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Abstract

Biometric data stored in automated recognition systems
are at risk of attacks. This is particularly true for large-
scale biometric identification systems, where the reference
database is often accessed remotely. A popular approach
for the protection of the stored templates is homomorphic
encryption, which grants privacy protection while main-
taining the biometric performance of the unprotected sys-
tem. However, it introduces a significant computational
overhead that can render identification transactions infea-
sible. To reduce this workload, biometric indexing in the
encrypted domain has become a recent research interest. In
this work, we show that in such schemes, auxiliary index-
ing data can leak additional privacy-sensitive information
that violate standardized requirements for biometric tem-
plate protection. In response to this leakage, we propose a
novel framework HEBI that protects biometric indexing ap-
proaches at a post-quantum security level while requiring a
computational effort of only 0.12 milliseconds per cluster.

1. Introduction
Biometric data allow for an irrevocable identification

of individuals over several decades [28]. Therefore, bio-
metric data need to be considered sensitive data requiring
long-term protection, even more so than passwords or au-
thentication tokens that can be exchanged upon a security
breach. To ensure this protection, the ISO/IEC 24745 stan-
dard on biometric information protection [25] defines the
following requirements: i) unlinkability, two protected tem-
plates stored in different applications cannot be linked to the
same subject, ii) renewability, new templates can be created
from the same source if the previously stored reference was
leaked without the need to re-enrol, and iii) irreversibility, it
is impossible to reconstruct original samples given only pro-
tected templates. Furthermore, both the computational and
biometric performance (i.e., accuracy) of the unprotected

Figure 1. Biometric information leakage in indexing schemes on
encrypted reference databases: an attacker can observe privacy-
sensitive information from indexing data, e.g., soft-biometric at-
tributes such as gender of the probe and reference subjects.

system should be preserved.
In biometric identification, where a 1 : N search against

a large database is performed, biometric templates are at
particular risk as reference databases are maintained for
long time spans. For example, this is true for criminal
databases held by law enforcement agencies or for national
citizen registration [42]. In addition, these databases are
static targets of attack, as their large storage requirements
do not allow for agile changes to their physical security.

Recently, biometric identification protected through
Fully Homomorphic Encryption (FHE) has been explored
to mitigate these security risks [4, 14, 19]. While this ap-
proach grants cryptographically sound protection of the bio-
metric templates, it comes with a significant overhead in
computational workload. For large-scale databases, work-
load reduction strategies need to be applied to achieve prac-
tical biometric identification systems. Workload reduction
strategies have been categorized into two main classes [15]:
feature transformation and preselection. Preselection ap-
proaches offer a significant speed-up through selecting a
smaller subset of the enrolment database that contains the
reference identifier with high probability. Using an index



string i common to a subset of enrolled references Ci, pres-
election can be achieved in O(1) and is therefore efficient.

However, a key challenge with these approaches is the
continuous protection of data subject privacy under prese-
lection, i.e., ensuring that the preselection procedure and its
outcome do not reveal any information about the underly-
ing subject, or infringe on the unlinkability of the system.
This vulnerability is depicted in Figure 1. It is important
to note that the encryption of the feature vectors alone is
not sufficient to fulfil this requirement, as the preselection
algorithm can reveal additional information about the en-
rolled subjects, e.g., soft-biometric characteristics such as
the gender of ethnicity of the probe and reference subjects.

The risk of information leakage shown in Figure 1 is
particularly high when biometric indexing is based on sim-
ilarity measures between the enrolled subjects, e.g., in
feature-based clustering approaches. These similarity mea-
sures contained in the Auxiliary Indexing Data (AID) can
potentially reveal sensitive information about the prese-
lected subset such as their shared soft-biometric character-
istics. For sound privacy protection in the sense of ISO/IEC
24745 [25], this information needs to be obscured in addi-
tion to the protection of the feature vectors.

To mitigate the privacy leakage in biometric indexing,
we therefore propose a novel protocol HEBI that can be
applied to indexing approaches in the encrypted domain.
The key contributions of our work are as follows:

• Privacy analysis. To illustrate the significant risks that
come with the use of unprotected AID, we give a pri-
vacy analysis of existing approaches. We show that
we were able to reconstruct the gender and ethnicity of
enrolled subjects based only on AID, which must be
considered a severe security risk.

• Formalization of information leakage. Further, we
give a formalization of information leakage in biomet-
ric indexing that indicates that such a leakage exists
in arbitrary biometric indexing schemes. We use this
formalization as further motivation for our work, in
addition to the experimental analysis.

• The novel HEBI protocol. As our main contribution,
we present the HEBI protocol for secure biometric in-
dexing in the encrypted domain. Through the use of
lattice-based cryptography [5, 9], our protocol pro-
vides post-quantum security in storage, preselection
and comparison. We give an experimental evaluation
that shows that HEBI can be applied in real-world
operational systems at a cost of only 0.12 additional
milliseconds for the the post-quantum secure retrieval
compared to unprotected preselection systems. At the
same time, the biometric performance of the underly-
ing indexing approach is not impacted by the applied
cryptographic protection mechanisms.

• Security analysis. We provide a comprehensive secu-
rity analysis of our protocol and show how it mitigates
the flaws of unprotected approaches, thus giving full
post-quantum security to biometric data under prese-
lection.

The remainder of this article is structured as follows:
Section 2 discusses works that are closely related to ours,
before we analyse of the privacy leakage in a previously
proposed privacy-preserving biometric indexing scheme. In
Section 4, we introduce more technical cryptographic back-
ground information. From this, we present our novel HEBI
protocol in Section 5 that alleviates the presented privacy
risks. Section 6 gives experimental results and a security
analysis. Finally, we draw our conclusions in Section 7.

2. Related Work

Workload reduction in homomorphically encrypted bio-
metric identification systems has recently been achieved
with post-quantum security [4, 19]. However, both of these
works were only based on feature transformation, such that
an exhaustive search requiring a linearly increasing costs re-
mains. It is important to note that our HEBI protocol can in-
tegrate such feature transformation approaches seamlessly
and therefore allows for further improvements in large-scale
biometric identification systems.

The cryptographic concept of homomorphic search has
previously been applied to biometric identification in [46].
In their work, the authors use the search scheme as a re-
placement for FHE rather than an additional protection
layer for the preselection step. In order to realize homo-
morphic search on the feature vectors directly, strong sta-
tistical assumptions about the feature representation are re-
quired, which do not generalize over different modalities.
Another recent work [45] applied homomorphic search for
biometric authentication instead of identification. Most re-
cently, [3] applied homomorphic search for preselection on
an encrypted reference database. However, our HEBI pro-
tocol differs non-trivially from the proposal in [3] in several
aspects. Firstly, the work by [3] can only be considered as
proof-of-concept, as a handcrafted preselection approach is
utilized in their work, which underlies the unrealistic as-
sumption of perfect ground truth. In comparison, HEBI is
designed for real-world indexing approaches that allow for
a meaningful analysis of the overall biometric performance.
Secondly, [3] apply a binning approach that does not triv-
ially generalize to other application scenarios apart from
their own, while HEBI enables efficient and secure cluster
generation independent of the indexing algorithm. Finally,
our work offers an extensive analysis of the risk of prese-
lection independent of the concrete indexing approach and
shows how to mitigate these risks in a universal approach.

The application of unprotected biometric indexing to



biometric identification [13, 24, 33, 34, 35, 38, 41, 43] will
be discussed at length in the following Section. These are
the schemes our HEBI protocol improves upon through an
additional layer of protection during the preselection step.
Notably, the choice of protection mechanism for the refer-
ence database is independent of the HEBI preselection pro-
tocol, though we adhere to FHE-based protection in our
work. In addition, HEBI does not impair the originally
given biometric performance of the above works.

3. Privacy Analysis of Biometric Indexing
Biometric indexing as depicted in Figure 1 has been ap-

plied in a number of recent research works, among oth-
ers [13, 24, 33, 34, 35, 38, 41, 43]. In this Section, we
give further intuition to the privacy implications of such ap-
proaches through probability theory.

3.1. Formal Model

In this analysis, we investigate the relation between the
enrolled reference feature vectors {rj}N−1

j=0 for a number of
reference subjects N and the auxiliary indexing data (AID)
represented by index strings {ik}Kk=0, where K denotes the
number of clusters or index strings in the given scheme. We
define that every reference feature vector rj is assigned one
and only one index string ik, while one index string ik clus-
ters several references (i.e., K < N ). Upon an identifica-
tion transaction, a probe feature vector p is extracted from a
presented probe sample, and the corresponding index ik is
determined. Then, only the reference features vectors asso-
ciated with ik are compared to p in the encrypted domain.

For the formalization of privacy leakage in such index-
ing schemes, we utilize the information-theoretic concept
of mutual information I(X;Y ), which is defined as

I(X;Y ) = DKL(P(X,Y )||PX ⊗ PY ), (1)

where X and Y are random variables and DKL denotes the
Kullback–Leibler divergence [11]. The mutual information
can further be expressed in terms of entropy [40]:

I(X;Y ) = H(X)−H(X|Y ), (2)

where H(X) is the marginal entropy of X and H(X|Y )
is the conditional entropy of X given Y . Let {X}j be the
variable family that represents the reference feature vectors
and {Y }k be the variable family that represents the index
strings. In a meaningful indexing scheme, it holds that

I(Xk, Yik) > I(Xk, Yim), (3)

i.e., the mutual information between the reference feature
vector rj associated with index string ik should be greater
than the mutual information between the same reference
feature vector rj and a different cluster associated with an

index string im. Otherwise, rj would be associated with im
instead. From Equation 3, it follows that H(Xk|Yim) >
H(Xk|Yim). As H(Xk|Yim) cannot be smaller than 0, it
follows that H(Xk|Yik) > 0. At the same time, the similar-
ity of index strings does not correspond to the full feature
vectors, which would yield no advantage over an exhaustive
identification search. Therefore,

H(Xk) > H(Xk|Yik) > 0, (4)

and consequently,

I(Xk;Yik) = H(Xk)−H(Xk|Yik) > 0, (5)

meaning that there is mutual information contained between
the feature vectors and index strings. This mutual infor-
mation defines the leakage of biometric information, which
allows for attacks on the probe and reference subjects that
can violate their privacy. Indeed, it has been shown that
auxiliary data in biometric systems can lead to privacy risks
in other applications, e.g., biometric cryptosystems [39].
However, we emphasize that our formal model is not in-
tended to be used as a concrete metric, as mutual informa-
tion is hard to calculate precisely. Instead, it serves as a log-
ical argument for the existence of privacy leakage in AID.

More empirically, index strings are commonly con-
structed such that they allow for a clustering of the refer-
ence feature vectors based on a more general measure of
similarity than the exact comparison between feature vec-
tors. In some approaches [13, 34, 38], the index strings are
even derived from the feature vectors directly, representing
a down-sampled representation of one or more feature vec-
tors. In the following, we show how to concretely extract
privacy-sensitive information from such representations.

3.2. Case Study

To illustrate the risks of soft-biometric leakage in bio-
metric indexing in a case study, we analyze the recent work
of [34], which is one of the works relying on unprotected
index strings discussed above.

In their work, the authors generate a look-up table of
short binary strings, or stable hashes, which represent dis-
tinct clusters of reference templates. They present different
methods of obtaining these stable hashes, all of which are
based on the feature representations of the enrolled refer-
ences. In our evaluation, we focus in the first of their pro-
posed approaches, which is the established k-means cluster-
ing technique [32]. During the enrolment phase, the cluster-
ing algorithm is trained on the enrolment database, which
is subsequently encrypted using FHE. The protected tem-
plates are stored in the database alongside the look-up table
of stable hashes, which in the case of k-means clustering are
a binary representation of the cluster centers, or centroids.
Upon an identification transaction, the distance of the probe



feature vector to all centroids is calculated, and the closest
centroid is determined to be the probe stable hash. Then, the
reference subjects with the same stable hash are extracted
from the enrolment database, a homomorphic comparison
of the encrypted probe feature vector against the encrypted
references is computed, and the decision is revealed to the
client that initiated the transaction [34].

The advantage of this indexing approach is the error-
correcting capability of the clustering approach, which al-
lows for an exact comparison of the stable hashes and is
therefore very efficient. The retrieval cost of the look-up
operation is constant at O(1) and can be considered negli-
gible compared to the cost of the homomorphic operations.
Furthermore, the low preselection error even on challenging
data sets makes the approach in [34] attractive.

However, the vulnerability of the approach with regard to
the reference subjects’ privacy lies in the stable hash look-
up table, which is stored alongside the enrolment database.
As argued above, it can be expected that the stable hashes
encode information about the probe and reference subjects
to some degree, which could be privacy-sensitive informa-
tion. For example, soft-biometric similarities to the sub-
jects in one cluster could be revealed, which would consti-
tute a violation of ISO/IEC 24745 [25]. Disclosure of soft-
biometric data related to the ethnic origin is a breach of the
European Union’s General Data Protection Regulation [20].

To confirm our hypothesis, we conducted an experimen-
tal evaluation of the privacy leakage in the system presented
in [34]. For this evaluation, we selected 3,165 samples of
533 subjects from the Face Recognition Grand Challenge
(FRGC) database [36] that are compliant with the Inter-
national Civil Aviation Organization’s face image quality
requirements for machine-readable travel documents. The
code for the stable hash generation from k-means cluster-
ing [32] has been provided by the authors to facilitate the re-
producibility of their results. In terms of parameters, we fol-
lowed the original work with P = 1 subspaces and K = 64.

Figures 2 and 3 show the distribution of ethnicity and
gender of the 64 clusters. For this analysis, ground truth la-
bels for the image samples were hand-annotated, such that
a high accuracy in the labelling can be assumed compared
to soft-biometric feature extractors [17]. From the visual-
ization of the distributions, it becomes evident that there
exists pooling of soft-biometric characteristics within both
dimensions of ethnicity and gender. This can be for exam-
ple observed in clusters clusters 36, 38 and 39, which ex-
clusively contain female subjects, while clusters 3, 9 and 11
only contain male subjects. Similarly, clusters 10 and 11 ex-
clusively contain Asian subjects, while clusters 21, 22, 23,
42, 46 and 63 only contain Caucasian subjects. While these
characteristics are not perfectly separated over all clusters, it
is particularly concerning that the clustering effectively ex-
poses underrepresented subgroups. A prominent example is

Figure 2. Distribution of ethnicities over the clusters derived from
an ICAO-compliant subset of the FRGC database [36].

Figure 3. Distribution of genders over the clusters derived from an
ICAO-compliant subset of the FRGC database [36].

cluster 10, which contains only female Asian subjects. An
attacker observing the stable hash corresponding to cluster
10 can therefore with high probability deduct the gender
and ethnicity of the probe subject and the reference subjects
stored alongside that stable hash.

To extend our analysis, we further evaluated a synthetic
face image generation from the centroids to approximate
the average features of the subjects in the clusters and their
similarity to the synthetic approximation for the respective
cluster. We leveraged the StyleGAN3 generator [26] pre-
trained on the FFHQ database [27] that includes more than
70, 000 face images with diverse ethnicities, gender labels,
and other facial characteristics. To reconstruct latent rep-
resentations and subsequently derived representative face
images from each stable hash (s), we trained a fully con-
nected neural network (M) that maps each stable hash into
the semantic manifold of the StyleGAN3 intermediate la-
tent space. We froze the generator (G) weights during train-
ing to preserve its capability to generate photo-realistic face
images. Further, we applied a simple mean squared error
loss function to minimize the difference between the recon-
structed face images x̂ = G(M(s)) to the randomly drawn
face images x of their corresponding cluster.

For this experiment, the FRGCv2 training subset has
been reduced such that each stable hash is assigned with
only one face image per identity. This setting prevents



(a) Bona fide samples of subjects from cluster 10.

(b) Left to right: Reconstructions based on untrained, trained
on cluster 10 only, trained on all clusters, trained on 70% of all
clusters (excluding cluster 10) StyleGAN approximations.

Figure 4. Comparison of bona fide FRGCv2 samples of cluster 10
and StlyeGAN presentation attack approximations of cluster 10.

the mapping network from oscillating due to the high
intra-subject variance. For the optimization of M, the
StyleGAN3 truncation factor was set to 0.75, enabling the
generation of face images with stable quality. We adopted
the Adam optimizer settings from [27] and increased the
learning rate to 0.01 to accelerate the training process. The
results of this evaluation are shown in Figure 4.

In Figure 4, the reconstructed latent representations cor-
responding to cluster 10 are depicted alongside a selection
of bona fide sample images from that cluster, which con-
tains only female Asian subjects. The reconstructed images
are based on incrementally scarce training data to show that
our GAN-based approach generalizes even in an open-set
scenario. The closest approximation has been trained on
cluster 10 alone, and cannot be considered a realistic at-
tack. Both the closed-set and the open-set training scenario
excluding cluster 10 continue however to show significant
similarities to the original identities. Most importantly, the
soft-biometric characteristics of gender and ethnicity are
preserved. A breach of the latter in particular constitutes
a GDPR [20] violation and must be prevented.

To conclude this analysis, significant privacy leakage has
been found in the indexing approach by [34]. However, the
overall indexing scheme is of high relevance to the problem
of workload reduction for large-scale biometric identifica-
tion, as it benefits from a high biometric performance and is
therefore desirable to apply.

Looking towards the cryptographic protection of index-
ing approaches such as [13, 34, 38], the component of the
index string that allows for the privacy leakage is their de-
terministic nature, i.e., in the case of [34], similar feature
vectors will always be mapped to the same stable hash.
In the remainder of this paper, we are therefore propos-
ing a transformation of this deterministic preselection ap-
proach to a non-deterministic preselection, where similar
feature vectors are mapped to randomized outputs that look

indistinguishable to an attacker. At the same time, they al-
low for the correct retrieval of the corresponding reference
subjects, such that the biometric performance of the index-
ing approach is not impacted.

4. Preliminaries
4.1. Fully Homomorphic Encryption

Homomorphic encryption describes a cryptographic
technique that allows for the evaluation of functions on en-
crypted data. More precisely, we call a public-key encryp-
tion scheme homomorphic if

Enc(pkH , x⊙ y) = Enc(pkH , x)⊙ Enc(pkH , y). (6)

More recently, Fully Homomorphic Encryption (FHE)
has become practical for application in certain use cases.
Following the groundbreaking work by Gentry [22], dif-
ferent schemes have established themselves with respect to
their different properties. One of these is the CKKS [9]
scheme, which provides the useful advantage of comput-
ing on high-precision approximations of floating point num-
bers directly, where other schemes require integer quantisa-
tion [8, 21] or binarisation [10]. In terms of the encrypted
comparison of biometric feature vectors, this means that the
underlying data does not need to be altered, and no informa-
tion from the biometric comparison is lost. Therefore, the
computations on encrypted templates correspond directly to
computations on the unprotected templates, and the biomet-
ric performance remains unimpaired.

The security of many FHE schemes, including CKKS, is
based on the Ring-Learning with Errors (R-LWE) problem,
which is assumed to be secure against attacks implemented
on a quantum computer [31]. These cryptosystems there-
fore provide a high level of protection to the biometric data,
and in particular, long-term protection over several decades
according to the current basis of knowledge and expecta-
tions in the field of cryptography [1].

4.2. Public-Key Encryption with Keyword Search

In addition to the protection of the feature vectors, the
privacy analysis in Section 3 has shown that the indexing
and retrieval during the preselection process requires addi-
tional protection. A recent work on face identification [3]
has proposed the use of Public-Key Encryption with Key-
word Search (PEKS) for the protection of semantic soft-
biometric keywords. In this work, we apply this technique
to generic biometric indexing approaches.

The cryptographic basis of PEKS lies in Identity-Based
Encryption (IBE), which was first introduced by Boneh and
Franklin in 2001 [7]. Building on this idea, PEKS was pro-
posed as a means of creating ciphertexts for specific seman-
tic keywords instead of identities [6]. In the typical appli-
cation scenario, a PEKS scheme is used to create an en-



cryption of a keyword together with a corresponding trap-
door. This pair of cryptographic objects can be subjected to
a publicly available test function which reveals no informa-
tion except for the binary decision outcome of the similarity
of the underlying keyword of the ciphertext and trapdoor.

A PEKS scheme [5] is defined as a tuple of four
algorithms PEKS = (KeyGen, PEKS, Trapdoor, Test):

- (pkS , skS) ← KeyGen(1k): On the input of the secu-
rity parameter k, this algorithm outputs the public and
secret key pair (pkS , skS).

- sw ← PEKS(pkS , w): On the input of the public key
pkS and a keyword w ∈ {0, 1}∗, this algorithm outputs
a searchable ciphertext sw.

- tw ← Trapdoor(skS , w): On the input of a secret key
skS and a keyword w ∈ {0, 1}∗, this algorithm outputs
a trapdoor tw.

- b ← Test(tw, sw): On the input of a trapdoor
tw = Trapdoor(skS , w′) and a searchable ciphertext
sw =PEKS(pkS , w), this algorithm outputs a bit b = 1
if w = w′, and b = 0 otherwise.

More recently, PEKS has been implemented based on
lattice-based IBE [18] to create lattice-based PEKS [5].
Compared to the original construction, lattice-based PEKS
has high computational efficiency and provides post-
quantum security through R-LWE [31]. As an important
property to the application in this work, PEKS ciphertexts
are constructed using a random component, yielding non-
deterministic encryption. In the following Section, we will
detail how this property ensures privacy protection when ap-
plied to biometric indexing.

5. The HEBI Protocol
In this Section, we present our novel HEBI protocol for

biometric indexing in the encrypted domain. The protocol
can be applied to any existing biometric indexing approach
that clusters enrolment biometric references to prevent the
leakage of sensitive information about the data subjects.

5.1. Setting

The HEBI protocol is executed between three parties: A
client device, a Database Server (DS) and a Trusted Third
Party service (TTP). All three parties are considered in the
semi-honest security model, where they may aim to gain in-
formation about the data they are exchanging, but are not
assumed to deviate from the given protocol. This is an es-
tablished security assumption in remote biometric authenti-
cation [23, 29, 44].

5.2. Enrolment

During the enrolment phase, two separate setup opera-
tions are performed: initialisation of the encrypted index-
ing algorithm and the homomorphic encryption of the en-
rolment database.

The indexing algorithm is assumed to require some pre-
computation on an unencrypted enrolment database [34]. In
our protocol, we allow for this precomputation to be con-
ducted during an offline phase prior to the deployment of the
system, where the unprotected templates are not exposed to
potential attacks. As a result of the indexing algorithm, each
biometric reference r will be assigned an index, or cluster, i
which can be of arbitrary data representation. If the cluster-
ing algorithm does not produce balanced clusters, i.e., the
number of subjects per cluster is not consistent, the clusters
are padded with random feature vectors to be of equal size.

Once the clusters have been established, the PEKS
framework can be initialised. First, TTP generates a number
of random PEKS keywords {wi | 0 ≤ i ≤ K − 1}, where
K is the total number of clusters, and fixes a mapping M
between the clusters and PEKS keywords , which is made
publicly available. Note that the mapping M of clusters to
PEKS keywords must be indicated by the clusters’ (arbi-
trarily assigned) order instead of the semantic index string i
that could potentially reveal privacy-sensitive information.
By making the mapping publicly available, the PEKS key-
words do not act as additional secret keys in the system.

From the PEKS keywords, two look-up tables are gener-
ated. At TTP, a trapdoor tp ← Trapdoor(skS , wi) is com-
puted and stored for every cluster using the PEKS secret key
skS . At DS, a mapping of encrypted references to clusters
is stored, again based on any order of the clusters without
using the index i as the identifier. An overview of the look-
up tables is given in Figure 6.

For the setup of the encrypted enrolment database, TTP
generates and stores a key pair of the homomorphic encryp-
tion scheme (skH , pkH) and makes pkH available to the
client and DS. For a reference feature vector r, the client
can enrol a data subject by computing cr ← Enc(pkH , r)
and sending cr encrypted biometric reference to DS. Since
the assignment of subjects to clusters is initially fixed,
coefficient packing can be applied to facilitate further work-
load reduction [4].

5.3. Identification

During an identification transaction in HEBI, the client
captures a probe sample and obtains its feature represen-
tation p. The client determines the index ip of the probe
with respect to the applied indexing algorithm and uses the
public mapping M to determine the corresponding PEKS
keyword wp. Using the public key pkH of the HE scheme,
the client encrypts the probe feature vector by computing
cp ← Enc(pkH , p). It further computes the encrypted probe
index sp ← PEKS(pkS , wp), and sends cp and sp to DS,
which forwards sp to TTP.

Upon receiving sP , TTP determines the corresponding
trapdoor ti for which Test(ti, sp) = 1 holds true. Using
the look-up table mapping trapdoors to clusters (see Figure
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Figure 5. Identification transaction for encrypted preselection in the HEBI protocol.
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r , · · · , cNr

Look-up table at DS

0

1

...

K − 1
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t0 ← Trapdoor(skS , w0)

t1 ← Trapdoor(skS , w1)

...

tK−1 ← Trapdoor(skS , wK−1)

Look-up table at TTP

Figure 6. HEBI look-up tables generated at enrolment.

6), TTP sends the cluster identifier to DS, where the homo-
morphic comparisons are computed between the encrypted
probe cp and the encrypted references {clr}

j
l=0 in the cluster

corresponding to ti. The encrypted comparison scores are
sent to TTP, which decrypts them and determines the iden-
tification outcome, which is forwarded to the client. Note
that throughout this transaction, DS and TTP do not have
access to unprotected feature vectors or the index strings i
that could reveal sensitive information. An overview of an
identification transaction is given in Figure 5.

Our HEBI protocol can be seen as an independent layer
of protection to arbitrary indexing schemes. Furthermore,
it can also be combined with interchangeable template pro-
tection approaches for the feature vectors themselves, e.g.,
different FHE schemes or irreversible feature transforma-
tions. It is therefore versatile in its application and can be
considered for applications beyond face recognition.

6. Experimental Evaluation
To show the practicality of our HEBI protocol, we give

an experimental evaluation for the application to stable
hashes [34]. By applying the additional layer of security,
the privacy concerns outlined in Section 3 will be mitigated.

The experiments were conducted on the same subset of
533 subjects the FRGCv2 [36] database with 3,165 ICAO-
compliant samples. In addition, 529 subjects with 1413
samples from the FERET [37] database of ICAO-compliant
quality were used for the evaluation. From the samples, fea-

tures are extracted with the open-source feature extraction
model ArcFace [12] which produces face templates of 512-
dimensional floating point vectors with documented good
performance on the used data set [4]. For the stable hash
generation using k-means clustering, the parameters P = 1
subspace and K = 64 clusters are chosen in accordance
with the size of the database. The experiments where im-
plemented in Python and C++ on macOS Monterey 12.4
with an M2 processor at 3.50 GHz CPU clock frequency.

For the homomorphic operations, the CKKS [9] FHE
scheme was applied, as it does not impair the biometric
performance. The implementation of the state-of-the-art
FHE library OpenFHE [2] was applied, where CKKS pa-
rameters corresponding to 128 bits of security were cho-
sen [1]. For further workload reduction, coefficient packing
for a quadratic speed-up as previously proposed by [4] was
applied, showing the compatibility of HEBI with such ap-
proaches. The squared Euclidean distance was applied as
the comparison metric. For the lattice-based PEKS scheme,
the implementation by [5] was used.

6.1. Results

The results of the experimental evaluation are presented
in Tables 1 and 2. In terms of execution times (Table 1),
it can be seen that the majority of the workload is ab-
sorbed by the FHE comparisons on the encrypted feature
vectors, an observation which is consistent with related
work [16, 17, 19]. It is important to note that this work-
load can differ for different FHE schemes and has generally
been found to be lower for integer-quantised and binary en-
cryption, which introduces a trade-off with the biometric
performance [30]. The baseline and preselection accuracy
can be seen in Table 2, were a closed-set identification sce-
nario was evaluated. Aside from this concrete instantiation
however, we stress that HEBI is independent of the concrete
preselection procedure and inherits and maintains the accu-
racy of the underlying indexing algorithm in question.

The main focus of this evaluation is the overhead of a



Table 1. HEBI execution times for 533 subjects and 64 clusters.

System function Time (ms)
Probe stable hash generation 0.28
Probe encryption 2.27
PEKS search 7.69
FHE comparisons 9,996.00

Total 10,006.24

Baseline (exh. search) 334,891.00

Table 2. Accuracy of the stable hash clustering [34] for the
FERET [37] and FRGCv2 [36] databases and K = 64 clusters.

Database Enroll Search False True Presel. Baseline
Samples Samples Negative Positive Accuracy Accuracy

FERET [37] 529 884 19 865 0.9785 1.0000

FRGCv2 [36] 533 2,632 207 2,425 0.9214 0.9971

secure indexing using HEBI over unprotected preselection.
From Table 1, it can be derived that the protected prese-
lection using PEKS takes 7.69 milliseconds for 64 clusters
or 0.12 milliseconds per cluster. As the cost for the pre-
selection scales linearly with the number of clusters rather
than the size of the enrolment database, this cost is expected
to grow significantly slower than the cost for an exhaustive
identification search. For larger databases, the original work
on stable hashing [34] proposes a number of K = 1024
clusters, the cost of which can be approximated at 123.04
milliseconds, which can be considered real-time. Depend-
ing on the indexing algorithm used, there exists a trade-
off between the number of clusters, the preselection error,
and the number of biometric references per cluster. Over-
all, it becomes evident however that the lattice-based PEKS
scheme adds only a negligible overhead to the identification
system at less than 8% of the total cost, while providing
post-quantum protection under preselection. Compared to
the baseline system, the workload is reduced down to 3%.
The communication cost for HEBI consists of 2.66MB for
a CKKS public key, 267.4KB for a CKKS ciphertexts,
27.2KB for a PEKS public key, 52KB for a PEKS cipher-
text, and 27KB for a PEKS trapdoor.

6.2. Security Analysis

The security of both the FHE and the PEKS scheme are
based on the R-LWE [31] problem, which is assumed to
be post-quantum secure. The HEBI protocol maintains the
post-quantum security through all steps of the identification
transaction, including preselection. Contrary to unprotected
indexing approaches such as [13, 34, 38], the PEKS cipher-
texts are generated in a non-deterministic manner, which
makes them indistinguishable over the given clusters. A pri-
vacy attack as discussed in Section 3 is thereby prevented.

With regards to the requirements formulated in ISO/IEC
24745 [25], irreversiblity is given through the security as-

sumption of R-LWE [31]. Unlinkability and renewability
can be derived directly from the IND-CPA security of both
the CKKS [9] and PEKS [5] schemes, i.e., the indistin-
guishability under chosen plaintext attacks. Through this
property, an attacker cannot distinguish between an encryp-
tion of 0 and and encryption of 1. In biometric identifi-
cation, this extends to the indistinguishability of encrypted
templates: even if an attacker gains access to two encryp-
tions of the same template, they cannot be distinguished
from arbitrary inputs in a feasible manner. The same prop-
erty holds for the encryption of index strings through the
PEKS scheme. Therefore, it is not possible for an attacker
to link data subjects to other subjects enrolled under the
HEBI protocol or another system.

Finally, the performance preservation of HEBI is given
through the application of CKKS [9] and PEKS [5], as nei-
ther scheme impairs the biometric performance. The oper-
ations in the encrypted domain correspond directly to the
operations in an unprotected biometric system. In terms
of computational performance of HEBI, our experimental
evaluation has shown that the overhead of the PEKS scheme
is small, while a trade-off between the preselection error
and homomorphic workload persists. Further limitations of
HEBI include the assumption of the semi-honest adversary
model. Although this is an established assumption in bio-
metric template protection, it does not fully reflect the ca-
pabilities of real-world adversaries. In addition, we have
only evaluated the efficiency of HEBI for fixed-length fea-
ture representations, which can be considered a limitation.

7. Conclusion

This work firstly revealed that indexing schemes can leak
privacy-sensitive biometric information. Motivated by this,
we introduced the HEBI protocol for biometric indexing
in the encrypted domain. Index strings in biometric iden-
tification systems allow for the reconstruction of privacy-
sensitive information about the data subjects, which stands
in violation to ISO/IEC 24745 as well as the GDPR. As a
solution to this problem, HEBI gives post-quantum secure
protection to the feature vectors alongside their auxiliary in-
dexing data in storage, preselection, and comparison. HEBI
is independent of the indexing algorithm and protection of
the enrolment database and adds only negligible computa-
tional overhead per indexing cluster.
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