random, 

Figure 3.5A), meaning that those neighbors shared identical parameters. Additionally, nine 

subsets, denoted as ‘neighbors-N’ (N=0 to 8), were considered, where N represented a specific 

number of neighbors correlated to the center pixel (Figure 3.5C). The special case where all 

eight neighbors were correlated is denoted as ‘neighbors-all’ (Figure 3.6A).  

We evaluated the performance of the networks trained on neighbors-random in terms of the 

convergence rate and the final loss, specifically signals-MSE for unsupervised learning (Section 

1.5.3.2) and parameter-MSE for supervised learning (Section 1.5.3.1). This assessment utilized 

a neighbors-random test set comprising 100,000 patch-wise sets of DWI signals. The loss 

function was computed using the center pixel data. Additionally, each network was tested on 

the neighbors-all test set (Figure 3.6A), and the estimated parameters were compared with the 

ground truth. These results were also compared against parameters obtained through LSQ 

fitting, both on the center pixel data (i.e. voxelwise), as well as on the signal average of each 

3×3 patch. A final comparison was made of the final loss among the three supervised-trained 

networks when applied to the test subsets containing specific numbers of correlated neighbors 

(neighbors-N).  

In these simulation experiments, we found that only supervised learning derived benefits from 

incorporating spatial information, with no advantage observed for unsupervised learning 

(Figure 3.5B). Additionally, transformers outperformed CNNs in leveraging spatial 

information, demonstrating superior convergence speed and reduced loss (Figure 3.5B), and 

matching or surpassing the CNNs trained for each specific number of correlated neighbors 

(Figure. 3.5C). Furthermore, Figure 3.6B shows that the supervised networks demonstrated an 

apparent reduced sensitivity to noise, akin to signal averaging. This is indicated by the 

narrowing of the spread of values along the diagonal for these supervised networks, where a 

similar narrowing of the spread of values was observed when applying LSQ to the signal 

average of the 3×3 patches. Therefore, in the subsequent sub-studies, we only considered 

supervised training of transformer-neighborhood networks for incorporating spatial 

information. 
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Figure 3.5: (A) Example 3×3 patches from the neighbors-random test set. (B) Test curves 
showing the metrics signals-MSE and parameters-MSE for the three networks (voxelwise 
network, convolution-neighborhood network, and transformer-neighborhood network) 
over 10,000 epochs. The networks were trained and tested unsupervised (optimized on 
signals-MSE) or supervised (optimized on parameters-MSE) on neighbors-random data. 
(C) Performance of the supervised networks trained on neighbors-random, evaluated for 
each specific number of correlated neighbors (neighbors-N). The convolution-
neighborhood networks trained specifically for each test subset (yellow) represent the 
proxies for the optimal expected performance.  
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Figure 3.6: (A) Example 3×3 patches from the neighbors-all test set, where all neighbors 
are correlated in the patch (i.e. share identical underlying IVIM parameters). (B) Scatter 
plots comparing estimated parameter values against ground truth values for the networks 
described in Figure 3.5 tested on the neighbors-all test set, consisting of 100,000 3×3 
patches of DWI signals. Corresponding plots are also shown for least squares applied to 
the center pixel of each patch (top left), and applied to the signal average of each 3×3 
neighborhood (top right). All data points are colored by their S0-value, where S0=0 (black) 
corresponds to SNR=0 and S0=1 (bright yellow) corresponds to SNR=200. 
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2. Exploration of training with larger receptive fields and different 

attention concepts 

In the second sub-study, we explored whether training supervised on synthetic data in patches 

with larger receptive fields can further improve the performance of transformers. We 

considered two types of transformers (Section 1.5.2.3): the first utilized self-attention (96); and 

the second neighborhood-attention (98). We trained both networks with increasing receptive 

field up to 17×17, where self-X (transformer with self-attention) and NATTEN-X (transformer 

with neighborhood-attention) denote a receptive field of X×X voxels. Beyond a 7×7 receptive 

field, self-attention networks exhibited excessive memory usage. Therefore, for receptive fields 

of 7×7 and larger, neighborhood-attention was employed. We simulated synthetic training data 

in patches that matched the receptive field of the corresponding transformer-neighborhood 

network, following a similar approach to the data generation of the neighbors-random dataset 

in sub-study 1 above (i.e. following a uniform distribution, and patches with correlations 

generated in a random fashion), denoted as patch-uni. 

Due to the lack of in vivo ground truths for a quantitative evaluation of our methods, we 

performed a quantitative assessment by testing the networks on 40 novel, synthetic, fractal-

noise-based maps (128×128 pixels; 16 b values), which provided spatially-correlated ground 

truths (see full Paper III for details on how to generate these fractal-noise maps). Evaluation 

involved assessing parameter maps qualitatively. We performed a quantitative assessment by 

comparing median absolute percentage error (MDAPE), median percentage bias (MDPE), and 

mean absolute percentage error (MAPE). Comparisons were also made to LSQ.  

Figure 3.7 shows a subset of the results of sub-study 2 in Paper III. The quantitative assessment 

using the fractal-noise maps demonstrated that training with larger receptive fields resulted in 

improved accuracy and reduced inherent supervised bias within low SNR regions, while 

preserving edge-like structures. The use of neighborhood-attention permitted training with 

larger receptive fields compared to self-attention, contributing to overall enhanced 

performance. Self-attention was limited to smaller receptive fields due to excessive memory 

demands. 
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Figure 3.7: (A) Example IVIM fractal-noise parameter maps, RMSE maps, and error 
maps estimated for the transformer-neighborhood networks trained supervised with 
different receptive fields on patch-uni training data. Corresponding maps of the least 
squares fit and ground truth (left top) are also shown. (B) Boxplots displaying MDAPE 
and MDPE calculated for the transformer-neighborhood networks tested on the fractal-
noise test set, evaluated over the last 20 epochs to illustrate variability. 
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3. Exploration of the representativeness of different training data 

In the third sub-study, we explored additional considerations aimed at advancing our approach 

by generating training data that more closely resembles the characteristics of the test data. In 

order to quantitatively investigate our strategies for improving our methods, we utilized the 

same fractal-noise parameter maps of the previous exploration (see sub-study 2 above), 

providing us with spatially-correlated ground truths and control over the data generation 

process. We considered five different training sets in this sub-study (see full Paper III for more 

details on how to generate these training sets): 

1. Patch-uni: This dataset is entirely independent of a test set (see sub-study 2). 

2. Mask-uni: In this training set, we matched the underlying spatial variation of the test 

set. Here, we sampled patches from tissue masks of fractal-noise maps simulated with 

comparable random generation statistics as the test set. Subsequently, we sampled for 

each masked region in the patch parameter values from the uniform distribution. 

3. Patch-dist: In this training set, we matched the underlying spatial variation of the test 

set. In this approach, we sampled parameter values from Gaussian distributions, which 

were defined to approximate the parameter values for each tissue type in the fractal-

noise test set.  

4. Mask-dist: In this training set, we matched both the spatial variation and the underlying 

distribution of parameter values of the test set. We generated mask-based patches in the 

same manner as mask-uni, and assigned parameter values for each tissue-specific mask 

by sampling from the Gaussian distributions defined for patch-dist. 

5. Test: We generated patches of training data simulated in the same way as the test set. 

We trained three transformer-neighborhood networks (Self-3, NATTEN-7, and NATTEN-17) 

on these training sets. Performance was evaluated on the fractal-noise test set, where we 

assessed MDAPE, MDPE, and MAPE. 

Figure 3.8 shows the results of sub-study 3 in Paper III. This figure shows that transformers 

trained on synthetic possessing spatial variations more representative of the characteristics of 

the test set resulted in only marginal improvements in performance. Conversely, introducing 

more representative parameter distributions of the test set yielded a more substantial 

performance enhancement. It is possible that the inherent supervised bias contributed to this 

improved performance. Notably, these enhancements were most pronounced at smaller 

receptive fields (i.e., Self-3), whereas for larger receptive fields (NATTEN-17) improvements 
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were less apparent. This finding suggests that the use of representative masks and representative 

parameter distributions might be dispensable in the training process provided that a 

substantially large receptive field is used to mitigate supervised bias. In this context, training 

on all possible combinations of neighboring correlations and utilizing a uniform distribution 

could present a practical and more generalizable approach, facilitating easier implementation. 

 

Figure 3.8: Boxplots displaying MDAPE, MDPE, and MAPE calculated for the 
transformer-neighborhood networks applied to the fractal-noise test set, evaluated over 
the last 20 epochs to illustrate variability. The metrics were calculated for transformer-
neighborhood networks that were trained supervised using different synthetic data, 
ranging from patch-uni (trained independently of the test data) to data that is more 
representative of the test data. The latter involves leveraging information on the 
underlying spatial variation (‘mask-’) and/or the underlying distribution of the parameter 
values (‘-dist’) from the entire IVIM fractal-noise test set. The networks were trained with 
either self-attention (Self-3) or neighborhood-attention (NATTEN-7, NATTEN-17). As 
a baseline comparison, we also included results for networks trained on synthetic data that 
had been generated in the same way as the test set (‘test’). 
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4. In vivo analysis 

In the final sub-study, we investigated the performance of our methods trained with different 

receptive fields and different parameter distributions (i.e. patch-uni and patch-dist as described 

in sub-study 3) using an in vivo brain dataset comprising multiple repetitions of acquired data. 

Our assessment involved a qualitative analysis of parameter maps and RMSE maps. 

Additionally, we calculated precision metrics across all repetitions for the transformer-

neighborhood networks trained supervised with different receptive fields. 

Figure 3.9 shows a sub-set of our in vivo study in this final sub-study, which is in broad 

alignment with the findings from our simulations (sub-study 2 and 3). Similarly to the findings 

in sub-study 2, we observed a lower D* in white matter regions (e.g., low SNR regions) for 

networks trained with larger receptive fields. This observation suggests a potential reduction in 

inherent supervised bias and an improvement in estimator performance. Additionally, in line 

with the findings of sub-study 3, the parameter maps estimated by the networks trained on the 

different training distributions (e.g. patch-uni and patch-dist) exhibited increased similarity at 

larger receptive fields. Considering that in simulations, this heightened similarity correlated 

with reduced bias and enhanced accuracy (refer to Figure 3.8), we speculate that similar 

improvements in estimator performance may be extrapolated in the in vivo application for the 

networks with an increased receptive field. 

In conclusion, this study presented a novel deep learning approach for parameter estimation in 

biophysical modeling, where neighborhood-attention models are trained supervised on 

synthetic data in patches possessing spatial correlations between neighboring pixels. This 

enabled attention models to effectively leverage spatial information, resulting in enhanced 

estimator performance compared to CNNs and conventional fitting methods. This approach 

brings challenging ill-posed signal analysis problems, such as IVIM, closer to clinical 

implementation. Additionally, the novel synthetic fractal-noise maps enabled quantitative 

assessment of our approaches, and may open up new possibilities for research and development 

within quantitative medical image analysis. 
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Figure 3.9: IVIM parameter maps and RMSE maps for a representative slice from the in 
vivo brain volunteer data, estimated by the transformer-neighborhood networks trained 
supervised with different receptive fields. These networks were trained using either a 
uniform distribution for each parameter (patch-uni; left) or a distribution that is more 
representative of the in vivo data (patch-dist; right). The networks were trained with either 
self-attention (Self-1, Self-3) or neighborhood-attention (NATTEN-7, NATTEN-17). 
Also shown is the b = 0 image (top left), along with corresponding maps for the least 
squares and segmented approaches. 
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 Chapter 4 
 Discussion 
 
 
 

Throughout this thesis, we have recognized limitations of conventional fitting methods in 

achieving clinically reliable diffusion and perfusion parameter estimates for clear, detailed 

maps of cancer biomarkers from DWI data. This underscored the compelling need for 

innovative approaches within the diffusion modeling framework. Consequently, the primary 

objective of this thesis has been to investigate the application of deep learning for this purpose. 

The preceding chapters and scientific papers of this doctoral thesis have conducted an in-depth 

exploration of deep learning diffusion parameter estimation, with a particular focus on the IVIM 

model for DWI. 

This discussion chapter provides a critical analysis of the findings of this thesis, explores their 

implications, and considers potential future directions for research. These are structured around 

the central themes and subjects explored in the thesis. However, note that these themes are 

interconnected and interdependent. 
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4.1 Learning strategies for deep learning parameter 

estimation 

4.1.1. Unsupervised learning 

While the study of Barbieri et al. (102) and the research conducted in Paper I suggested that 

unsupervised learning held great promise for IVIM parameter estimation, subsequent research 

in Paper II and Paper III have raised substantial questions on the performance of this training 

method. Paper II revealed that early stopping in unsupervised learning can lead to correlated 

and biased parameter estimates. It further showed that when training was extended, 

unsupervised estimates displayed a variability similar to least squares. Furthermore, Paper III 

demonstrated that unsupervised learning does not benefit from incorporating spatial 

information. Notably, despite the improved performance of the optimized unsupervised 

network from Paper I (IVIM-NEToptim) in the pancreas, it exhibited poor performance when 

applied to liver data (112) and when applied to brain data in both Paper II and in a study 

conducted by Spinner et al. (109). These findings question the reliability of IVIM-NEToptim. 

Various other unsupervised approaches have been explored in the context of IVIM parameter 

estimation (113–120). For instance, one study proposed an unsupervised CNN for IVIM fitting 

(117). Other studies modified the proposed IVIM-NET of Paper I for three-compartment 

models (118,119), or utilized unsupervised deep learning approaches for dynamic-exponential 

IVIM modeling (120). Additionally, unsupervised networks have found application in DCE-

MRI for the prediction of the Extended Tofts-Kety model-parameters (121). Considering the 

limitations identified for unsupervised learning in this thesis, the effectiveness of these 

approaches may need careful evaluation, similar to the concerns raised for IVIM-NEToptim. 

4.1.2. Supervised learning 

Supervised learning presents its own set of challenges when it comes to parameter estimation. 

Paper II demonstrated that supervised IVIM parameter estimates exhibit inherent biases 

towards the mean of the training distribution, especially for regions with low SNR. This bias is 

particularly noticeable when the model is trained on a uniform distribution, aligning with 

research performed by Gyori et al. (122), who reported similar findings for the spherical SMT 

(47) model. These intrinsic training biases might potentially manifest in other microstructural 

model-fitting approaches employing supervised learning (123–126), including the first 

application of supervised learning for IVIM fitting (127). 

While supervised learning is prone to a training bias, Paper III demonstrated that it is possible 

to mitigate this bias by training on spatially-correlated synthetic data. By incorporating spatial 
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information from the relevant neighbors, the sensitivity to noise of the supervised networks was 

apparently reduced in a manner akin to signal averaging. This resulted in enhanced accuracy, 

marking a unique strength of supervised learning that distinguishes it from other approaches.  

To conclude, both unsupervised and supervised deep learning approaches bring unique 

advantages and challenges to the domain of diffusion parameter estimation. The apparent 

sensitivity to noise of unsupervised deep learning methods, while possibly undesirable, does 

offer insights into the underlying uncertainty, which is valuable information for analysis. For 

future research directions, it is of crucial importance to underscore the advantages of 

incorporating spatial information through supervised deep learning approaches for diffusion 

parameter estimation, leading ultimately to improved estimator performance.  

Considering that the decision-making process of many deep learning-based methods is typically 

a black box (128,129), ensuring a comprehensive assessment is imperative. Therefore, 

quantifying uncertainty (130,131) should be strongly prioritized, as solely relying on visual 

assessment may not suffice. From a clinical perspective, uncertainty quantification can provide 

clinicians with a measure of confidence associated with predictions or diagnostic information. 

This allows them to make more informed and cautious decisions. Future work should consider 

integrating uncertainty quantification into deep learning diffusion parameter estimation to 

further enhance our understanding of the potential of these approaches in a clinical setting. 
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4.2 Training and test data for deep learning 

parameter estimation 

4.2.1. Training data 

The most straightforward approach for training data in the context of deep learning diffusion 

parameter estimation is to use the in vivo data, i.e. unsupervised learning. However, findings 

from Paper II and Paper III unveil a crucial limitation of this approach when applied to IVIM. 

The in vivo DWI signal is corrupted by noise and therefore the network has no access to 

uncorrupted ground truth. Hence, unsupervised parameter estimates are always contaminated 

by this noise. Consequently, training on such in vivo signals is unlikely to yield accurate 

underlying parameter estimates. 

An alternative to using in vivo signals as ground truth involves employing simulated ground 

truth data, which is utilized in supervised learning techniques. In this thesis, two distinct 

methods for generating distributions of synthetic training data are explored: a uniform synthetic 

distribution; and a patient-derived synthetic distribution. Training on a uniform distribution 

offers the advantage of encompassing a structured and wide range of parameter values, 

facilitating a comprehensive training of the entire parameter space. It is important to note that 

the inherent supervised bias is particularly observable for the uniform distribution as this 

distribution misaligns with the characteristics of a real in vivo test dataset, as particularly 

demonstrated in Paper II.  

The alternative approach where a DNN is trained supervised on a distribution of parameters 

derived from in vivo patient data has been utilized in Paper II and by others (132,133). This 

method involves using predefined parameter distributions, derived from conventional fitting 

approaches applied to in vivo data, to train the network. This distribution is more likely to 

resemble the in vivo test set distribution than the uniform distribution. As supervised 

approaches are inherently biased towards the training distribution, such training strategies 

might give the appearance of improved performance. However, as elucidated in paper II, this 

approach leads to a shift in the mean of the training distribution that comes closer towards that 

of the test set. Hence, the inherent supervised bias remains and is only apparently reduced. This 

can still create the illusion of smoother and reliable parameter maps, while remaining entirely 

misleading. Furthermore, these approaches also rely on assumptions that conventional fitting 

methods can offer reliable ground truth values, despite their well-known sensitivity to noise. 

As discussed in Paper III, an argument could be made in favor of training on a uniform 

distribution, highlighting its potential for generalizability across various test datasets and 
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anatomical variations, as this approach is not dependent on prior assumptions of a specific test 

set.  

Another important concept explored in this thesis is integrating prior knowledge regarding 

spatial variation from the test set into the synthetic training data. As highlighted in Paper III, 

the tissue microenvironment typically exhibits local homogeneity. Therefore, in Paper III, we 

developed deep learning approaches that can leverage such spatial information to improve 

estimator performance. As there is a lack of ground truth data, we generated synthetic training 

data in patches with spatially-correlated ground truth. By training on such synthetic data, the 

networks learned to identify relevant neighboring voxels and leverage the correlated 

information to improve estimator performance. Therefore, this approach of generating synthetic 

data is highly recommended for improved deep learning diffusion parameter estimation.  

Another key aspect highlighted in this thesis is the importance of training data being 

representative of the test data. The inherent uncertainty introduced by out-of-distribution data 

(ODD), i.e. data lying outside the training distribution but within the test distribution, can pose 

challenges in network predictions and calibration (134). Guo et al. (135) discussed how a lack 

of exposure to diverse input data and patterns can lead to overconfident predictions and 

misclassifications. One approach to characterize the DNN’s response to ODD data is employing 

uncertainty modeling techniques (136), such as dropout Bayesian approaches (137). 

ODD data arises primarily due to limited data or knowledge about the system being modeled. 

In this thesis, particularly in Paper III, synthetic data proves instrumental in addressing this 

'epistemic uncertainty' by not relying on a physical dataset but by generating representative 

signals that are potentially present in the test set. However, generating reliable synthetic data 

requires precise knowledge of the test data, posing a challenge in diffusion signal modeling 

given the numerous processes affecting the in vivo DWI signal, as highlighted in Paper III. 

These include various physiological noise effects (not only IVIM), artifacts, and partial volume 

effects. Importantly, conventional estimators disregard these effects. However, a notable 

advantage of synthetic data approaches lies in their adaptability to incorporate such external 

influences in a flexible and controllable manner, potentially enhancing estimator performance. 

4.2.2. Test data 

Just as the selection of training data demands careful deliberation, the choice of test data for 

performance evaluation necessitates thorough consideration, with most factors overlapping 

those relevant to training data. While it might be tempting to employ in vivo data as test data 

for validation due to its direct relevance to the application, this approach presents a fundamental 
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limitation. In vivo data lacks ground truths for quantitative assessment, rendering it capable of 

providing only qualitative insights. Given the absence of reliable ground truth, in vivo results 

could be potentially misinterpreted and misleading.  

To enable a quantitative analysis of parameter estimation approaches, it is imperative to 

incorporate ground truth data in the evaluation phase. Utilizing synthetic data generated with a 

uniform distribution of parameter values for evaluation can serve as an important benchmark 

for evaluating DNN behavior. As demonstrated in Paper II, this approach can effectively 

highlight limitations or biases that may emerge during the learning process. Furthermore, these 

assessments can be particularly well visualized through ground truth versus estimated 

parameter scatter plots. However, it is important to note that while a uniform distribution may 

suffice for voxelwise approaches, it may not provide a comprehensive evaluation of the 

performance of networks that leverage spatial information. 

Paper III presented a novel approach for quantitative assessment that incorporates spatial 

information through the utilization of synthetically generated fractal-noise parameter maps. 

These maps offer spatially-correlated ground truth data, a critical element in the quantitative 

evaluation of the methods and key findings outlined in Paper III. Without this evaluation, the 

deep learning methods developed in Paper III would only be subjected to a qualitative 

assessment using in vivo data, known to hide biases in deep learning and therefore less 

appropriate. 

As highlighted above, it is important that synthetic data is representative of the system being 

modeled, and thus to real in vivo data. Paper III underscored that in vivo data typically exhibits 

slight variations in parameter values within each tissue type. Consequently, fractal-noise can 

be harnessed to introduce variability in simulated parameter estimates, offering a potentially 

more realistic representation of tissue heterogeneity and diversity compared to using fixed 

values. These variations could be incorporated when generating patch-based training data. 

Note, these could also be introduced for patch-uni or patch-dist (see Paper III for details), as 

attention models are permutation-invariant, rendering the spatial structure within a patch 

irrelevant for learning correlations among neighbors. This versatility makes fractal-noise a 

desirable approach in quantitative medical image analysis. 

The variations introduced by fractal-noise could also be applied to synthetic data with a more 

spatially realistic appearance. As an example, a digital brain phantom, as proposed by 

Guerquin-Kern et al. (138), could be used where tissue variations are generated by fractal-noise 

rather than a fixed value. Similarly, in approaches like Synthmap (139), which generates 
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realistically appearing synthetic brain data with tissue segmentations and specific naturally 

occurring parameters for each tissue type, fractal-noise can replace a fixed value for each tissue 

type. Indeed, such spatially realistically appearing datasets can serve both for training and 

testing. However, it is important to note that using such datasets for training might have limited 

generalizability to other anatomies compared to, for example, training on patch-uni or patch-

dist. As underscored above, various physiological noise effects affecting the in vivo DWI signal 

(not only IVIM) can be incorporated into synthetic data, and thus in synthetically fractal-noise 

generated maps, to enhance its authenticity.  

To conclude, the selection and characterization of training and test datasets are critical aspects 

in deep learning parameter estimation, that profoundly impact the performance and 

generalizability of DNNs. Relying solely on in vivo data for training and test data is not 

sufficient due to the lack of underlying ground truth. Simulated data offers ground truth for 

training and testing. However, important considerations should be made to ensure the 

representativeness of simulated training data to real test data, including the distribution of 

parameter values and the spatial variance. Thus, understanding and addressing out-of-

distribution (ODD) data becomes pivotal for constructing robust deep learning networks.  

Moving forward, future research should explore possibilities of integrating processes that 

influence the in vivo DWI signal, extending beyond IVIM, into the synthetic data approaches 

proposed in this thesis. This exploration should aim to produce a higher quality synthetic dataset 

that better represents in vivo data. Noteworthy, these distinctive capabilities differentiate our 

approaches from other estimators that neglect these intricate processes, offering a more 

comprehensive and adaptable approach to model-parameter estimation.  

Additionally, future work should explore further the potential of fractal-noise within medical 

imaging. The ability to introduce realistic variability with minimal user-defined parameters, 

particularly advantageous in deep learning that requires large datasets for training, underscores 

the promise of fractal-noise. Synthetic data of this nature are not only promising for avenues in 

parameter estimation, but could also open up new possibilities of research in the field of 

quantitative medical image analysis. For instance, fractal-noise could be utilized in the 

evaluation and data generation of super-resolution (140) or model‐based reconstruction 

(141,142) algorithms.  
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4.3 Network architectures for deep learning 

parameter estimation 

In this doctoral thesis, we have explored the use of several network architectures for diffusion 

parameter estimation, including multi-layer perceptrons (MLPs), convolutional neural 

networks (CNNs), and transformers.  

Within this thesis, MLPs have been thoroughly explored for diffusion parameter estimation. 

MLPs proved to be highly adaptable and computationally efficient, providing a robust 

framework to investigate various learning strategies and training hyperparameters for deep 

learning IVIM parameter estimation. However, it is important to note that MLPs do not take 

into consideration the spatial dependencies inherent in diffusion data. Consequently, MLPs may 

be better suited as a faster alternative to conventional least squares methods, which also do not 

incorporate spatial information.  

In contrast, as evidenced in Paper III, CNNs and transformers can incorporate spatial 

information by exploiting relationships between diffusion signals in neighboring voxels when 

trained in a supervised manner. Paper III demonstrated that transformers outperformed CNNs 

in terms of accuracy and convergence speed for deep learning diffusion parameter estimation 

(applied to IVIM). These findings align with the study conducted by Davood et al. (111), which 

demonstrated that a transformer network outperformed a CNN when trained on high-quality 

diffusion tensor imaging data for reconstructing the diffusion tensor from low-quality data. This 

prompts for a reconsideration of CNNs as the default operators for computer vision tasks in 

medical imaging. 

The superiority of transformers can be attributed to their attention mechanism, enabling them 

to effectively capture complex long-range spatial dependencies while being permutation-

invariant. In contrast, CNNs exhibit an inductive bias on locality which impairs their ability to 

capture long-range spatial dependencies in an image. While this bias has been instrumental in 

the success of CNNs, it might not be ideal for parameter estimation, potentially introducing 

complications in identifying correlated neighbors as emphasized in Paper III. 

This thesis explored the application of self-attention (96) and the recently proposed 

neighborhood-attention (98) within transformers for deep learning parameter estimation. 

Neighborhood-attention enabled training with larger receptive fields than self-attention, 

potentially incorporating more spatially-correlated neighbors into the network’s optimization 

process, leading to improved fitting. As noted in Paper III, neighborhood-attention introduces 
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overlapping neighborhood-attention blocks with a specific kernel size in its layers, potentially 

complicating the identification of correlated neighbors within a patch, in a manner similar to 

CNNs, due to the local inductive biases. However, self-attention is constrained to smaller 

receptive fields due to memory constraints. Ultimately, neighborhood-attention achieved 

superior accuracy by training on larger receptive fields. Thus, in scenarios where transformer 

networks can be trained on larger receptive fields beyond the capacity of self-attention, opting 

for neighborhood-attention networks may be the more advantageous choice.  

Alternative transformer concepts that have not been explored in this thesis are vision 

transformers (ViTs) (100). ViTs, introduced by Dosovitskiy et al. in the paper "An Image is 

Worth 16x16 Words: Transformers for Image Recognition", interpret images as a sequence of 

patches and process them through a standard self-attention transformer. ViT networks can 

capture long-range dependencies in images based on self-attention. ViTs have found use in 

many applications within medical imaging, such as classification (143), segmentation (144–

147), and object detection (148), where they outperformed other CNN approaches. Intriguingly, 

recent research suggests that ViTs exhibit errors more consistent with those of humans than 

CNNs (149–151). As tissues are typically locally homogenous and may not exhibit long-range 

dependencies across the entire image, the focus of this thesis was not on ViTs. In Paper III, we 

focused on networks that emphasize local correlations between neighboring voxels. 

Nevertheless, future work should explore the potential of ViTs in deep learning diffusion 

parameter estimation. 

One possible limitation of ViTs is that they require pre-training on large datasets, and most 

ViT-based networks, including TransUNet (152), are pre-trained on ImageNet (153). When 

initialized with random weights instead of pre-training, CNNs tend to outperform ViTs (154). 

Pre-training on ImageNet may be suboptimal due to the substantial domain gap between natural 

and medical imaging modalities. Research by Xie et al. (155) demonstrated that their ViT 

network, pre-trained on large datasets of medical images, exhibited a substantial improvement 

in medical image classification compared to training on ImageNet. This underscores the 

importance of obtaining large datasets in medical imaging to fully harness the potential of deep 

learning techniques and transformers. However, medical imaging datasets are substantially 

smaller than natural image datasets, primarily due to factors such as cost, privacy concerns, and 

the scarcity of certain diseases. This makes the efficient training of DNNs in the medical 

domain challenging. These findings emphasize the critical importance of designing a training 

dataset that closely aligns with the test data, as discussed in Section 4.2. 
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A noteworthy extension of transformers involves hybrid transformer-CNN approaches, aiming 

to leverage the combined strengths of transformers, such as capturing long-range dependencies, 

and CNNs, adept at capturing local patterns. One well-known example is TransUNet (152), 

along with other approaches (156–159), specifically designed for image segmentation. 

TransUNet has been applied in various image segmentation tasks, including setting a new 

record (at the time of publication) on the automated cardiac diagnosis challenge (160). Future 

research should explore whether hybrid transformer-CNN approaches can further improve the 

performance of deep learning diffusion parameter estimation. However, as indicated by our 

findings in Paper III, the attention mechanism might just prove superior when exploiting 

relationships between diffusion signals in neighboring voxels compared to convolution 

approaches. 

To conclude, these findings emphasize the importance of selecting an appropriate network 

architecture tailored to the specific demands and characteristics of the diffusion parameter 

estimation task. While research regarding the use of transformers in diffusion parameter 

estimation has been somewhat limited, the growing prominence of transformers in computer 

vision (97), including the work performed in this thesis, indicates substantial promise for further 

advancing their integration into deep learning diffusion parameter estimation. Further research 

is imperative to unlock the full potential of transformers and assess their suitability in diverse 

clinical settings. 
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4.4 Hyperparameters for deep learning parameter 

estimation 

Hyperparameters play a pivotal role in the performance of DNNs for diffusion parameter 

estimation. These parameters are not learned from the data but are set prior to training, affecting 

various aspects of the training process and the network's generalization capability. In this thesis, 

particularly in Papers I and II, the impact of several key hyperparameters were explored on the 

accuracy and convergence of DNNs. 

4.4.1 Learning rate 

Our experiments highlight the pivotal role of selecting an appropriate learning rate in training 

DNNs. Learning rate is related to the stochastic nature of the DNN training process due to 

various sources of randomness during training (161). This stochasticity arises from factors such 

as the random initialization of weights and the shuffling of training data batches. These 

stochastic elements contribute to the variability observed in training the DNNs, even when 

trained on the same dataset multiple times, as demonstrated throughout this thesis. Achieving 

consistency in performance is essential, as it is undesirable for a network to predict a valid 

solution at one time and a suboptimal solution at another. Recognizing this, Paper I identified 

the need to quantify stochasticity as a performance measure, referred to as consistency. Here, 

consistency was evaluated by training the network 50 times on identical data with random 

initializations. Koopmans et al. (162) applied a similar strategy by training an IVIM-NET 

network 100 times. Engaging in multiple training sessions is indeed a highly time-consuming 

and exhausting pursuit, prompting the exploration of more efficient approaches. 

One of the straightforward approaches to mitigate this variability in training is to alter the 

learning rate. Paper II demonstrated that a higher learning rate might lead to faster convergence 

but may also induce undesirable oscillating behavior with big spikes. This leads to poor 

consistency, where the optimization process might ‘overshoot’ the minimum of the loss 

function. Therefore, caution is advised when using high learning rates. Conversely, a low 

learning rate enhances consistency, but excessively low rates should be avoided to prevent 

sluggish network convergence. Hence, there is a need for careful tuning in the selection of 

learning rates. 

While our focus in this thesis has been on fixed learning rates to maintain experiment 

consistency, it is generally acknowledged that dynamic learning rates can substantially improve 

convergence speed. A common dynamic learning rate is a monotonically decreasing learning 

rate scheduler, where the learning rate decreases at a fixed number of epochs by a factor or 
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percentage. Another widely used dynamic learning rate is the ‘reduce learning rate on plateau’ 

(ReduceLROnPlateau) technique, which adjusts the learning rate when a plateau in network 

performance is detected. It is crucial to note that these methods should not be applied to 

different training sets in the same manner. Each application requires careful tuning, as these 

approaches are susceptible to prolonged plateaus in test loss.  

As an example, in Paper III, a prolonged plateau appeared in the test loss for the convolution-

neighborhood network before a subsequent dip occurred (at epoch 6000 in Figure 1). Therefore, 

a poor configuration of these dynamic learning rate methods could lead to the underestimation 

of network performance, resulting in suboptimal outcomes. Moreover, these methods heavily 

depend on the number of batches per epoch, which may not be desirable. It could be argued 

that a well-tuned learning rate, combined with a ReduceLROnPlateau method towards the end 

of the network may offer the optimal balance between achieving a fast and consistent network.  

Another noteworthy dynamic learning rate technique is ‘cyclical learning rates’ (163), where 

the learning rate oscillates during training between reasonable boundary values, allowing the 

network to escape from local minima more effectively and potentially converge faster.  

4.4.2 Network capacity 

Concerning the capacity of DNNs, the structural aspects of a deep learning network, particularly 

its depth and width, profoundly influence its ability to capture intricate data relationships. In 

Paper I, an approach was taken where the number of hidden units equated to the number of 

measured b values. This approach has also been employed by several other studies 

(102,118,119). However, subsequent research within this thesis has led to the conclusion that 

this approach is not recommended. Paper II underscored that such a choice can severely limit 

the capacity of DNNs. During the initial exploration phase, emphasis should be placed on the 

selection of a configuration suitable for the given task. While a suitable configuration of these 

network hyperparameters encompasses a relatively wide range, it is advisable to explore several 

configurations in terms of eventual loss and computational demands. Considering network 

configurations that lean towards greater capacity could be advantageous to ensure that the 

network’s complexity is sufficient and prevent underestimating its learning potential, even if 

this comes at the expense of increased computational demands.  

Concerning activation functions, Paper II showed that utilizing different activation functions 

between each layer in the network did not produce a considerable performance improvement, 

provided that the network was trained until true convergence. 
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4.4.3 Regularization 

Regularization techniques such as early stopping, batch normalization (107), and dropout (108), 

were initially suggested as network hyperparameters that mitigate overfitting and enhance the 

performance of IVIM-NEToptim in Paper I. However, Paper II unveiled some crucial insights 

regarding these methods. Firstly, it was discovered that early stopping, if applied improperly 

by terminating the training process before reaching true convergence, could introduce biases 

and correlations in parameter estimation. These correlations were also present in the original 

unsupervised deep learning IVIM approach of Barbieri et al (102), as highlighted in Paper I. To 

address this issue, Paper II found that extending training beyond the point of early stopping 

could resolve these undesirable correlations and reduce errors. In addition, Paper II also 

indicated potential drawbacks of using batch normalization or dropout (also the stochastic 

gradient descent or SGD optimizer). Paper II demonstrated that these methods could even lead 

to suboptimal performance in certain cases. Therefore, caution and comprehensive evaluation 

are advised when using these regularization techniques. 

4.4.4 Concerning hyperparameter optimization and IVIM-NET 

This section provides a critical overview of key aspects of IVIM-NEToptim, considering recent 

discoveries. 

In the case of IVIM-NEToptim, sigmoid activation functions were employed to the output of the 

network. The rationale behind introducing these sigmoid activation functions was to confine 

the parameter values within biophysically plausible ranges, which was intended to facilitate the 

convergence of the network towards more accurate solutions. However, it was observed that in 

regions characterized by low SNR and thus heightened uncertainty, parameter estimates 

predicted by IVIM-NEToptim are apparently biased towards the center of the sigmoid functions. 

It is worth noting that this phenomenon has not been formally documented in the scientific 

literature or the scientific papers within this thesis. Yet, this apparent bias of the sigmoid 

functions can explain the unexpectedly high values of D* observed in anatomies where IVIM-

NEToptim has been applied. For instance, IVIM-NEToptim demonstrated elevated D* in white 

matter (e.g. low SNR regions) when applied to brain data (109) (also observed in Paper II), and 

similar high D* values when applied to liver data (112). Consequently, these findings 

discourage the use of sigmoid activation functions to the output of the network. Instead, our 

findings indicate that employing absolute value activations functions to the output of the 

network, as a means to avoid the possibility of exploding gradients due to negative outputs, 

represents a viable alternative. 
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Another substantial factor in the unforeseen shortcomings of IVIM-NEToptim was the fact that 

the network was exclusively optimized within simulated settings, where RMSE was solely used 

as a measure of accuracy. However, as emphasized by Epstein et al. (132), RMSE is considered 

an insufficient performance measure alone. The sensitivity to outliers of RMSE tends to favor 

methods that consistently produce parameter estimates close to the mean parameter values, 

thereby endorsing biased approaches that estimate parameters towards those means. In the 

specific case of IVIM-NEToptim, the center of the sigmoid functions closely mirrored the mean 

of the test distribution in the performed simulations of Paper I. Combined with the network's 

shallow architecture and the early-stopping criterion, this resulted in an estimator that predicted 

estimates closely aligned with the mean of the test distribution, yielding a low RMSE, but an 

apparently biased approach. Therefore, and in line with the findings of Epstein et al. (132), it is 

advisable not to rely solely on (low) RMSE as the exclusive metric for evaluating parameter 

estimation performance. Instead, it should always be accompanied by an evaluation of bias and 

variance. Paper II demonstrated that such evaluations can be effectively visualized through 

scatter plots that compare ground truth parameters to the estimated values. 

To conclude, hyperparameter tuning is a crucial aspect in the development of DNNs for 

diffusion parameter estimation. Techniques like grid search can be employed to systematically 

search the hyperparameter space and identify the optimal configuration. However, it is worth 

noting that this process can be time-consuming and exhausting. This thesis found that the 

impact of individual hyperparameters appeared to be reduced after training extensively. Future 

research should explore whether regularization techniques can considerably enhance the 

performance of deep learning diffusion parameter estimation, rather than solely expediting 

convergence. Ultimately, the primary focus should be on designing a robust training dataset, as 

hyperparameters cannot compensate for a low-quality dataset.  
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4.5 Communication, exploitation, and reproducibility 

The primary means of communicating the findings presented in this thesis was via the 

publication of research articles in international scientific journals. Both Paper I (164) and Paper 

II (165) have been published in the prestigious Journal of Magnetic Resonance in Medicine 

(MRM), one of the top-tier journals specifically focusing on clinical MRI research with an 

emphasis on methodology. It is noteworthy that Paper I received a certificate as being one of 

the top research articles in MRM, making an immediate impact on the community. In addition, 

Paper I was highlighted and selected by the International Society for Magnetic Resonance in 

Medicine (ISMRM) to appear in a virtual issue of MRM entitled “Diffusion MRI: From 

Research to Clinic” (166), highlighting the evolution of the field over the previous three years.  

One of the important characteristics of Paper I is the provision of openly accessible code upon 

publication (167), which is both comprehensive and well-documented. This code encompasses 

a diverse range of examples, from simulations to in vivo experiments. This availability 

facilitated the reproducibility, validation, and advanced the collective knowledge in the field. 

The methods from Paper I have been implemented and adapted in several studies 

(109,112,118,119), demonstrating the impact of Paper I on subsequent research endeavors. The 

codes for both Paper II (168) and Paper III (169) have also been openly accessible. Given that 

deep learning is a relatively new concept within medical imaging and parameter estimation, 

sharing code plays a pivotal role in familiarizing researchers with this innovative technology. 

Considering recent assessments and discoveries related to the approach advocated in Paper I, it 

is important to highlight that declaring a method as a groundbreaking innovation might be 

premature without thorough evaluations across various anatomies. Therefore, while the 

approaches presented in Paper III show great potential, we have adopted a cautious stance, 

refraining from advocating a singular best method. Instead, we have taken a more suggestive 

approach, acknowledging the potential while emphasizing the necessity for further research. 
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4.6 Research ethics 

Ethical considerations hold paramount significance in every scientific endeavor, particularly 

when dealing with sensitive medical data. This section on research ethics is primarily based on 

the following review papers in medical ethics (170,171) and their relation with AI (172–174).  

Fundamental to research involving human subjects is the ethical principle of obtaining informed 

consent. Participants have the ethical right to comprehensive information regarding the 

research, including its objectives, potential benefits, and associated risks. Participants should 

be assured of their right to withdraw from the study at any time without facing adverse 

consequences. Institutional and local ethics committees play a pivotal role in safeguarding the 

rights and well-being of research participants under these principles. These committees should 

meticulously assess the benefits, harms, and risks associated with both the systems to be 

developed and the acquired data. Researchers and developers of AI methodologies have the 

ethical responsibility of upholding the dignity and rights of the participants. This commitment 

extends to securing patient data, refraining from its commercialization, and ensuring its 

utilization aligns with the ethical consent provided by the participants.  

Within the context of this thesis, all participants contributing to the utilized datasets - a 

pancreatic tumor dataset from Amsterdam UMC hospital (Netherlands), a brain tumor dataset 

from the University of Lausanne (Switzerland), and a brain dataset from a healthy volunteer at 

St. Olav’s University Hospital (Norway) – have granted written informed consent. Moreover, 

the studies have received ethical approval from local medical ethics committees, affirming a 

steadfast adherence to ethical standards throughout the entire research process.  

Anonymization is another essential step to safeguard the privacy of individual participants. 

Following data collection, it is crucial to implement security measures to guarantee the 

confidentiality and integrity of the medical data. Restricted access to datasets for authorized 

personnel, along with data storage in secure environments adhering to local and international 

data protection regulations, is paramount. In this thesis, these guidelines were carefully 

followed. Prior to data utilization, personally identifiable information, including names and 

medical record numbers, underwent removal or encryption to proactively mitigate any potential 

identification risks. Access to the datasets was restricted to authorized personnel and data was 

securely stored on local servers.  

It is important to highlight that this thesis extensively utilized synthetically generated data. In 

addition to the quantitative benefit, the use of synthetic data offered the advantage of creating 
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diverse representative datasets for training and testing without compromising the privacy of 

individuals. Ensuring a diverse range of data is crucial to prevent the development of AI models 

with a narrow perspective and to facilitate generalization. Acquiring a substantial variety often 

demands large in vivo datasets, and synthetic data circumvents this. It must be noted that ethical 

research values inclusivity and diversity as a means to promote equitable outcomes.  

Sharing data between institutions is often challenging for several reasons related to privacy, 

security risks, interoperability challenges, and regulatory concerns. Consequently, the 

processes of sharing and obtaining relevant data are often time-consuming. However, synthetic 

datasets allow researchers to openly collaborate and contribute to collective knowledge without 

compromising ethical standards regarding data ownership and confidentiality.  

In line with this, there is a strong recommendation to make datasets and code publicly available. 

This promotes transparency, reproducibility, collaboration, education and training, and the 

advancement of scientific knowledge. Indeed, it is crucial to adhere to all ethical considerations 

as described above when engaging in this practice, including informed consent and 

anonymization. In this thesis, in vivo examples, code for generating synthetic data, and other 

relevant code have been made publicly available on GitHub (167–169). It is strongly 

encouraged to pursue this standard of open science in research. 
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Chapter 5 
 Conclusion 
 
 
 

The primary objective of this thesis was to improve the robustness, accuracy, and precision of 

diffusion and perfusion-related parameters from DWI data. The overarching goal was to 

improve the mapping of cancer biomarkers through the application of deep learning. The 

specific focus was on improving the parameter estimation of the intravoxel incoherent motion 

(IVIM) model within diffusion-weighted imaging (DWI), offering an alternative to potentially 

harmful dynamic contrast-enhanced MRI (DCE-MRI) methods. 

Fitting the IVIM model to DWI data is a challenging ill-posed signal analysis problem, 

primarily due to the low SNR inherent to DWI and the low perfusion fractions typically 

encountered. Conventional fitting methods such as least squares, the segmented approach, and 

Bayesian interference are highly sensitive to noise, rely on model assumptions, computational 

demands, and inherent biases, making them unsuitable for clinical use. This has prompted the 

exploration of alternative fitting methods within the context of IVIM. In this pursuit, deep 

learning emerges as a promising solution, with the potential to overcome challenges in diffusion 

and IVIM parameter estimation. Moreover, deep learning proves itself to be a versatile tool, 

offering a myriad of possibilities and adaptability to user needs. Given the flexibility of deep 

learning, customization and validation become crucial for optimal system performance. This 

thesis extensively explored various facets of deep learning, providing a comprehensive 

evaluation of learning strategies such as unsupervised and supervised learning. It also 

thoroughly explored various other aspects of deep learning, including different training and test 

data, hyperparameters, and the utilization of various deep learning architectures such as MLPs, 

CNNs, and transformers. 

While unsupervised learning for DNNs may appear straightforward and promising, this thesis 

demonstrated that optimizing DNNs on measured and noisy signals results in parameter 
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estimates that display a variability similar to least squares. A crucial factor is to ensure that the 

network is trained until true convergence to alleviate training bias and correlated parameters. 

The variability similar to least squares fitting was consistently observed regardless of the 

training data or network architecture employed, where unsupervised learning showed no 

noticeable benefit from leveraging spatial information when employing CNNs or transformer 

neural networks. Additionally, it is essential to note that unsupervised deep learning approaches 

introduced in this thesis, such as IVIM-NEToptim in Paper I, may lead to suboptimal performance 

when applied to different anatomies. Based on these findings, unsupervised deep learning may 

not be the preferred approach for improved parameter estimation.  

Conversely, supervised approaches have been considered susceptible to training data bias and 

are generally discouraged within the community. However, this thesis introduced an innovative 

supervised approach that can effectively leverage neighboring information to improve 

supervised deep learning diffusion parameter estimation. This approach, where attention 

models are trained supervised on spatially-correlated synthetic data in patches, can efficiently 

leverage correlations within neighboring voxels when present. This strategy apparently reduces 

the sensitivity to noise in a similar manner to signal averaging, resulting in a substantial 

improvement in parameter estimation and a reduction in inherent supervised bias. Furthermore, 

a particular advantage of the proposed method is its sensitivity to genuine underlying 

heterogeneity, a feature notably absent in other conventional fitting methods. These features 

make the proposed method highly desirable and show the potential of supervised learning for 

diffusion parameter estimation 

A pivotal aspect of parameter estimation involves appropriately validating the designed 

estimators. While using in vivo signals as test data for validation has direct relevance to the 

application, it presents a fundamental limitation. In vivo data lacks ground truths for 

quantitative assessment, offering only qualitative insights that could potentially be 

misconstrued and misleading. Such qualitative assessments could obscure biases, particularly 

important in deep learning, where approaches might smooth away pathologies. In quantitative 

MRI, the pursuit of obtaining reliable quantitative parameter maps necessitates ground truth 

data for quantitative evaluation.  

In response to this challenge, this thesis presents an innovative approach: fractal-noise maps 

possessing spatially-correlated ground truth. This novel approach has yielded crucial findings 

within this thesis, demonstrating that neighborhood-attention networks trained on synthetic data 

with larger receptive fields further improve the performance of supervised deep learning 



 
Deep learning diffusion parameters from magnetic resonance imaging 

 
Conclusion 

_______________________________________________________ 
 

103 

  

diffusion parameter estimation, as exemplified for the IVIM model. Additionally, fractal-noise 

may open up new avenues the field of quantitative medical image analysis. 

In conclusion, this thesis has substantially advanced the field of deep learning diffusion 

parameter estimation, marking a substantial step towards the clinical implementation of 

complex diffusion signal analysis problems, especially in the context of IVIM for DWI. These 

advancements go beyond the scope of cancer, holding potential for various other diseases 

characterized by substantial changes in diffusion and perfusion tissue characteristics. This 

indicates a promising avenue for enhancing capabilities in screening, early detection, diagnosis, 

and treatment monitoring across a spectrum of medical conditions. 

This thesis serves as a cornerstone for future research endeavors aimed at refining the reliability, 

accuracy, and precision of our methods. Initial exploration should concentrate on enhancing the 

representativeness of synthetic data, both in training and testing, to align more closely with in 

vivo data. This can be achieved by incorporating prior assumptions about the in vivo data into 

the network's training process, potentially enhancing overall performance. In this pursuit, 

fractal-noise could offer realistic representations of tissue heterogeneity and diversity. 

Furthermore, subsequent research should prioritize uncertainty quantification, offering 

interpretable and explainable approaches to guide fellow researchers, physicians, and clinicians 

in deciding whether to adopt and trust the proposed methods. 

However, perhaps the most important future step should involve a comprehensive comparative 

study to ascertain whether DNNs confer clinical advantages over other estimators. This study 

should particularly emphasize clinical performance and alignment with the expectations of 

radiologists. Crucially, it must encompass diverse anatomies with varying noise levels and 

tissue characteristics, complemented by histological characterization and tumor classification. 

Ideally, these datasets should be made open source to address the scarcity of clinical data and 

encourage open research. This comprehensive clinical assessment is pivotal for establishing a 

trusting relationship between radiologists and AI models, laying the foundation for the practical 

implementation of deep learning diffusion and IVIM parameter estimation in clinical settings. 
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ing (DWI). This study presents a substantially improved version, IVIM- NEToptim, and 

characterizes its superior performance in pancreatic cancer patients.

Method: In simulations (signal- to- noise ratio [SNR] = 20), the accuracy, independ-

ence, and consistency of IVIM- NET were evaluated for combinations of hyperpa-

rameters (fit S0, constraints, network architecture, number of hidden layers, dropout, 

batch normalization, learning rate), by calculating the normalized root- mean- square 

error (NRMSE), Spearman’s ρ, and the coefficient of variation (CVNET), respectively. 

The best performing network, IVIM- NEToptim was compared to least squares (LS) 

and a Bayesian approach at different SNRs. IVIM- NEToptim’s performance was eval-

uated in an independent dataset of 23 patients with pancreatic ductal adenocarcinoma. 

Fourteen of the patients received no treatment between two repeated scan sessions and 

nine received chemoradiotherapy between the repeated sessions. Intersession within- 

subject standard deviations (wSD) and treatment- induced changes were assessed.

Results: In simulations (SNR = 20), IVIM- NEToptim outperformed IVIM- NETorig in 

accuracy (NRMSE(D) = 0.177 vs 0.196; NMRSE(f) = 0.220 vs 0.267; NMRSE(D*) = 

0.386 vs 0.393), independence (ρ(D*, f) = 0.22 vs 0.74), and consistency (CVNET(D) =  

0.013 vs 0.104; CVNET(f) = 0.020 vs 0.054; CVNET(D*) = 0.036 vs 0.110). 
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1 |  INTRODUCTION

The intravoxel incoherent motion (IVIM) model1 for 

diffusion- weighted imaging (DWI) shows great potential 

for estimating predictive and prognostic cancer imaging bio-

markers.2- 5 In the IVIM model, DWI signal is described by 

a bi- exponential decay, of which one component is attributed 

to conventional molecular diffusion and the other to the inco-

herent bulk motion of water molecules, typically credited to 

capillary blood flow. Hence, IVIM simultaneously provides 

information on diffusion (D; diffusion coefficient), capillary 

microcirculation (D*; pseudo- diffusion coefficient), and the 

perfusion fraction (f) without the use of a contrast agent.6- 8 

However, despite IVIM’s great potential,2- 5 it is rarely used 

clinically. Two major hurdles preventing routine clinical 

use of IVIM are its poor image quality and the long fitting 

time.9- 11 Tackling these shortcomings will help toward wider 

use of IVIM.12

Currently, IVIM is often fitted using the conventional 

least squares (LS) algorithm. However, more accurate al-

ternative approaches have been suggested.9 Until recently, 

Bayesian algorithms for IVIM fitting13 were most prom-

ising regarding inter- subject variability,9 precision, accu-

racy,14 and smooth parameter maps, suggesting less noise.15 

Conversely, Bayesian approaches are substantially slower 

(9 × 10−2 s/ vox11) than the already slow LS approach (8 × 

10−3 s/ vox11). Furthermore, Bayesian approaches may lead to 

biased perfusion estimates of the IVIM model.16

Recently, a promising alternative for IVIM fitting was 

introduced: estimating IVIM parameters with deep neural 

networks (DNNs). Initially, Bertleff et al17 introduced a su-

pervised DNN for IVIM parameter estimation, in which the 

network was trained on simulated data for which the underly-

ing parameters were known. However, the strong assumption 

of simulated training and test data being identically distrib-

uted could limit the network’s performance in vivo, where 

noise behaves less ordered. We solved this shortcoming in 

earlier work,11 where we used unsupervised physics- informed 

deep neural networks (PI- DNNs).18,19 PI- DNNs formulate a 

physics- informed- loss- function that finds learned parame-

ters through an iterative process. In this case, the PI- DNN 

used consistency between the predicted signal from the 

IVIM model and the measured signal as a loss term in the 

DNN. This resulted in an unsupervised PI- DNN capable of 

training directly on patient data with no ground truth: IVIM- 

NETorig. We demonstrated in both simulations and volunteer 

analysis that IVIM- NETorig is superior to the conventional 

LS approach and even performs (marginally) better than the 

Bayesian approach. Furthermore, IVIM- NETorig’s fitting 

times were substantially lower (4 × 10−6 s/vox11) than the LS 

and Bayesian approaches. However, that proof of principle 

IVIM- NET study did not explore many hyperparameters and 

focused on volunteer data.

In this work, we hypothesize that IVIM- NETorig can be 

improved by exploring the architecture of the network, its 

training features and other hyperparameters. Hence, we char-

acterized the performance of IVIM- NET for different hyper-

parameter settings by assessing the accuracy, independence, 

and consistency of the estimated IVIM parameters in simu-

lated IVIM data. Finally, we compared the performance of 

our optimized IVIM- NET to the LS approach and a Bayesian 

approach in patients with pancreatic ductal adenocarcinoma 

(PDAC) receiving neoadjuvant chemoradiotherapy (CRT) in 

terms of image quality, parameter to noise ratio, test- retest 

reproducibility, and sensitivity to treatment effects.

2 |  METHODS

2.1 | IVIM- NET

We initially implemented the original PI- DNN (IVIM- 

NETorig)
11 in Python 3.8 using PyTorch 0.4.1.20 The input 

layer consisted of neurons that took the normalized DWI sig-

nal S(b)/S(b = 0) as input, where S(b) is the measured sig-

nal at diffusion weighting b (b value). The input layer was 

IVIM- NEToptim showed superior performance to the LS and Bayesian approaches 

at SNRs < 50. In vivo, IVIM- NEToptim showed significantly less noisy parameter 

maps with lower wSD for D and f than the alternatives. In the treated cohort, IVIM- 

NEToptim detected the most individual patients with significant parameter changes 

compared to day- to- day variations.

Conclusion: IVIM- NEToptim is recommended for accurate, informative, and consist-

ent IVIM fitting to DWI data.

K E Y W O R D S

deep neural network, diffusion- weighted magnetic resonance imaging, intravoxel incoherent 

motion, IVIM, pancreatic cancer, unsupervised physics- informed deep learning
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followed by three fully connected hidden layers. Each hidden 

layer had several neurons equal to the number of measure-

ments (b values and the number of repeated measures) and 

each neuron, in turn, contained an exponential linear unit ac-

tivation function.21 The output layer of the network consisted 

of the three IVIM parameters (D, f, D*). To enforce the out-

put layer to predict these IVIM parameters, two steps were 

taken. First, the absolute activation function was taken of the 

neuron’s output (X) to constrain the predicted parameters, for 

example, to compute D:

Second, a physics- based loss function was introduced that 

computed the mean squared error between the measured input 

signal, S(b), and the predicted IVIM signal Snet(b), which was 

obtained by inserting the predicted output parameters into the 

normalized IVIM model. Hence:

with

where B is the total number of image acquisitions.

Next, we evaluated whether seven novel hyperparameters 

(Table 1; Figure 1) of IVIM- NET improved fitting results. 

First, instead of fixing S0, we added S0 as an additional output 

parameter, to allow the system to correct for noise in S(b = 0). 

Second, to restrict parameter values to physiologically plau-

sible ranges, scaled sigmoid activation functions instead of 

absolute activation functions were used to constrain the pre-

dicted parameters (Table 1), for example, to compute D:

where Dmin and Dmax are the fit boundaries. Bound inter-

vals of the sigmoid activation functions were chosen 60% 

wider (30% at each side) than the fit boundaries of the LS 

and Bayesian approaches (specified in section 2.2 below) to 

compensate for decreasing gradients at the asymptotes of the 

sigmoid function. Third, we varied the number of hidden lay-

ers between one and nine. Fourth, we used dropout regular-

ization22 in all hidden layers except for the last one. Dropout 

randomly removes a set percentage of network- weights each 

iteration during training. Fifth, we used batch normalization,23 

which normalizes the input by re- centering and re- scaling, 

and, consequently, preserves the representation ability of the 

network. Sixth, to reduce unwanted correlation between esti-

mated parameter values, we implemented an alternative net-

work architecture in which parameter values were predicted, 

in parallel, by independent sub- networks (Table 1; Figure 1). 

Furthermore, we evaluated different learning rates (LR) of 

the Adam optimizer,24 ranging from 1 × 10−5 to 3 × 10−2, and 

with constant β = (0.9, 0.999).

In traditional deep learning, training and evaluation are 

done on separate datasets, but as this is an unsupervised 

DNN approach, training was done on the same data as evalu-

ation.11,25 So, for simulations, these were simulated data, and 

in vivo, these were in vivo data. 90% of the data were used for 

training, and 10% of the data were used for validation. Early 

stopping occurred when the validation loss did not improve 

over 10 consecutive training epochs. Given the large amount 

of training data and the limited number of network parame-

ters, each epoch consisted of only 500 random batches. So, 

effectively the network saw 500 × 128 IVIM curves in be-

tween validations.

2.2 | Simulations: characterization and 
optimization

100,000 IVIM curves were simulated to investigate the ef-

fects of different hyperparameters on the accuracy, independ-

ence, and consistency of the estimated IVIM parameters. 

DWI signals were simulated based on Equation 3 with S0 = 

1, 11 b values (b = 0, 5, 10, 20, 30, 40, 60, 150, 300, 500, and 

700 s/mm2), and pseudorandom uniformly sampled values 

(1)D = |X [1]| .

(2)L =
1

|B|
∑

b∈B

(
S (b)

S (b = 0)
− S

net (b)

)2

,

(3)Snet (b) = fe−bD ∗

+ (1 − f ) e−bD
,

(4)D = Dmin + sigmoid (X [1]) ∗
(

Dmax − Dmin

)

,

T A B L E  1  Hyperparameter settings for training IVIM- NET, including the settings for IVIM- NETorig and IVIM- NEToptim

Hyperparameter Values IVIM- NETorig IVIM- NEToptim

Fit S0 True, False False True

Constraints Sigmoid, Absolute Absolute Sigmoid

Parallel networks True, False False True

Number of hidden layers 1,2 3, 4, 5, 6, 7, 8, 9 3 2

Dropout regularization 0%, 10%, 20%, 30% 0% 10%

Batch normalization True, False False True

Learning rate 1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3,  

1 × 10−2, 3 × 10−2

1 × 10−3 3 × 10−5
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of D: 0.5 × 10−3 to 3 × 10−3 mm2/s, f: 5 to 55%, and D*: 

10 × 10−3 to 100 × 10−3 mm2/s. These ranges were slightly 

broader than the typical values found in abdominal IVIM.26 

Random Rician noise in the form of complex Gaussian noise 

was added to the curves with predefined signal- to- noise 

ratio (SNR) levels (constant noise amplitude over b values; 

SNR defined at b = 0 as S(b = 0)/σ, with σ the SD of the 

Gaussians).27

Accuracy was assessed as the normalized root- mean- 

square error (NRMSE) between the ground truth parameter 

values and the estimated IVIM parameters.

Independence of the parameter estimates was assessed 

by the Spearman rank correlation coefficients (ρ) between 

all parameter pairs. As the simulated data were independent 

and random, a ρ should be 0. The absolute value of ρ was 

taken, as both positive and negative deviations from zero 

are equally undesirable. Some networks always returned the 

same value for D*, independent of the input data (Supporting 

Information Figure S1, which is available online). For such 

cases, ρ is technically undefined. As these cases are undesir-

able ρ was set to 1.

As training a DNN is a stochastic process, training on 

the same dataset results in different final network- weights, 

and consequently, different predictions on the same data. To 

assess the consistency of estimated parameter values, each 

network variant was trained 50 times on identical data, where 

each repeat had a new random initialization, dropout, and 

batch selection. The normalized coefficient of variation per 

F I G U R E  1  Representation of the PI- DNN with different hyperparameter options (Table 1). In this example, the input signal, consisting of the 

measured DWI signal, is fedforward either through a parallel network design where each parameter is predicted by a separate fully connected set of 

hidden layers (A) or the original single fully connected network design (B). The blue circles indicate an example of randomly selected neurons for 

dropout. In this example, the output layer consists of four neurons with either absolute (Equation 1) or sigmoid activation functions (Equation 4) 

whose values correspond to the IVIM parameters. Subsequently, the network predicts the IVIM signal (Equation 3), which is used to compute the 

loss function (Equation 2). With the loss function, the network trains the PI- DNN to give good estimates of the IVIM parameters
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parameter over the repeated trainings (CVNET) was taken as a 

measure of the consistency:

where x̄true is the mean simulated IVIM parameter value, n the 

number of simulated curves, m the number of repeated train-

ings, xi,j is the jth repeated prediction of the ith simulated decay 

curve, x̄i is the mean over the repeated m predictions of the ith 

simulated signal curve. As the LS and Bayesian approaches are 

deterministic, their CVNET was zero.

As a result of the repeated training, we obtained 50 values 

for the NRMSEs and ρ’s. Therefore, the median and inter-

quartile ranges were reported.

As a baseline for comparison, we evaluated the IVIM pa-

rameters (D, f, D*) in IVIM- NETorig, the LS and Bayesian 

approaches. We used the Levenberg- Marquardt non- linear 

algorithm for the LS fit.28,29 For the Bayesian approach, we 

used the algorithm from previous work.11 For both the LS 

and Bayesian approaches, S0 was included as a fit parameter. 

The Bayesian approach used a data- driven lognormal prior 

for D and D*, and a beta distribution for f and S0. The prior 

distributions were determined empirically by fitting these 

distributions to the results from the LS approach on the same 

dataset. The maximum a posteriori probability was used as 

an estimate of the IVIM parameters. The LS and Bayesian 

 approaches were performed with fit boundaries of D: 0 × 

10−3 to 5 × 10−3 mm2/s, f: 0 to 70%, D*: 5 × 10−3 to 300 × 

10−3 mm2/s, and S0: 0.7 to 1.3.

After baseline characterization, IVIM- NET was opti-

mized by testing various combinations of the hyperparam-

eters (Table 1; Figure 1). Previous studies reported reliable 

SNR values of IVIM in the abdomen between 10 and 40.30- 33 

So, to simulate reliable abdominal IVIM signals, an SNR of 

20 was chosen for hyperparameter evaluation. We trained the 

network on the simulated signals using every combination of 

the following options: fit S0 parameters, absolute or sigmoid 

constraints, parallel network, dropout, and batch normal-

ization -  while fixing the number of hidden layers to three 

(used in IVIM- NETorig, Table 1) and the LR to 1 × 10−4. In 

an exploratory phase, we found that reducing the LR from 

1 × 10−3 (IVIM- NETorig) to 1 × 10−4 was essential for obtain-

ing networks with improvements in accuracy, independence, 

and consistency. Each network (ie, combination of hyperpa-

rameters) received a ranking in each of the nine performance 

measures (three metrics for three parameters), and these 

nine ranks were summed. Hence, the best possible summed 

rank is 9. The best performing network was then chosen by 

 selecting the network with the lowest summed rank.

With the best options for the fit S0 parameters, con-

straints, parallel network, dropout, and batch normalization, 

we tested the performance of the network as a function of 

the LR and the number of hidden layers (Table 1). From 

those results, we finally selected the best performing opti-

mized network by again selecting the lowest summed rank: 

IVIM- NEToptim. IVIM- NEToptim’s performance was then 

characterized and compared to the LS approach, Bayesian 

approach and IVIM- NETorig for SNR values between 8 

(low) and 100 (high).

2.3 | Verification in patients with PDAC

We used two IVIM datasets of patients with PDAC to vali-

date IVIM- NEToptim's performance in vivo: one dataset to as-

sess test- retest reproducibility, and one to test whether we 

can detect treatment effects. Both studies were approved by 

our local medical ethics committee, and all patients gave 

written informed consent.

Both datasets (NCT01995240; NCT01989000) were pub-

lished earlier.9,34,35 The first dataset consists of 14 patients 

with locally advanced or metastatic PDAC who underwent 

IVIM in two separate imaging sessions (average 4.5 days 

apart, range: 1- 8 days) with no treatment in- between. The 

second dataset consisted of nine PDAC patients with (bor-

derline) resectable PDAC who received CRT as part of the 

PREOPANC study36 where patients were scanned before and 

after CRT.

MRI data were acquired using a 3T MRI scanner (Ingenia, 

Philips, Best, The Netherlands). A respiratory triggered (nav-

igator on liver dome) 2D multi- slice diffusion- weighted 

echo- planar imaging was used with parameters: repetition 

time (TR) > 2200 ms (depending on respiration speed), echo 

time (TE) = 45 ms, flip angle (FA) = 90 deg, field of view 

(FOV) = 432 × 108 mm2, acquisition matrix = 144 × 34, 

18 slices, slice thickness = 3.7 mm and 12 b values (direc-

tions): 0 (15), 10 (9), 20 (9), 30 (9), 40 (9), 50 (9), 75 (4), 100 

(12), 150 (4), 250 (4), 400 (4), and 600 (16) mm2/s. Fat sup-

pression was carried out with a gradient reversal during slice 

selection and spectral presaturation with inversion recovery. 

Diffusion gradient times were 10.1 ms with a delay between 

diffusion gradients onset of 22.6 ms.

DWI images were co- registered to a reference volume 

consisting of a mean DWI image over all b values using de-

formable image registration in Elastix.37 A radiologist (10 y 

of experience in abdominal radiology) and researcher (4 y of 

experience in contouring pancreatic cancer) drew a region 

of interest (ROI) in the tumor in consensus. IVIM parameter 

maps of D, f and D* were derived using the LS approach, 

Bayesian approach, and IVIM- NEToptim. Background vox-

els were removed automatically before fitting by removing 

voxels with S(b = 0) < 0.5 × median(S(b = 0)). Fitting was 

done without averaging over the diffusion directions. IVIM- 

NEToptim was trained on all combined patient data. Values 

(5)CVNET =
1

xtrue

√

√

√

√

1

n × m − 1

n
∑

i= 1

m
∑

j= 1

xi,j − xi
2 ,
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under 0 for D, f, and D* were considered not physiologic and 

set to 0, and for further statistics, values of D* were masked 

where f < 5% as D* only “exists” in perfused voxels. All 

computations were carried out on a single core of a conven-

tional desktop computer (CPU: Intel Core i7- 8700 CPU at 

3.20 GHz). The average fitting time of each algorithm was 

recorded.

First, the parameter maps were compared qualitatively 

in terms of feature clarity, and by visually assessing con-

sistency of fit to the IVIM signal in pairs of neighboring 

voxels. For a quantitative comparison, the parameter to 

noise ratio (PNR) of the parameter maps was estimated in 

a homogeneous 2D ROI (>20 voxels) in the liver. PNR was 

defined as mean/STD of the homogenous ROIs and was 

calculated for each scan separately. We tested whether the 

difference in PNR between fit approaches was significant 

using paired t- tests.

To determine clinical usefulness of IVIM- NET, we 

investigated whether we could detect changes in param-

eter values throughout CRT by comparing patients re-

ceiving treatment to the baseline test- retest repeatability. 

This analysis was performed with the median parameter 

values from within the ROIs. To evaluate test- retest re-

peatability, intersession within- subject standard devi-

ation (wSD)38 was calculated for each IVIM parameter 

using the data from the patients with repeated baseline 

scans. Bland- Altman plots were plotted for patients from 

both cohorts. We calculated the 95% confidence intervals 

(CIs) from the patients with repeated scans at baseline 

(assuming zero offsets). In the treated cohort, we used a 

paired t- test to test whether parameters had significantly 

changed due to treatment within the cohort (significance 

level α = 0.05). Furthermore, patients from the treat-

ment cohort were added to the Bland- Altman plots and 

individual patients who had changes exceeding the 95% 

CIs were considered to have significant changes in tumor 

microstructure.39

3 |  RESULTS

3.1 | Simulations: characterization and 
optimization

The original network, IVIM- NETorig, showed substantially 

lower NRMSE for all estimated parameters than the LS and 

Bayesian approaches. However, IVIM- NETorig had strong 

correlations between D* and f (high ρ(D*, f); Table 2 and 

Figure 2D), and had considerable CVNET.

The NRMSE, ρ, and CVNET for all hyperparameter 

combinations are shown in the Supporting Information 

Figures S2- S9. The summarizing sum of ranks (Supporting 

Information Figures S5 and S9) allowed us to determine 

IVIM- NEToptim (Table 1). IVIM- NEToptim resolved the high 

ρ(D*, f) found in IVIM- NETorig (Table 2; Figure 2D,E) 

and substantially reduced the NRMSE and CVNET. Single 

changes away from IVIM- NEToptim can lead to marginally 

better NRMSE, lower ρ or lower CVNET (Figure 3), but only 

at a cost to the other two attributes. It is clear that the re-

duced ρ(D*, f) cannot be attributed to a single parameter, but 

was a result of the combination of sigmoid constraints and 

batch normalization (Supporting Information Figure  S3). 

Adding dropout (10%), fitting S0 and using our parallel net-

work design decreased the NRMSE, while still having a low 

ρ(D*, f) (Table 2). Increasing dropout in IVIM- NEToptim 

or using a single network architecture resulted in similar 

NRMSE, however, increased ρ(D*, f) (Figure 3; Supporting 

Information Figures S2- S4). Generally, increasing the num-

ber of hidden layers resulted in a marginally higher ρ, and 

lower NRMSE and CVNET. A too high/low LR (Supporting 

Information Figures S5- S7) caused higher NRMSEs and 

less consistency.

IVIM- NEToptim was superior to the LS and Bayesian ap-

proaches for SNRs 8- 33. Compared to IVIM- NETorig, IVIM- 

NEToptim was associated with improved NRMSE for f and 

D at all SNRs (Figure 4). For D*, the networks performed 

Least 

squares Bayesian IVIM- NETorig IVIM- NEToptim

NRMSE D [fraction] 0.279 0.233 0.196 (0.190- 0.214) 0.177 (0.176- 0.178)

NRMSE f [fraction] 0.387 0.281 0.267 (0.259- 0.273) 0.220 (0.218- 0.222)

NRMSE D* 

[fraction]

0.805 0.575 0.393 (0.382- 0.414) 0.386 (0.381- 0.390)

ρ(D, D*) 0.24 0.08 0.23 (0.17- 0.28) 0.20 (0.19- 0.21)

ρ(D, f) 0.18 0.03 0.04 (0.02- 0.09) 0.01 (0.00- 0.01)

ρ(D*, f) 0.20 0.13 0.74 (0.64- 0.80) 0.22 (0.23- 0.2)

CVNET D [fraction] 0 0 0.104 0.013

CVNET f [fraction] 0 0 0.054 0.020

CVNET D* [fraction] 0 0 0.110 0.036

aValues of IVIM- NET: median (interquartile range).

T A B L E  2  NRMSE, ρ, and CVNET 

of the LS approach, Bayesian approach, 

IVIM- NETorig, and IVIM- NEToptim for 

the estimated parameters IVIM (D, f, D*) 

in simulations at SNR 20 for 50 repeated 

trainingsa
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similarly regarding NRMSE, with IVIM- NEToptim perform-

ing slightly better at SNRs > 20 and IVIM- NETorig for SNRs 

< 20. IVIM- NEToptim had lower ρ(D*, f) than IVIM- NETorig 

and improved CVNET for all SNR levels.

3.2 | Verification in patients with PDAC

Examples of parameter maps computed with the LS ap-

proach, Bayesian approach, and IVIM- NEToptim together 

with two individual voxel fits of PDAC patients from 

both cohorts are presented in Figures 5 and 6. Additional 

parameter maps of 10 other PDAC patients are shown in 

the Supporting Information Figures S11- S20. Qualitatively 

comparing the parameter maps shows that IVIM- NEToptim 

has very similar voxel values as the LS and Bayesian ap-

proaches for most voxels. However, where the LS and 

Bayesian approaches sometimes show “noisy” voxels (ie, 

different from their neighbors) with substantially higher f 

(order of 1) and lower D (some voxels as low as D = 0 

mm2/s; Supporting Information Figures S11, S12) and 

D* (oftentimes to the lower bound of D*; Supporting 

Information Figures S12, S14- S16, S19), IVIM- NEToptim 

often sticks to sensible D, f, and D* that are similar to the 

neighboring voxels resulting in more homogenous param-

eter maps. Note that IVIM- NET is fitted at a per- voxel 

level and is unaware of the voxel location. Quantitatively 

evaluating the parameter maps shows that IVIM- NEToptim 

had significantly better PNR than both the LS and Bayesian 

approaches for D and D* (Table 3) and significantly better 

PNR than the LS approach for f.

In the test- retest cohort, IVIM- NEToptim showed the low-

est wSD for D and f (Table 3), while the Bayesian approach 

had the lowest wSD for D*. When averaging IVIM parame-

ters for the repeated patient scans, IVIM- NEToptim computed 

a higher D, lower f, and higher D* than the LS and Bayesian 

approaches in the tumor (Table 3). The repeated scans are 

visualized as black x’s in the Bland- Altman plots, together 

with their 95% CIs in Figure 7.

When considering the CRT patients as a whole, IVIM- 

NEToptim found a significant increase in mean D and f after 

treatment, whereas the LS approach found only a signif-

icant increase in D after treatment in the tumor (Table 3). 

The Bayesian approach found no significant change in IVIM 

parameters.

Figure 7 shows the individual change in IVIM parame-

ter values of patients receiving CRT compared to the 95% 

CIs of the test- retest cohort. With 10 significant changes, 

IVIM- NEToptim detected the most patients with significant 

parameter changes after CRT, with 4 individual patients 

with increased D, 3 patients with increased f, and 3 patients 

with changes in D*. In comparison, the LS and Bayesian ap-

proaches detected only two and three significant parameter 

changes, respectively.

F I G U R E  2  D* plotted against f for simulations (A), LS (B), Bayesian (C), IVIM- NETorig (D), and IVIM- NEToptim (E). In all plots, the values 

of the simulations are presented in gray. The apparent patterns in the LS approach (many predictions at D* = 0.2 mm2/s) and IVIM- NETorig (the 

line flips at D* = 0 mm2/s) are a result of the fit constraints
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The average interference fitting time of IVIM- NEToptim 

after training was 3.0 × 10−5 s/vox, whereas the average fit-

ting times of the LS and Bayesian approaches were 4.2 × 

10−3 s and 1.0 × 10−1 s/vox, respectively. The median train-

ing time for IVIM- NEToptim (20 repeats) was 572 s with a 

range of 401 to 685 s, which for our dataset resulted in 2.9 × 

10−4 s/vox training.

4 |  DISCUSSION

This study is the first to show the potential clinical benefit 

of DNNs for IVIM fitting to DWI data in a patient cohort. 

We successfully developed and trained IVIM- NEToptim, an 

unsupervised PI- DNN IVIM fitting approach to DWI data 

that predicts accurate, independent, and consistent IVIM 

F I G U R E  3  A, NRMSE (left), ρ (center), and CVNET (right) plots of the estimated IVIM parameters (D, f, and D*) with a single parameter 

change for IVIM- NEToptim (green) at SNR 20 for 50 repeated trainings. B, The ranked plot of IVIM- NEToptim
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parameters in simulations and in vivo in patients with PDAC. 

IVIM- NEToptim consisted of a parallel network architecture 

with two hidden layers, batch normalization, dropout of 10%, 

sigmoid constraints, and fitted S0. Optimized training was 

performed using an Adam optimizer with an LR of 3 × 10−5. 

In simulations, IVIM- NEToptim outperformed the original 

version, IVIM- NETorig, by offering more accurate estimates 

of D, f and D*, with substantially less correlation between the 

estimated parameters D* and f, and more consistent param-

eter prediction. Furthermore, simulations demonstrated that 

IVIM- NEToptim had substantially better accuracy than the 

conventional LS and state- of- the- art Bayesian approaches. 

Finally, in patients with PDAC, IVIM- NEToptim also out-

performed the alternatives. IVIM- NEToptim showed the most 

detailed and significantly less noisy parameter maps, and a 

significant change in D and f for the whole cohort receiv-

ing CRT. Furthermore, IVIM- NEToptim was associated with 

the best test- retest repeatability (smallest wSD) for D and 

f, which allowed it to detect the most patients with significant 

changes in all IVIM parameters after CRT.

IVIM- NEToptim detected a significant positive trend 

in D and f for the whole cohort of patients receiving CRT, 

whereas the LS approach only found a significant positive 

trend in D. Also, IVIM- NEToptim detected four patients with 

a significant parameter increase for D, whereas the LS ap-

proach detected only one patient. These findings strongly 

suggest IVIM- NEToptim as a good alternative for IVIM fit-

ting in PDAC patients. Findings from other studies support 

this increase in D40 and f41 during CRT in PDAC patients. In 

general, PDACs tend to have lower diffusion due to the im-

peded water movement of compressing cells.42 Furthermore, 

PDACs are typically hypoperfused due to solid stress gener-

ated by the dense stroma and significant tumor sclerosis cre-

ating elevated interstitial pressure, which compresses tumor 

feeding vessels.41,43,44 An increase in diffusion is likely a 

consequence of a reduction in cell density due to necrosis 

as a result of treatment.45,46 An increase in perfusion can be 

explained two- fold: an effective treatment could reduce the 

amount of stroma and associated solid stress47,48; further-

more, cell necrosis inside the tumor can reduce interstitial 

pressure.47 Not all patients demonstrated a significant change 

induced by treatment. Therefore, using IVIM to discriminate 

between individual treatment effects may be feasible in the 

future. As treatment of these patients was part of induction 

therapy and patients received surgery directly after, overall 

survival cannot be attributed purely to CRT effects. Hence, 

F I G U R E  4  NRMSE (left), ρ (center), and CVNET (right) plots of the estimated IVIM parameters (D, f, and D*) vs SNR for the LS approach 

(blue), Bayesian approach (brown), IVIM- NETorig (orange), and IVIM- NEToptim (green) approaches to IVIM fitting. The 5 to 95 percentiles of 

IVIM- NET for 50 repeated trainings are plotted as error bars and show that IVIM- NETorig is highly inconsistent in producing IVIM parameters 

for multiple repeated trainings at all SNRs. IVIM- NEToptim outperforms IVIM- NETorig for all SNRs. As the LS and Bayesian approaches are 

deterministic, their CVNET was zero and not plotted. The LS and Bayesian approaches are superior at high SNRs
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given the limited number of patients and the diluted treatment 

effect, we did not compare overall survival between patients 

that showed potential treatment effects and others.

Our previous work35 showed that the LS approach for 

IVIM fitting was sensitive to individual treatment effects. 

However, the high wSD limited the study to detect individ-

ual treatment effects. Furthermore, that work35 used denoised 

DWI b- images that substantially degraded image sharpness 

and tumor boundaries were harder to detect (eg, compare fig-

ures from this work to example figures from earlier work9). 

Conversely, our present study demonstrates that DNNs can 

estimate parameter maps directly from the noisy data result-

ing in sharp high- quality IVIM parameter maps.

For most voxels, IVIM- NEToptim produces very simi-

lar estimates to the LS and Bayesian approaches. However, 

within the tumor ROI, IVIM- NEToptim shows consistently 

different mean baseline parameters than the LS and Bayesian 

approaches (Table 3). We believe that there are two major 

contributors to this discrepancy in mean values. (1) The LS 

and Bayesian approaches have more noisy parameter maps 

with some individual voxels showing extreme estimates. 

(2) IVIM- NEToptim is seemingly better at estimating param-

eters in regions of poor perfusion. The first observation is 

demonstrated by the individual voxel fits (Figures 5 and 6; 

Supporting Information Figures S11- S20), where the LS and 

Bayesian approaches occasionally compute noisy IVIM pa-

rameters with a substantially higher f, and lower D and D* 

than IVIM- NEToptim. As the LS approach minimizes the 

sum of the residuals, this parameter combination could de-

scribe better the noisy data. However, inspecting neighbor-

ing voxels with, respectively, similar noisy data shows that 

the LS and Bayesian approaches are inconsistent in produc-

ing the same IVIM parameters, whereas IVIM- NEToptim is 

more consistent. The second note is especially interesting for 

PDACs, which are generally hypoperfused.41,43 Other stud-

ies reported an overestimation of perfusion parameters in 

poorly perfused tissue,49- 51 and indeed, the LS and Bayesian 

approaches show high and noisy perfusion fractions maps 

in the PDACs. Conversely, IVIM- NEToptim shows consis-

tently low and less noisy perfusion in these regions. Another 

F I G U R E  5  IVIM parameter maps (D, f, D*) of the LS approach, Bayesian approach, and IVIM- NEToptim of a PDAC patient of the test- retest 

cohort. The red ROI represents the PDAC, the two highlighted blue regions correlate to the voxels from the log- plots below. The yellow square 

zooms in on the two highlighted voxels in the tumor. In the plots, the small light gray dots are the repeated measures, and the big black dots are the 

root- mean- squares of these repeated measures. The plot parameters are shown below. The light blue voxel (left plot) shows consistency in IVIM 

parameters for all three fitting approaches. Although the data are similar in the neighboring dark blue voxel (right plot) with a lower IVIM effect, 

the LS and Bayesian approaches compute a higher f, lower D, and very low D* compared to their parameters in the light blue voxel. IVIM- NEToptim 

shows more consistency in IVIM parameters between the two neighboring voxels with a lower f for the dark blue voxel. In the parametric maps 

computed by IVIM- NEToptim, the tissues appear more homogeneous, whereas the LS approach shows noisier parameter maps, particularly around 

the tumor region
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F I G U R E  6  IVIM parameter maps (D, f, D*) of the LS approach, Bayesian approach, and IVIM- NEToptim of a PDAC patient of the treated cohort 

before CRT. The red ROI represents the PDAC and the green ROI represents the 2D homogenous liver tissue ROI. The two highlighted blue regions 

correlate to the voxels from the log- plots below. The yellow square zooms in on the two highlighted voxels in the tumor. In the plots, the small light gray 

dots are the repeated measures, and the big black dots are the root- mean- squares of these repeated measures. Both plots show a low IVIM effect. The plot 

parameters are shown below. The light blue voxel (left plot) shows consistency in IVIM parameters between the LS approach and IVIM- NEToptim with 

low f, and moderate D and D*, while the Bayesian approach shows higher f, lower D, and very low D*. Although the data are similar in the neighboring 

dark blue voxel (right plot), the LS and Bayesian approaches compute a higher f, lower D, and very low D* compared to their parameters in the light blue 

voxel. IVIM- NEToptim shows more consistency in IVIM parameters between the two neighboring voxels with a consistent low f. In the parametric maps 

computed by IVIM- NEToptim, the tissues appear more homogeneous, particularly in the liver, the kidneys and around the tumor ROI

T A B L E  3  PNR of homogenous liver tissue (top panel), wSD (middle panel), and mean IVIM parameters for the patients with treatment 

(bottom panel)

PNR D f D*

LS 5.6 3.1 1.8

Bayesian 6.3 4.0 2.3

IVIM- NEToptim 8.1* 3.9 4.0*

wSD D [× 10−3 mm2/s] f [%] D* [× 10−3 mm2/s]

LS 0.10 6.2 24.9

Bayesian 0.09 4.9 5.1

IVIM- NEToptim 0.06 2.4 15.8

Mean treatment D [× 10−3 mm2/s] f [%] D* [× 10−3 mm2/s]

Pre Post Pre Post Pre Post

LS 1.35** 1.51** 13.1 16.3 52 48

Bayesian 1.18 1.30 20.4 23.4 8.6 17.7

IVIM- NEToptim 1.57** 1.68** 5.3** 9.1** 92 88

*Significantly (P < .05) better PNR compared to both of the other fitting approaches, determined by a two paired t- test, are printed bold.; **Significant (P < .05) changes 

between pre and post- treatment, determined by a paired t- test, are printed bold.
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interesting observation is that in Figure 6, IVIM- NEToptim 

shows a very similar f map to the LS approach for almost all 

tissue, suggesting again that there is no bias. Yet, contrary to 

the LS approach, IVIM- NEToptim has a homogeneously low 

perfusion map in the PDAC (ie, Figures 5 and 6; Supporting 

information Figures S11- S20). In the absence of ground truth 

in patients, we must rely on visual assessment of parameter 

map quality, the ability to detect treatment response, and the 

simulation results, in order to infer the best performing esti-

mator. Given the evidence provided in this study, we argue 

that combined these factors rule in favor of IVIM- NEToptim.

Although IVIM- NET showed consistently better results 

both in simulations and in vivo, IVIM- NET predicts dif-

ferent IVIM parameters in repeated training. This causes a 

new sort of variability that, until now, was not an issue in 

fitting parameter maps. There may be methods to mitigate 

this variability. First, when probing treatment response, we 

would advise using one network such that this additional 

effect is not different pre-  and post- treatment. Second, to 

reduce the variation, one could consider taking the median 

prediction from 10 repeated trainings instead. We did so 

in an exploratory study where we formed 5 groups of 10 

networks and showed that the median of 10 networks was 

substantially more consistent, with CVNET values of 3.2 × 

10−3, 4.9 × 10−3, and 9.3 × 10−3 for D, f, and D*, respec-

tively. Having a set of networks will also allow the user to 

estimate the variation on the predicted parameter. Finally, 

although we see this additional uncertainty, we would 

like to stress that it is secondary to the overall error of the 

LS approach, which is apparent from the fact that in the 

simulations, all 50 instances of IVIM- NEToptim had lower 

NRMSE than the LS approach.

F I G U R E  7  Bland- Altman plots of the LS, Bayesian, and IVIM- NEToptim approaches to IVIM fitting showing the mean and difference (∆) 

between the intersession repeatability patients (black crosses) and the mean and ∆ between pre-  and post- treatment patients (colored symbols), 

which represents the treatment effects. The dotted lines indicate the 95% CI of the test- retest data. Colored measurements that exceed the 95% CI 

were considered significant to treatment response
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IVIM- NEToptim outperformed IVIM- NETorig at SNRs 

8-  100 and was superior to the LS and Bayesian approaches 

for SNRs 8- 33 (Figure 4). However, at extremely high SNR 

(SNR = 100; Figure 4), the LS approach outperformed 

IVIM- NET. The Levenberg- Marquardt algorithm for the 

LS function is an iterative function that finds a minimum 

of the squared difference. For a relatively smooth loss land-

scape and high SNR signal, the LS algorithm is designed 

to find the correct parameter estimates. However, at low 

SNR, the LS approach has trouble finding the correct pa-

rameters. This occurs either because the loss landscape is 

no longer smooth and, hence, it gets stuck in a local mini-

mum, or, what we believe is more common, the noise has 

changed the signal such that the global optimum no longer 

is nearby the ground truth parameters. Moreover, a DNN 

consists of a complex system that needs to encompass esti-

mating the IVIM parameters for all voxels. It turns out that 

having been trained on all voxels enables better estimates 

for individual voxels at low SNR. We expect that DNNs 

focus on more consistent minima with parameter values 

that are more frequently observed. This might be similar 

to data- driven Bayesian fitting approaches.15,52 Conversely, 

IVIM- NET seems to reach a maximum accuracy at high 

SNR. Potentially more complex DNNs that are optimized 

with simulations done at high SNR could handle the sub-

tle signal changes of the IVIM parameters at these SNRs. 

However, typical SNR values for IVIM data are <50. 

Therefore, our findings suggest that using IVIM- NET in-

stead of the LS and Bayesian approaches for IVIM fitting 

would be beneficial in a clinical setting.

The choice of the hyperparameters for IVIM- NEToptim 

was based on an optimal combination of accuracy, indepen-

dence, and consistency across all IVIM parameters. However, 

other hyperparameter options may be more appropriate when 

characterizing an individual IVIM parameter (eg, when an 

observer is only interested in D and IVIM is only used to 

correct for perfusion). Supporting Information Figures S2- S9 

can help interested readers select the best network for their 

purposes.

The high dependency between D* and f that appears 

in IVIM- NETorig could not be attributed to a single cause. 

Initially, we expected that this dependency originated in the 

fully connected shared hidden layers of the original network. 

However, ρ remains substantial when adding the “parallel net-

work architecture” to IVIM- NETorig (Supporting Information 

Figure S10). Using IVIM- NEToptim and a single network ar-

chitecture showed slightly worse performance in simulations 

regarding ρ(D*, f), but still had sufficient accuracy and con-

sistency. The dependencies between the estimated IVIM pa-

rameters are not per se specific to unsupervised DNNs. For 

instance, similar dependencies between D* and D or f were 

found in a different data- driven Bayesian fitting approach.9 

For IVIM- NEToptim, these dependencies were small at clini-

cal SNR values and similar to those of the LS approach.

Although simulation studies in parameter estimation are ex-

tremely valuable as the underlying parameter values are known, 

they also come with limitations. One limitation is that the noise 

characterization of real data can be diverse and hard to model. 

For instance, DWI artifacts caused by motion are not consid-

ered in simulations and may affect the results of fitting the 

IVIM model.53 Another limitation is the underlying assump-

tion that data are perfectly bi- exponential. In reality, the IVIM 

model is a simplification and real data will be more complex.

5 |  CONCLUSIONS

We substantially improved the accuracy, independence, and 

consistency of both diffusion and perfusion parameters from 

IVIM- NET by changing the network architecture and tuning 

hyperparameters. Our new IVIM- NEToptim is considerably 

faster, and computes less noisy and more detailed param-

eter maps with substantially better test- retest repeatability 

for D and f than alternative state- of- the- art fitting methods. 

Furthermore, IVIM- NEToptim was able to detect the most in-

dividual patients with significant changes in the IVIM pa-

rameters throughout CRT. These results strongly suggest 

using IVIM- NEToptim for detection of treatment response in 

individual patients.
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FIGURE S1 Plots of the estimated IVIM parameters (D, f, 

D*) where no Spearman rank correlation coefficient (ρ) can 

be determined and is set to a ρ of 1. In all plots, the values of 

the simulations are presented in grey

FIGURE S2 Normalized root- mean- square error (NRMSE) 

boxplots of the estimated IVIM parameters (D, f, D*) that 

contain all hyperparameter combinations with a fixed learn-

ing rate set to 1 × 10−4 and a fixed number of hidden lay-

ers set to 3 at SNR 20 for 50 repeated trainings. Highlighted 

in green is the intermediate step of IVIM- NEToptim. Left of 

each plot shows the LS approach (blue), Bayesian approach 

(brown) and IVIM- NETorig (orange; LR = 1 × 10−3)

FIGURE S3 Spearman rank correlation coefficient (ρ) box-

plots of the estimated IVIM parameters (D, f, D*) that con-

tain all hyperparameter combinations with a fixed learning 

rate set to 1 × 10−4 and a fixed number of hidden layers set to 

3 at SNR 20 for 50 repeated trainings. Highlighted in green 

is the intermediate step of IVIM- NEToptim. Left of each plot 

shows the LS approach (blue), Bayesian approach (brown) 

and IVIM- NETorig (orange; LR = 1 × 10−3)

FIGURE S4 Normalized Coefficient of variation (CVNET) 

plots of the estimated IVIM parameters (D, f, D*) that con-

tain all hyperparameter combinations with a fixed learning 

rate set to 1 × 10−4 and a fixed number of hidden layers set to 

3 at SNR 20 for 50 repeated trainings. Highlighted in green 

is the intermediate step of IVIM- NEToptim. Left of each plot 

shows the LS approach (blue), Bayesian approach (brown) 

and IVIM- NETorig (orange; LR = 1 × 10−3)

FIGURE S5 Ranked plots of the metrics (NRMSE, ρ and 

CVNET) of evaluation 1 that contain all hyperparameter com-

binations with a fixed learning rate set to 1 × 10−4 and a fixed 

number of hidden layers set to 3 at SNR 20 for 50 repeated 

trainings. Highlighted in green is the intermediate step of 

IVIM- NEToptim. Left of each plot shows the LS approach 

(blue), Bayesian approach (brown) and IVIM- NETorig (or-

ange; LR = 1 × 10−3)

FIGURE S6 Normalized root- mean- square error (NRMSE) 

boxplots of the estimated IVIM parameters (D, f, D*) of the 

second evaluation for different LR and number of hidden 

layers, with fixed hyperparameters of extra fitting parameter 

S0, sigmoid activation functions, a parallel network architec-

ture, 10% dropout and batch normalization at SNR 20 for 50 

repeated trainings. Highlighted in green is IVIM- NEToptim. 

Left of each plot shows the LS approach (blue) and Bayesian 

approach (brown) and IVIM- NETorig (orange)

FIGURE S7 Spearman rank correlation coefficient (ρ) box-

plots of the estimated IVIM parameters (D, f, D*) of the 

second evaluation for different LR and number of hidden 

layers, with fixed hyperparameters of extra fitting parameter 
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S0, sigmoid activation functions, a parallel network architec-

ture, 10% dropout and batch normalization at SNR 20 for 50 

repeated trainings. Highlighted in green is IVIM- NEToptim. 

Left of each plot shows the LS approach (blue) and Bayesian 

approach (brown) and IVIM- NETorig (orange)

FIGURE S8 Normalized coefficient of variation (CVNET) 

plots of the estimated IVIM parameters (D, f, D*) of the sec-

ond evaluation for different LR and number of hidden lay-

ers, with fixed hyperparameters of extra fitting parameter S0, 

sigmoid activation functions, a parallel network architecture, 

10% dropout and batch normalization at SNR 20 for 50 re-

peated trainings. Highlighted in green is IVIM- NEToptim. Left 

of each plot shows the LS approach (blue) and Bayesian ap-

proach (brown) and IVIM- NETorig (orange)

FIGURE S9 Ranked plots of the metrics (NRMSE, ρ and 

CVNET) of evaluation 2 for different LR and number of hid-

den layers, with fixed hyperparameters of extra fitting pa-

rameter S0, sigmoid activation functions, a parallel network 

architecture, 10% dropout and batch normalization at SNR 

20 for 50 repeated trainings. Highlighted in green is IVIM- 

NEToptim. Left of each plot shows the LS approach (blue) and 

Bayesian approach (brown) and IVIM- NETorig (orange)

FIGURE S10 Normalised root- mean- square error (NRMSE; 

left), Spearman rank correlation coefficient (ρ; center) and 

normalized coefficient of variation (CVNET; right) plots of 

the estimated IVIM parameters (D, f and D*) with a single 

parameter change for IVIM- NETorig (orange) at SNR 20 for 

50 repeated trainings. The ρ(D*, f) remains substantial for 

single deviations from IVIM- NETorig

FIGURE S11 See Table S1

FIGURE S12 See Table S1

FIGURE S13 See Table S1

FIGURE S14 See Table S1

FIGURE S15 See Table S1

FIGURE S16 See Table S1

FIGURE S17 See Table S1

FIGURE S18 See Table S1

FIGURE S19 See Table S1

FIGURE S20 See Table S1

TABLE S1 Overview of the parameter maps of Supporting 

Information Figures S11- S20
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Supporting Information 1: Simulations 

 

Figure S1: Plots of the estimated IVIM parameters (D, f, D*) where no Spearman rank correlation coefficient (ρ) can be 

determined and is set to a ρ of 1. In all plots, the values of the simulations are presented in grey.
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Figure S2: Normalized root-mean-square error (NRMSE) boxplots of the estimated IVIM parameters (D, f, D*) that contain all hyperparameter 

combinations with a fixed learning rate set to 1 × 10-4 and a fixed number of hidden layers set to 3 at SNR 20 for 50 repeated trainings. Highlighted 

in green is the intermediate step of IVIM-NEToptim. Left of each plot shows the LS approach (blue), Bayesian approach (brown) and IVIM-NETorig 

(orange; LR = 1 × 10-3). 
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Figure S3: Spearman rank correlation coefficient (ρ) boxplots of the estimated IVIM parameters (D, f, D*) that contain all hyperparameter 

combinations with a fixed learning rate set to 1 × 10-4 and a fixed number of hidden layers set to 3 at SNR 20 for 50 repeated trainings. Highlighted 

in green is the intermediate step of IVIM-NEToptim. Left of each plot shows the LS approach (blue), Bayesian approach (brown) and IVIM-NETorig 

(orange; LR = 1 × 10-3). 
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Figure S4: Normalized coefficient of variation (CVNET) plots of the estimated IVIM parameters (D, f, D*) that contain all hyperparameter 

combinations with a fixed learning rate set to 1 × 10-4 and a fixed number of hidden layers set to 3 at SNR 20 for 50 repeated trainings. Highlighted 

in green is the intermediate step of IVIM-NEToptim. Left of each plot shows the LS approach (blue), Bayesian approach (brown) and IVIM-NETorig 

(orange; LR = 1 × 10-3). As the LS and Bayesian approaches are deterministic, their CVNET was zero and not plotted. 
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Figure S5: Ranked plots of the metrics (NRMSE, ρ and CVNET) of evaluation 1 that contain all hyperparameter combinations with a fixed learning 

rate set to 1 × 10-4 and a fixed number of hidden layers set to 3 at SNR 20 for 50 repeated trainings. Highlighted in green is the intermediate step 

of IVIM-NEToptim. Left of each plot shows the LS approach (blue), Bayesian approach (brown) and IVIM-NETorig (orange; LR = 1 × 10-3). 
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Figure S6: Normalized root-mean-square error (NRMSE) boxplots of the estimated IVIM parameters (D, f, D*) of the second evaluation for 

different LR and number of hidden layers, with fixed hyperparameters of extra fitting parameter S0, sigmoid activation functions, a parallel network 

architecture, 10% dropout and batch normalization at SNR 20 for 50 repeated trainings. Highlighted in green is IVIM-NEToptim. Left of each plot 

shows the LS approach (blue) and Bayesian approach (brown) and IVIM-NETorig (orange).  
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Figure S7: Spearman rank correlation coefficient (ρ) boxplots of the estimated IVIM parameters (D, f, D*) of the second evaluation for different 

LR and number of hidden layers, with fixed hyperparameters of extra fitting parameter S0, sigmoid activation functions, a parallel network 

architecture, 10% dropout and batch normalization at SNR 20 for 50 repeated trainings. Highlighted in green is IVIM-NEToptim. Left of each plot 

shows the LS approach (blue) and Bayesian approach (brown) and IVIM-NETorig (orange).  
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Figure S8: Normalized coefficient of variation (CVNET) plots of the estimated IVIM parameters (D, f, D*) of the second evaluation for different 

LR and number of hidden layers, with fixed hyperparameters of extra fitting parameter S0, sigmoid activation functions, a parallel network 

architecture, 10% dropout and batch normalization at SNR 20 for 50 repeated trainings. Highlighted in green is IVIM-NEToptim. Left of each plot 

shows the LS approach (blue) and Bayesian approach (brown) and IVIM-NETorig (orange). As the LS and Bayesian approaches are deterministic, 

their CVNET was zero and not plotted. 
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Figure S9: Ranked plots of the metrics (NRMSE, ρ and CVNET) of evaluation 2 for different LR and number of hidden layers, with fixed 

hyperparameters of extra fitting parameter S0, sigmoid activation functions, a parallel network architecture, 10% dropout and batch normalization 

at SNR 20 for 50 repeated trainings. Highlighted in green is IVIM-NEToptim. Left of each plot shows the LS approach (blue) and Bayesian approach 

(brown) and IVIM-NETorig (orange).  
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Figure S10: Normalised root-mean-square error (NRMSE; left), Spearman rank correlation coefficient (ρ; center) and 

normalized coefficient of variation (CVNET; right) plots of the estimated IVIM parameters (D, f and D*) with a single parameter 

change for IVIM-NETorig (orange) at SNR 20 for 50 repeated trainings. The ρ(D*,f) remains substantial for single deviations 

from IVIM-NETorig. 
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Supporting Information 2: Verification in patients with PDAC 

For simplicity, we have made a table overview (Table S1) of every parameter maps of the Supporting Information. As in Figures 5 and 

6 of our manuscript, these Supporting Information Figures S11-S20 show ‘IVIM parameter maps (D, f, D*) of the LS approach, Bayesian 

approach and IVIM-NEToptim of a PDAC patient of the treated cohort before CRT or the test-retest cohort. The red ROI represents the PDAC 
and the green ROI represents homogenous 2D liver tissue ROI. The two highlighted blue regions correlate to the voxels from the plots below. 

The yellow square zooms in on the two highlighted voxels. In the plots, the small light grey dots are the repeated measures and the big black 

dots are the root-mean-squares of these repeated measures. The plot parameters are shown below.’ 

Table S1: Overview of the parameter maps of Supporting Information Figures S11-S20. 

Figure Remark 

S11 Highlighted voxels in the liver. The light blue voxel (left plot) shows consistency in IVIM parameters between the LS approach 

and IVIM-NEToptim with low f, and moderate D and D*, while the Bayesian approach shows higher f, lower D and very low 
D*. The neighboring dark blue voxel (right plot) shows no diffusion (D = 0 mm2/s), a very high f and very low D* for the LS 

and Bayesian approaches. IVIM-NEToptim shows more consistency in IVIM parameters between the two neighboring voxels. 

The LS and Bayesian approaches show noisier parameter maps, particularly in the liver and around the tumor region. 
S12 Highlighted voxels in the tumor. The light blue voxel (left plot) shows indifferent IVIM parameters for all three fitting 

approaches. Although the data is similar in the neighboring dark blue voxel (right plot), the LS and Bayesian approaches 

compute a higher f, lower D (with D = 0 mm2/s for the LS approach) and very low D* (to the lower bound of D* = 5.0 × 10-3 

mm2/s for the LS approach) compared to their parameters in the light blue voxel. IVIM-NEToptim shows more consistency in 

IVIM parameters between the two neighboring voxels. The LS and Bayesian approaches show noisier parameter maps, 

particularly in the liver and around the tumor region. Note that there is an artifact, which can be seen best in the middle part 
of the liver. 

S13 Highlighted voxels in the liver. The light blue voxel (left plot) shows consistency in IVIM parameters for all three fitting 

approaches with a high IVIM effect. Although the data is similar in the neighboring dark blue voxel (right plot), the LS and 
Bayesian approaches compute a higher f, and lower D and D* compared to their parameters in the light blue voxel. IVIM-

NEToptim shows more consistency in IVIM parameters between the two neighboring voxels. The LS and Bayesian approaches 

show noisier parameter maps, particularly in the liver and around the tumor region.  
S14 Highlighted voxels in the tumor. The light blue voxel (left plot) shows consistency in IVIM parameters for all three fitting 

approaches. Although the data is similar in the neighboring dark blue voxel (right plot), the LS and Bayesian approaches 

compute a higher f, and lower D and very low D* (to the lower bound of D* = 5.0 × 10-3 mm2/s for the LS approach) compared 
to their parameters in the light blue voxel. IVIM-NEToptim shows more consistency in IVIM parameters between the two 

neighboring voxels. The LS and Bayesian approaches show noisier parameter maps, particularly in the liver, kidneys and 

around the tumor region.  
S15 Highlighted voxels in the tumor. The light blue voxel (left plot) shows consistency in IVIM parameters between the LS 

approach and IVIM-NEToptim with low f, and moderate D and D*, while the Bayesian approach shows higher f, lower D and 

very low D*. Although the data is similar in the neighboring dark blue voxel (right plot), the LS and Bayesian approaches 
compute a higher f, and lower D and very low D* (to the lower bound of D* = 5.0 × 10-3 mm2/s) compared to their parameters 

in the light blue voxel. IVIM-NEToptim shows more consistency in IVIM parameters between the two neighboring voxels. The 

LS and Bayesian approaches show noisier parameter maps, particularly in the kidneys and around the tumor region. 
S16 Highlighted voxels in the tumor. The light blue voxel (left plot) shows consistency in IVIM parameters for all three fitting 

approaches. Although the data is similar in the neighboring dark blue voxel (right plot) with a lower IVIM effect, the LS and 

Bayesian approaches compute a higher f, and lower D and very low D* (to the lower bound of D* = 5.0 × 10-3 mm2/s) compared 
to their parameters in the light blue voxel. IVIM-NEToptim shows more consistency in IVIM parameters between the two 

neighboring voxels with a lower f. The LS and Bayesian approaches show noisier parameter maps, particularly around the 

tumor region. Note that the LS approach has a very high D* (to the upper bound of D* = 200 × 10-3 mm2/s) in the blue voxel, 
while in the neighboring dark blue voxel it has a very low D* (to the lower bound of D* = 5.0 × 10-3 mm2/s). 

S17 Highlighted voxels in the liver. The light blue voxel (left plot) shows consistency in IVIM parameters for all three fitting 

approaches with a high IVIM effect. Although the data is similar in the neighboring dark blue voxel (right plot) with a lower 
IVIM effect, the LS and Bayesian approaches compute a higher f, and lower D and D* compared to their parameters in the 

light blue voxel. IVIM-NEToptim shows more consistency in IVIM parameters between the two neighboring voxels with a 

lower f. The LS and Bayesian approaches show noisier parameter maps, particularly in the liver.  
S18 Highlighted voxels in the kidneys. The light blue voxel (left plot) shows consistency in IVIM parameters for all three fitting 

approaches. Although the data is similar in the neighboring dark blue voxel (right plot) with a lower IVIM effect, the Bayesian 

approaches compute a higher f, and lower D and very low D* compared to its parameters in the light blue voxel. IVIM-
NEToptim and the LS approach show more consistency in IVIM parameters between the two neighboring voxels with a lower 

f. The LS and Bayesian approaches show noisier parameter maps, particularly in the liver, kidneys and around the tumor 

region. 

S19 Highlighted voxels in the liver. The light blue voxel (left plot) shows consistency in IVIM parameters between the LS approach 

and IVIM-NEToptim with low f, and moderate D and D*, while the Bayesian approach shows higher f, lower D and very low 
D*. Although the data is similar in the neighboring dark blue voxel (right plot), the LS and Bayesian approaches compute a 

higher f, and lower D and very low D* compared to their parameters in the light blue voxel. IVIM-NEToptim shows more 

consistency in IVIM parameters between the two neighboring voxels. The LS and Bayesian approaches show noisier parameter 
maps, particularly in the liver. 

S20 Highlighted voxels in the liver. The light blue voxel (left plot) shows consistency in IVIM parameters for all three fitting 

approaches. Although the data is similar in the neighboring dark blue voxel (right plot) with a lower IVIM effect, the Bayesian 
approaches compute a higher f, and lower D and very low D* compared to its parameters in the light blue voxel. IVIM-

NEToptim and the LS approach show more consistency in IVIM parameters between the two neighboring voxels with a lower 

f. The LS approach shows noisier parameter maps, particularly in the liver, kidneys and around the tumor region. Note that 
although the LS approach has a very high D* (to the upper bound of D* = 200 × 10-3 mm2/s) in both voxels, the LS and IVIM-

NEToptim show the same plots. 
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Figure S11: See Table S1. 

 

Figure S12: See Table S1.  
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Figure S13: See Table S1. 

 

Figure S14: See Table S1.  
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Figure S15: See Table S1. 

 

Figure S16: See Table S1. 

  



 

Supporting Information for "Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and 

evaluation in pancreatic cancer patients" by M.P.T. Kaandorp et al., MRM. 2021 

 

15 

 

 

Figure S17: See table S1. 

 
Figure S18: See Table S1.  
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Figure S19: See Table S1. 

 

Figure S20: See Table S1. 
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Purpose: The development of advanced estimators for intravoxel incoherent

motion (IVIM) modeling is often motivated by a desire to produce smoother

parameter maps than least squares (LSQ). Deep neural networks show promise

to this end, yet performance may be conditional on a myriad of choices regard-

ing the learning strategy. In this work, we have explored potential impacts of

key training features in unsupervised and supervised learning for IVIM model

fitting.

Methods: Two synthetic data sets and one in-vivo data set from glioma patients

were used in training of unsupervised and supervised networks for assessing

generalizability. Network stability for different learning rates and network sizes

was assessed in terms of loss convergence. Accuracy, precision, and bias were

assessed by comparing estimations against ground truth after using different

training data (synthetic and in vivo).

Results: A high learning rate, small network size, and early stopping resulted

in sub-optimal solutions and correlations in fitted IVIM parameters. Extending

training beyond early stopping resolved these correlations and reduced param-

eter error. However, extensive training resulted in increased noise sensitivity,

where unsupervised estimates displayed variability similar to LSQ. In contrast,

supervised estimates demonstrated improved precision but were strongly biased

toward the mean of the training distribution, resulting in relatively smooth, yet

possibly deceptive parameter maps. Extensive training also reduced the impact

of individual hyperparameters.

Conclusion: Voxel-wise deep learning for IVIM fitting demands sufficiently

extensive training to minimize parameter correlation and bias for unsupervised

learning, or demands a close correspondence between the training and test sets

for supervised learning.
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1 INTRODUCTION

The intravoxel incoherent motion (IVIM)1 model for DWI

shows great potential to be an alternative to dynamic

susceptibility contrast (DSC) imaging for providing prog-

nostic perfusion-based cancer imaging biomarkers, which

can be used to characterize tumors and monitor treat-

ment response without the use of a contrast agent.2–4 The

IVIM model describes the attenuation of the MRI signal

as a bi-exponential function of the diffusion weighting (b

value). The IVIM model parameters of interest include a

diffusion coefficient (D) associated with the slow diffusion

of water molecules, a pseudo-diffusion coefficient (D*)

which is linked to the fast diffusion effect caused by cap-

illary microcirculation, and a perfusion fraction (f ) repre-

senting the signal contribution from the pseudo-diffusion

component. The IVIM model has shown promise in sev-

eral anatomies,3,5–7 including the brain.2,8,9 However, fit-

ting IVIM parameters remains challenging in the in-vivo

brain due to low SNR and low f .2,9,10

Several data-processing algorithms have been pro-

posed to improve the IVIM parameter estimation qual-

ity.11 New IVIM fitting approaches are typically com-

pared to conventional non-linear least squares (LSQ),

or a two-step segmented approach, which has been

shown in some studies to be less sensitive to noise than

LSQ, particularly for the pseudo-diffusion estimates.10,12

More advanced Bayesian inference algorithms have been

proposed, demonstrating improved precision and accu-

racy.13,14 However, these Bayesian approaches are typ-

ically very time-consuming, and may lead to biased

parameter estimates or features disappearing due to

over-smoothing.15

Recently, deep learning or deep neural networks

(DNNs) were introduced as a promising alternative for

IVIM fitting. These DNNs can either be trained unsu-

pervised, where the network is optimized on the error

between the estimated IVIM signal and the measured

signal; or trained supervised, where the network is opti-

mized on the error between the estimated parameters and

the ground truth parameters. The approach of unsuper-

vised learning, originally proposed by Barbieri et al.,16

allows the DNN to be trained directly on the in vivo

signals, without the need for labeled data. Kaandorp

et al.17 observed unexpected parameter correlations with

this unsupervised network, but resolved these by optimiz-

ing various hyperparameters (IVIM-NEToptim). However,

although IVIM-NEToptim showed promising results in the

pancreas,17 applying it to brain data showed poor anatomy

generalization and high D* values.18

In contrast, the approach of supervised learning for

IVIM fitting, originally proposed by Bertleff et al.,19 car-

ries the assumption that the in vivo test data is well

represented by the training data, which could limit

the network’s performance in terms of generalizabil-

ity. Gyori et al.20 performed an in-depth investigation

of the supervised approach for simple two-compartment

and three-compartment diffusion models based on the

spherical mean technique, and showed that these super-

vised approaches produce smooth parameter maps that

are significantly influenced by the training distribu-

tion, which could possibly lead to deceptive parameter

maps.

Based on these observations, we hypothesize that

the performance of both unsupervised and supervised

approaches for IVIM fitting is strongly influenced by the

choice of both training data and network hyperparame-

ters; hence, we identify the need to test and compare the

limitations of both approaches. In this work, we explore

the impact of learning rate, network size, training length,

and training distribution on the convergence behavior of

the unsupervised and supervised DNN loss terms, and on

the accuracy of the parameter estimates. We also explore

the impact of a suite of other hyperparameters on the final

loss terms. We demonstrate the possible pitfalls associated

with early stopping, training length, and different training

data distributions, using both simulations and in-vivo data

from glioma patients.

2 METHODS

2.1 In vivo data and preprocessing

We analyzed in vivo data from 28 glioma patients, which

had been acquired and used in previous studies.2,18,21

Those studies were approved by the local ethics commit-

tee at the University of Lausanne, and patient consent

was waived. Data were acquired using a 3T MRI scanner

(Trio, Verio, or Skyra; Siemens, Erlangen, Germany). A

Stejskal-Tanner diffusion-weighted spin-echo EPI pulse

sequence was used with 16 b values: 0, 10, 20, 40, 80, 110,

140, 170, 200, 300, 400, 500, 600, 700, 800, 900mm2/s

in three orthogonal directions, and the correspond-

ing trace was calculated (no averaging). A total of 20

patients were included from one study2 with scan param-

eters: TR = 4000ms, TE = 99ms, FOV = 297× 297mm2,

acquisition matrix = 256× 256, with varying slices

(9-21), and receiver bandwidth = 1086Hz/pixel. A total

of eight patients were included from another study21

with scan parameters: TR = 4000ms, TE = 93ms,

FOV = 270× 270mm2, acquisition matrix = 225× 225,

with 20 slices, and receiver bandwidth = 1106Hz/pixel.

In addition, both studies used slice thickness = 4mm,

in-plane resolution of 1.2× 1.2mm2, 75% partial Fourier

encoding, parallel imaging with an acceleration factor of
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2, and fat was suppressed with a spectrally selective satu-

ration routine. The total acquisition time for both studies

was 3 min and 7 s.

To pre-process the DWI data, we first removed back-

ground voxels by using both amanual threshold, as used in

previous studies,2,21 and a Gaussian filter, which removed

other background artifacts, including ghosting artifacts.

Data were normalized to the SNR of the white matter

(WM) of each patient, defined as the ratio of mean to stan-

dard deviation, estimated for a homogeneous region of

interest (ROI), which had an SNR of approximately 30.

2.2 Networks

We initially implemented the original DNN architecture

of Barbieri et al.16 in PyTorch. The network architecture

was a multi-layer perceptron with three hidden layers

and exponential linear unit (ELU) activation functions.22

The network input consisted of the measured DWI sig-

nal S(b) at each b value, and the network output consisted

of the three IVIM parameters plus an extra parameter

S0, the signal at b = 0. These parameters were further

constrained by absolute value functions to avoid the pos-

sibility of exploding gradients due to negative output,

and scaled (but not constrained) to appropriate physical

ranges: 0≤ S0 ≤ 1, 0≤ D ≤ 3× 10−3 mm2/s, 0≤ f ≤ 50%,

and 3× 10−3 ≤D*≤ 100× 10−3 mm2/s (corresponding to

network output 0–1). The upper scaling value of D is

approximately equal to the self-diffusion coefficient of free

water.23

The networks were trained either unsupervised or

supervised. The unsupervised networks were trained

using a loss term equal to the mean-squared error

(MSE) between the input signal S(b) and the esti-

mated IVIM signal Snet(b), denoted in this manuscript as

“signals-MSE”:

signals-MSE =  (S(b), Snet(b)) =
∑

b∈B

‖S(b) − Snet(b)‖2

(1)

where

Snet(b) = S0
(
f e−bD

∗

+ (1 − f )e−bD
)

(2)

and B is the set of b values. The supervised networks were

trained using a loss term equal to the MSE between the

output parameters �̂net of the network and the normalized

IVIM parameters �̂ (scaled between 0 and 1), denoted in

this manuscript as “parameters-MSE”:

parameters-MSE = 

(
�̂, �̂net

)
=

∑

S0,D,F,D∗

‖‖‖�̂ − �̂net
‖‖‖
2
. (3)

2.3 Training and test data

In addition to the in vivo data described in Section 2.1, two

synthetic data sets were considered for the training and

testing of the networks. For the synthetic data, parame-

ter combinations were drawn from the two distributions

described below. IVIM signals were simulated using Eq. 2

for the same set of b values as the in vivo data. Rician

noise was added to the signals such that when S0 = 1 the

SNR was 200. The following three data sets were used for

training and testing:

1 Uniform distribution (synthetic): IVIM signals were

simulated uniformly with the following parameter

ranges: 0≤ S0 ≤ 1, 0≤D≤ 3× 10−3 mm2/s, 0≤ f ≤ 50%,

and 3× 10−3 ≤D*≤ 100× 10−3 mm2/s (i.e., identical to

the scaling range of the output of the network). The uni-

form test set consisted of 100 000 randomly generated

IVIM signals.

2 Patient distribution (synthetic): To provide a realis-

tic patient distribution, we sampled IVIM parameter

combinations obtained from conventionalmodel fitting

applied to the in vivo data. We performed a segmented

fit using the Levenberg–Marquardt algorithm for each

patient, where we first fitted D for b> 200 s/mm2 and

afterward fitted f and D* using all b values while fixing

D. S0 was derived from the normalized b= 0 image. The

upper bound for the segmented fit of f was 100%, while

the upper bounds of S0, D and D* were unconstrained.

All parameters were constrained to a lower bound of

0. We then simulated IVIM signals using the param-

eter combinations obtained from the segmented fit.

We only included parameter combinations for which

D*≤ 100× 10−3 mm2/s. Segmented fitting was chosen

over LSQ because it was found to be more robust to

noise.

3 In vivo data from glioma patients, as described in

Section 2.1.

For the patient-derived data ((2) and (3) above), we

used 20 subjects for training and 8 subjects for test-

ing. Figure 1 displays the parameter distributions for the

synthetic test sets, which illustrates that the range and

weighting of parameters differed considerably between the

two synthetic test sets. Training was performed with 500

batches per epoch and batch size 128 using an Adam opti-

mizer,24 similar to previouswork,17 for 50 000 epochs. Note

that alternative hyperparameters were also considered, as

described in Section 2.4.2 below. Training and testing were

performed on a single core of an Intel Xeon Gold 6226R

CPU, with each training of 50 000 taking approximately

16.5 h (1.18 s per epoch).
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F IGURE 1 Normalized distributions for each IVIM parameter for the uniform distribution synthetic test set and the patient distribution

synthetic test set. The histograms were normalized so that the area under the curve is 1 (i.e., density curve). For S0, D, and f , the upper 0.1%

of the patient distribution test set is not displayed for visualization purposes. The dotted lines represent the parameter means for each test set.

2.4 Evaluation

2.4.1 Simulations: Learning rate
and network size

We tested the impact of the learning rate and net-

work size for the different strategies of unsupervised and

supervised learning using the uniform distribution syn-

thetic data set. We compared initially the performance

of four networks by considering two different num-

bers of hidden units (16, 64) and two different learning

rates (1× 10−3, 1× 10−4). For each network, we computed

the signals-MSE (unsupervised loss), parameters-MSE

(supervised loss) and Spearman’s correlation coefficient

between the pseudo-diffusion parameters (�(D*,f )) at the

end of each epoch. Previous work17 demonstrated that

DNNs may predict erroneous correlations between the

pseudo-diffusion parameters; hence, it is important to test

for correlations in assessing the performance of the net-

works. The stability of the networks was assessed in terms

of the convergence of signals-MSE or parameters-MSE

on the test set, and the hyperparameters corresponding

to the most stable network were used in all subsequent

analyses. For the most stable network, we evaluated the

suitability of the early-stopping criterion used in previous

approaches16,17 which is triggered when the test loss does

not improve over 10 epochs.

2.4.2 Simulations: Hyperparameters

We also investigated the influence of several other hyper-

parameters on the loss values at the early-stopping point

and at the last epoch (Epoch-50000).We trained and tested

networks that differed by one hyperparameterwith respect

to the baseline network that had been declared the most
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stable (Section 2.4.1; see also Section 3.1).Herewe assessed

both learning strategies (unsupervised, supervised) using

the uniform distribution synthetic data set. The different

hyperparameters that were examined included (baseline

in square parentheses): batch size ([128], 256, 512), activa-

tion function ([ELU], ReLu, sigmoid), number of hidden

units (16, [64], 128), batchnormalization ([without],with),

dropout ([0%], 10%, 20%), number of hidden layers (2, [3],

4, 5, 6), optimizer ([Adam], SGD, RMSProp), and learning

rate (1× 10−3, [1× 10−4], 1× 10−5).

2.4.3 Simulations: Learning strategy
and training distribution

Using the hyperparameters corresponding to the most sta-

ble network (Section 2.4.1), four further networks were

trained by considering the two different learning strate-

gies (unsupervised, supervised) and the two synthetic data

sets (uniform distribution, patient distribution). These

four networks were considered in all subsequent analy-

ses. These networks were tested on the patient distribution

test set to assess generalizability. For each network, we

computed the signals-MSE, parameters-MSE, Spearman’s

�(D*,f ), and normalized MSE per parameter at the end of

each epoch.

2.4.4 Simulations: Training length

The performance of the four networks was further evalu-

ated at different validation points during training by com-

paring the estimated parameters with the ground truth

for individual data points of the uniform distribution test

set. To enable further qualitative assessment, parameter

maps and root-mean-square error (RMSE)maps were gen-

erated for each network from the synthetic patient data.

Here, the RMSE was calculated between the expected

DWI signal for the estimated parameters and the ground

truth DWI signal. Four different validation points were

used: (i) early stopping; (ii) when D*-MSE was at a mini-

mum (Min(D*-MSE)); (iii) Epoch-5000; (iv) the last epoch

(Epoch-50000), representing extensive training. Compar-

isons were also made to parameter maps estimated by

LSQ using the Levenberg–Marquardt algorithm, and a

segmented approach as described in Section 2.3.

2.4.5 In vivo

To demonstrate that our simulations are comparable to

real in vivo data, we evaluated the performance of the four

networks (i.e., trained on synthetic data) on the in vivo

glioma patient data, together with an additional unsuper-

vised network that was directly trained on the in vivo sig-

nals. We computed the signals-MSE and �(D*,f ) at the end

of each epoch. In order to provide a fair assessment of the

bulk of the data, we performed a correction for outliers by

excluding voxels lying within the top 0.7% of signals-MSE,

chosen to mimic classical outlier detection.25 These vox-

els contained signals that were poorly represented by a

bi-exponential function, and therefore represented sig-

nal behavior not seen by the four networks during

training.

Performance was also assessed qualitatively for the in

vivo glioma patient data by generating parameter maps

and RMSE maps at the early-stopping point, Epoch-5000

and Epoch-50000. These maps were compared to param-

eter maps estimated by LSQ, the segmented approach,

the four networks from Section 2.4.3 at Epoch-50000, and

IVIM-NEToptim.17 IVIM-NEToptim was applied as in the

original article,17 with the exception that the range of the

S0 parameter was 0–2 instead of 0.7–1.3 to encompass the

signal scaling in this study.

An additional important consideration is to assess the

impact that the individual fitting approaches may have on

the quantitative values of each parameter for certain tis-

sue types of interest. Hence, for each IVIM parameter, we

pooled the voxel-wise estimates for in vivo tumor regions

of all patients (one patient was excluded as no tumormask

was available) and compared the distribution of parame-

ter estimates for each fitting approach at the early-stopping

point and at Epoch-50000.

3 RESULTS

3.1 Simulations: Learning rate
and network size

Figure 2 shows the loss curves of the first 5000 epochs

for both the unsupervised and supervised learning strate-

gies trained and tested on the uniform distribution using

different network size and learning rate. For both learn-

ing strategies, using fewer hidden units reduced conver-

gence speed, whereas higher learning rate resulted in

spiky convergence of the loss term, which could result in

sub-optimal solutions, particularly in unsupervised learn-

ing. Therefore, the network containing hidden units = 64

and learning rate = 1× 10−4 was considered the most sta-

ble in both strategies, and was used in all subsequent

analyses.

Early stopping (patience = 10 epochs) resulted in

sub-optimal solutions prior to true convergence, at

epoch 237 for unsupervised learning and epoch 118

for supervised learning (Figure 2). Furthermore, the
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F IGURE 2 Test curves showing the metrics signals-MSE, parameters-MSE, and Spearman’s �(D*,f ) for unsupervised (left) and

supervised (right) networks with different number of hidden units (16, 64) and learning rate (1× 10−3, 1× 10−4), trained and tested on

synthetic data from the uniform distribution, and evaluated over 5000 epochs. For the most stable network, the red square highlights where

the test loss did not improve over 10 consecutive epochs and the early-stopping criterion used in prior work16,17 would have ended the

training, which results in sub-optimal convergence, as well as correlated parameters for the unsupervised case at epoch 223 (�(D*,f ) = 0.62).

pseudo-diffusion parameters were correlated for unsu-

pervised learning (�(D*,f ) = 0.62). Extending training

resolved these correlations and reduced parameters-MSE.

However, training substantially longer resulted in

increased parameters-MSE. For supervised learning, both

parameters-MSE and signals-MSE decreased with longer

training length. As expected, unsupervised learning

yielded lower signals-MSE (unsupervised loss), whereas

supervised learning yielded lower parameters-MSE

(supervised loss) in all cases.
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F IGURE 3 Performance of the networks that differed by one hyperparameter with respect to the baseline network that had been

declared the most stable in the previous analysis in Figure 2 (see Sections 2.4.1 and 3.1). Results are shown for both learning strategies

(unsupervised and supervised) when trained on the uniform distribution and evaluated at the early-stopping point and after training for

50 000 epochs (Epoch-50000). Details about the hyperparameters considered and the baseline set can be found in Section 2.4.2. The blue

dashed line represents the loss for the baseline network at Epoch-50000. The values printed above the plots are the loss values at the

early-stopping point (red) and at Epoch-50000 (blue) that could not be displayed within the chosen range of the plot. The SGD optimizer had

no early-stopping point.

3.2 Simulations: Hyperparameters

Figure 3 displays loss values at two different validation

points during training for the networks that differed by one

hyperparameter from the baseline network determined in

Section 3.1. Every network performed substantially bet-

ter when training was extended beyond early stopping.

The networks with greater learning capacity (i.e., more

hidden layers or more hidden units) showed a marginal

improvement in the final loss value. Adding batch nor-

malization resulted in a marginally higher loss. Adding

dropout resulted in a substantially higher loss for unsu-

pervised learning, whereas for supervised learning the loss

was only marginally higher. Increasing batch size resulted

in a marginally lower loss. The choice of activation func-

tion had little impact on the loss after extensive training,

whereas the choice of optimizer may be an important con-

sideration given the high loss for SGD. In general, the

variability in loss values between networks was far greater

at the early-stopping point than after extensive training.

3.3 Simulations: Learning strategy
and training distribution

In Figure 4, we show the loss curves of the four net-

works, as described in Section 2.4.3, tested on the patient

distribution test set. Figure 4A shows that for both
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F IGURE 4 (A) Test curves showing the metrics signals-MSE, parameters-MSE, and Spearman’s �(D*,f ) for the four networks described

in Section 2.4.3, that trained either unsupervised or supervised (hidden units = 64 and learning rate = 1× 10−4) on synthetic data from either

the uniform distribution or patient distribution, and tested on the patient distribution test set over 5000 epochs. (B) Test curves showing the

normalized MSE per parameter for each network.
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unsupervised and supervised learning, training and test-

ing on the same distribution yields lower loss and faster

convergence compared to training and testing on different

distributions. For the unsupervised networks, training on

the uniformdistribution (i.e., different to test set) shows an

increase in test loss (signals-MSE) as training is extended

(e.g., between epoch 1000 and 2000). Moreover, for unsu-

pervised learning, the undesirable parameter correlation

persists longer when training on the patient distribution

compared to training on the uniform distribution. Here,

early stopping occurred at epoch 181 with �(D*,f ) = 0.73

when trained on the patient distribution. The increase

in parameters-MSE observed in unsupervised learning is

mainly due to an increase in errors in D*, as evidenced by

the similarity in plots between D*-MSE (Figure 4B) and

parameters-MSE (Figure 4A), although increases in errors

for S0, D, and f also occur. Note that Min(D*-MSE) occurs

at epoch 208 when training on the uniform distribution

and epoch 1552 for the patient distribution. Conversely,

in supervised learning, the signals-MSE, parameters-MSE,

and �(D*,f ) gradually decrease with training length, but

parameters-MSE is substantially greater when the testing

and training distributions are different.

3.4 Simulations: Training length

Figure 5 displays scatter plots comparing the estimations

with the known ground truth values for the four net-

works at different validation points during training, when

applied to the uniform distribution test set. This figure

clearly shows the impact of early stopping, especiallywhen

training on the patient distribution, which results in poor

accuracy. Early in training, both strategies estimate param-

eters that are apparently biased toward the mean of the

training distributions (see Figure 1), particularly for D*.

As training progresses in unsupervised learning, the esti-

mates corresponding to low S0 signals (i.e., low SNR)

exhibit higher variability and display a distribution tend-

ing toward that of LSQ. Conversely, as training progresses

in supervised learning, the bias toward themean of the dis-

tributions persists for a greater proportion of data points.

These data correspond to either low S0 (i.e., low SNR),

where a bias occurs for every IVIM parameter; low f ,

which results in uncertainty inD*; or lowD*, which results

in uncertainty in f .

In addition, Figure 5 shows that early in training the

parameter values that are overrepresented in the training

distribution (see Figure 1) are estimated more accurately

than underrepresented parameter values. Furthermore,

there is poor-fitting behavior for lowD values with high S0
when training on the patient distribution. This is particu-

larly evident for supervised learning, and is due to a lack

of these parameter combinations occurring in the patient

data.

Figure 6 displays parameter maps and RMSE maps at

different validation points during training of the four net-

works in a synthetic patient slice. At the early-stopping

point, the parameter maps are relatively inaccurate, par-

ticularly for D* when trained on the uniform distribu-

tion, and appear smooth and homogeneous. As found in

Figure 5, early in training, the parameter estimates in vox-

els corresponding to low SNR signals (e.g., WM voxels) are

biased toward the mean of the synthetic training distribu-

tion. As training progresses in unsupervised learning, the

parameter estimates in WM voxels exhibit a distribution

tending toward that of LSQ, which is also visualized by

comparable extremities in D* and RMSE maps, although

f maps are generally more comparable to the segmented

fit. There are increases in the RMSE at Epoch-50000 when

training on the uniform distribution (red arrows), which

are not present when training on the patient distribution.

For supervised learning on the uniform distribution,

the estimates for D* in the WM voxels are biased toward

the mean of the training distribution, even after extensive

training, which is consistent with Figure 5 for data with

low S0. In addition, the voxels that represent the tumor in

this synthetic patient slice (purple arrow in b = 0 image)

possess very low f values, such that the simulated sig-

nals contain little information for estimating accurate D*.

Hence, the supervised network estimates inaccurate D*

close to the mean of this distribution, resulting in high

residuals. In contrast, the supervised network trained on

the patient distribution shows lower residuals, which are

more comparable to the results of the unsupervised net-

works, because the bias toward themean of the patient dis-

tribution yields values that are closer to the actual ground

truth.

3.5 In vivo

Figure 7 displays loss curves and parameter maps for the

four networks applied to a representative slice of the in

vivo glioma patient data, as well as corresponding results

for the additional unsupervised network trained directly

on the in vivo data. These results are in broad agree-

ment with those displayed in Figures 4 and 6 for the

simulations. Similar to Figure 4, training and testing on

the same dataset yielded the lowest loss term and fastest

convergence (Figure 7A). Furthermore, early stopping

resulted in sub-optimal solutions at epoch 312 prior to true

convergence, where parameters were strongly correlated

(�(D*,f )= 0.94). Similar to Figure 6, early stopping resulted

in seemingly smooth and homogeneous parameter maps.

As training was extended, parameter maps tended toward
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F IGURE 5 Scatter plots of estimated parameter values against ground truth at each of the four validation points (Early stopping,

Min(D*-MSE), Epoch-5000, and Epoch-50000) for the four networks described in Section 2.4.3 (i.e., trained either unsupervised or supervised

on synthetic data from either the uniform distribution or patient distribution), and tested on the uniform distribution test set. Corresponding

plots for least squares and the segmented approach are also shown. All data points are colored by their S0-value, where S0 = 0 (black)

corresponds to SNR = 0 and S0 = 1 (bright yellow) corresponds to SNR = 200.
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F IGURE 6 IVIM parameter maps and RMSE maps generated for a representative slice of a synthetic glioma patient. Maps are

displayed at each of the four stopping points (Early stopping, Min(D*-MSE), Epoch-5000, and Epoch-50000) for the four networks described

in Section 2.4.3 (i.e., trained either unsupervised or supervised on synthetic data from either the uniform distribution or patient distribution).

The ground truth parameter maps are generated by applying the segmented approach on the real patient data. The red arrows in the

Epoch-50000 RMSE maps indicate out-of-distribution data for the uniform distribution, where D> 3× 10−3 mm2/s or f > 50%, which lie

inside of the domain of the patient distribution, but outside of the domain of the uniform distribution. Corresponding maps for least squares

and the segmented approach fitted on the synthetic glioma patient are also shown. The purple arrow in the ground truth b = 0 image

indicates the location of a tumor.
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F IGURE 7 (A) Test curves showing the metrics signals-MSE and Spearman’s �(D*,f ) for the four networks described in Section 2.4.3

(i.e., trained either unsupervised or supervised on synthetic data from either the uniform distribution or patient distribution), and tested on

the in vivo data over 5000 epochs. In addition, test curves for an unsupervised network trained directly on the in vivo signals are displayed.

(B) IVIM parameter maps and RMSE maps for a representative slice from the in vivo glioma patient data for each of the networks described

in (A). For the unsupervised network trained directly on the in vivo data (left), maps corresponding to three stopping points are displayed

(Early stopping, Epoch-5000, and Epoch-50000), whereas the maps shown for the four synthetically-trained networks (right) are after

training for 50 000 epochs. Corresponding maps are also shown for least squares (top left), the segmented approach (top right) and

IVIM-NEToptim (bottom left). The purple arrow in the Dmap for the segmented approach indicates the location of a tumor.

 1
5

2
2

2
5

9
4

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/m

rm
.2

9
6

2
8

 b
y

 N
tn

u
 N

o
rw

eg
ian

 U
n

iv
ersity

 O
f S

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
3

/1
2

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



324 KAANDORP et al.

F IGURE 8 Boxplots of the voxel-wise

IVIM parameter estimates for in vivo tumor

regions of all patients for each of the

networks described in Figure 7A, at the

early-stopping point and after training for

50 000 epochs (Epoch-50000).

Corresponding boxplots are also shown for

least squares and the segmented approach.

The outliers of the boxplots (i.e., those data

exceeding 1.5 times the interquartile range

above the upper quartile and below the

lower quartile) are not displayed for

visualization purposes.

those of LSQ, particularly for D*. Generally, the residual

maps of Figure 7B displayed higher RMSE than those of

Figure 6. The parameter maps and RMSE maps of the

unsupervised networks that were trained on either the

uniform or patient distributions were similar to those for

the unsupervised network trained directly on the in vivo

data. In contrast, IVIM-NEToptim displayed inferior RMSE

and high D* (cf.18), and parameter estimates were also

considerably different for voxels in the tumor region.

For the supervised networks, a bias toward themean of

the training distribution occurred, which resulted in high

RMSE for the network trained on the uniform distribu-

tion. In contrast, the parameter maps and RMSE maps of

the supervised network trained on the patient distribution

are comparable to those for the unsupervised networks.

Despite the differences in parameter estimates for the dif-

ferent unsupervised and supervised approaches, RMSE

mapswere generally similar for low SNR regions (e.g.,WM

regions).

In Figure 8, we show boxplots of all voxel-wise IVIM

parameter estimates for in vivo tumor regions of all

patients for each fitting approach. For D, all of the
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approaches yield a similar distribution of estimates, with

the exception of LSQ, which tends to estimate lower val-

ues. Greater variability between approaches is observed

for f , and especially for D *, where at the early-stopping

point, the networks trained on synthetic data (unsuper-

vised and supervised) estimate the bulk of the parame-

ter values toward the mean of the respective synthetic

training distribution (see Figure 1). After extensive train-

ing (Epoch-50000), the unsupervised networks display

broader distributions of parameter estimates, but appar-

ently with less bias, given the observed similarity between

the distributions for each network. Conversely, the bias

observed for the supervised networks appears to persist

even after extensive training, which is consistent with the

results from the simulations. Note also in Figure 8 that

LSQ yields a substantially broader distribution of f values

in the tumor, which is also reflected in Figure 7 with con-

siderably higher estimates for f , whereas the segmented

approach produces a much narrower distribution of

lower f values.

4 DISCUSSION

This work highlights the impact of learning rate, net-

work size, training length and training distribution on

unsupervised and supervised DNN IVIM fitting to DWI

data. In simulations, we showed that high learning rate

and early stopping may lead to correlated parameter esti-

mates and sub-optimal model fitting. We showed that a

network with more hidden units increases convergence

speed, a lower learning rate results in stable convergence,

and extending training beyond early stopping leads to

reduced parameter correlations and parameter error. How-

ever, extensive training resulted in an increased sensitivity

to noise. For unsupervised learning, parameter estimates

in regions with low SNR (or low f ), that is, with under-

lying uncertainty, displayed variability similar to LSQ

estimates. For supervised learning, parameter estimates

with underlying uncertainty were affected strongly by the

distribution of the training data, showing biases toward

the mean of the training distribution, which resulted in

smooth, yet possibly deceptive parameter maps. More-

over, we showed that early in training the networks were

more accurate at estimating parameter combinations that

were well represented in the training set, compared with

underrepresented combinations, but the accuracy of the

latter improved with extensive training. The in vivo results

were in broad agreement with the simulations, and fit-

ting residuals were almost identical between approaches,

particularly for the unsupervised networks. However, the

pseudo-diffusion maps varied considerably, demonstrat-

ing the difficulty of fitting D* in these regions.

Previous work demonstrated that the use of DNNs for

IVIM fitting can lead to erroneous correlation between

estimates for the pseudo-diffusion coefficient (D*) and the

perfusion fraction (f ).17 Whereas that work resolved those

correlations by exhaustive hyperparameter optimization,

the present work has demonstrated that extending train-

ing beyond early stopping is a simpler alternative, which

provides consistent results across many hyperparame-

ters (Figure 3). Of course, this begs the question of how

much training is sufficient or optimal. In the approach

of Barbieri et al.,16 the early stopping criterion resulted

in sub-optimal convergence at approximately 50 epochs,

whereas we trained for 50 000 epochs (i.e., 1000 times

longer) to ensure adequate convergence. In the simula-

tions, extensive training in unsupervised learning resulted

in an increase in MSE per parameter. Therefore, it could

be argued that the point where D*-MSE is lowest might

be a good choice of stopping point in unsupervised learn-

ing (Figure 4). However, the minimum D*-MSE observed

in the simulations is really only an artifact of the persist-

ing bias in the parameter estimates at that point in training

(Figures 5, 6), coupled with the chosen metric for gauging

accuracy. For unsupervised learning, extensive training

was found to ameliorate this bias and also further reduce

the fitting residuals, and may therefore be favored in spite

of the higher parameter variability. Indeed, there were still

improvements after training for 5000 epochs (Figure 5).

In contrast, for supervised learning, bias toward the

mean of the training distribution was found to persist even

after extensive training, for data with low SNR (or low f ).

While this approach produced smooth parameter maps,

little confidence can be placed in the estimated maps for

D* (Figures 6, 7). Similar bias was demonstrated by Gyori

et al. for the spherical mean technique diffusion model.20

Since parameter accuracy for supervised learning is highly

dependent on the choice of training data (Figure 4), it

may be of benefit to derive ground truth parameter com-

binations from conventional model fitting, as done for the

synthetic patient distribution described in this study, such

that the degree of bias is reduced. Nevertheless, it is impor-

tant to remain aware that this inherent bias, although

reduced, will ultimately still be present in regions of low

SNR, in spite of the possibly alluring smoothness of the

parameter maps.

We showed that the choice of learning rate strongly

impacts the convergence behavior of the loss term, particu-

larly for unsupervised learning. A higher learning rate was

associatedwith spiky convergence,whichhas the potential

for poor parameter estimates if the termination of training

coincides with such a spike in the loss term. In contrast,

a lower learning rate mitigates this spiky convergence at

the cost of more training epochs. In this work, we have

used a fixed learning rate. An alternative approach would
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be to vary the learning rate over the training process, using

a so-called learning rate schedule, which could speed up

convergence while avoiding spiky behavior at the end of

training.

We showed that a network with a higher number of

hidden units in each layer resulted in increased conver-

gence speed. Previous approaches16,17 set the hidden units

equal to the number of measured b values (e.g., 16 in this

study). Consequently, if a sparse protocol were used for

acquiring DWI data, then the hidden units would be very

low and could limit the learning capacity of the DNN.

Therefore, we recommend using a fixed number of hid-

den units that is considerably higher than the number of

b values (e.g., 64 in this study) in order to avoid a low

learning capacity. Adding even more network parameters

maymake the networkmore powerful, but this would also

extend computation time, and ultimatelymay not be bene-

ficial if the network is already sufficiently powerful for the

application.

In general, we found that altering hyperparameters of

the network did not produce a considerable improvement

in performance, provided that training was sufficiently

long to ensure convergence (Figure 3). The marginally

lower loss that resulted fromahigher batch size is expected

because the gradients calculated at each training step are

more reliably defined. Furthermore, we found that using

batch normalization, dropout, or the SGD optimizer could

result in inferior performance, in particular for unsuper-

vised learning. Therefore, use of these methods must be

carefully evaluated. Performance of batch normalization

may be improved by increasing batch size.

For the in vivo data (Figure 7), the parameter maps

and RMSE maps for the unsupervised networks that were

trained on synthetic data were very similar to those for the

additional unsupervised network that was trained directly

on the in vivo data (Epoch-50000). This suggests that a sin-

gle unsupervised network may possibly be trained using

synthetic data generated by a broad range of parameter

combinations, and utilized for every anatomy, provided

that the amount of training were sufficiently extensive. It

is important to note that these parameter maps were also

very similar to those obtained by conventional model fit-

ting. As such, the practical benefit of these unsupervised

networks may simply be a possible reduction in compu-

tation time. Correspondence between the results of the

unsupervised approach and LSQ fitting is expected since

both minimize the L2-norm on the signals (signals-MSE,

Eq. 1). This is most evident for D*, whereas for D and f

there is perhaps greater similarity with the maps of the

segmented approach. One supposition is that, similar to

the segmented approach, an unsupervised network may

first estimate adequate D, wherefrom it can learn adequate

f and subsequently adequate D*. This may explain why f

and D* are correlated if training is terminated early.

Every network performed poorly on data that lay

outside of the respective training distribution, so-called

out-of-distribution (OOD) data. In Figure 6, the networks

trained on the synthetic data from the patient distribu-

tion showed low RMSE for all voxels in the representative

slice, especially after extensive training. Conversely, the

networks trained on synthetic data from the uniform dis-

tribution showed high RMSE for the voxels associated

with parameters that lay outside of the training distribu-

tion (i.e., D> 3× 10−3 mm2/s and f > 50%; red arrows).

The impact of these OOD data in the test set was also

observed in the plot of signals-MSE in Figure 4A, where

the unsupervised network trained on the uniform distri-

bution displayed an increase in signals-MSE as training

progressed.However, if the patient distribution test set was

instead truncated using the same bounds as the uniform

distribution, the difference in signals-MSE between the

two unsupervised networks was found to beminimal (data

not shown). One further example of the consequences

of OOD data is shown in Figure 5, where the networks

trained on the synthetic patient distribution show inaccu-

rate estimation of lowD, despite high S0. This is due to the

lack of certain parameter combinations occurring in the

patient distribution, while being present in the uniform

distribution test set, which were therefore not seen during

training.

Note that the poorly-fitted OOD data in Figure 6 cor-

respond to parameter values that are not physically real-

istic (i.e., D> 3× 10−3 mm2/s and f > 50%). This demon-

strates one limitation of this study, which uses conven-

tional model fitting to generate and provide synthetic

patient data for training and testing. Specifically, we used

the two-step segmented approach, since this was found

to be more robust to noise than LSQ for the in vivo data

considered in this study (Figures 7 and 8). These conven-

tional methods are applied under the assumption that the

in vivo data are well approximated by a bi-exponential

function. However, the IVIM model does not account for

other possible biophysical processes or imaging artifacts

(e.g., subject motion) that may influence the signal. These

factors make it difficult to generate synthetic data and

corresponding ground truth parameters that provide an

accurate representation of real data and the underlying

biophysics. Future work should consider how to provide

more appropriate ground truth data for training.

DNNs are promising for enhancing medical imag-

ing technologies, yet for IVIM fitting, performance is

strongly dependent on certain design choices, which can

make results difficult to interpret, particularly in clini-

cal practice. Clinical assessment is therefore necessary
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to determine whether DNNs provide a clinical advan-

tage over other advanced estimators. Comparison to his-

tological characterization could be invaluable, where, for

instance, gliomas have been shown to produce a patho-

logic microvascular network in the periphery through

neoangiogenesis, which results in hyperperfusion to pro-

vide nutrients for tumor growth, whereas the center of

the tumor consists of dead tissue that is hypoperfused.2,26

A ring of high f values at the location of the tumor

would be consistent with this histological finding, which

in Figure 7 is most clearly shown for the unsupervised

approaches at Epoch-50000. Tumor classification could

be another important consideration of clinical assess-

ment,27 where the choice of fitting approach may be

a key factor in the pursuit of quantitative biomarkers

(Figure 8).

This work focused on voxel-wise fully-connected net-

work implementations for IVIM fitting, but a detailed

investigation of the impact of other network architectures

has not been considered. For instance, Vasylechko et al.28

proposed an unsupervised convolutional neural network

based on the U-NET architecture.29 It is expected that the

incorporation of spatial information into the training of

a neural network for IVIM fitting may improve perfor-

mance, but further investigation of this is beyond the scope

of the present article and has been left for future work.

Lastly, this study mainly focused on the brain, which is a

particularly challenging organ for IVIM fitting given the

typically low f values. A comprehensive comparison study

for other anatomies should be pursued in future work,

although similar findings regarding extensive training and

biases are expected.

5 CONCLUSIONS

Using both simulations and in vivo data from glioma

patients, we have explored the potential impact of key

training features in unsupervised and supervised learn-

ing for IVIM model fitting. The main motivation of this

work was not to develop a network that could improve

IVIM parameter estimation. Rather, our aim was to inves-

tigate the possible limitations of voxel-wise deep learning

IVIM fitting, by surveying a broad range of reasonable

design choices. For both learning strategies, we demon-

strated that a high learning rate, small network size, and

early stopping can result in sub-optimal solutions and

correlated parameters. We demonstrated that extending

training beyond early stopping can resolve these correla-

tions and reduce parameter error, providing an alterna-

tive to exhaustive hyperparameter optimization. However,

extensive training resulted in increased sensitivity to noise,

where unsupervised parameter estimates displayed vari-

ability similar to estimates from conventional LSQ fitting.

In contrast, supervised parameter estimates demonstrated

improved precision, but showed strong biases towards the

mean of the training distribution. Hence, visual assess-

ment alone is not sufficient for evaluating the quality of the

estimates. While the apparent sensitivity to noise in unsu-

pervised learning may be undesirable, it could be argued

that the corresponding variability observed in the parame-

ter maps is indicative of the underlying uncertainty, which

is indeed useful information. This uncertainty is exem-

plified by the contrasting D* maps between approaches,

despite the similar residual maps, and illustrates the dif-

ficulty in estimating D* in the brain. Therefore, while

deep-learning-based model fitting is a promising tool for

IVIM parameter estimation, the impact of design choices

on fitting performance and biases must be carefully evalu-

ated.
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