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Abstract. Password-based user authentication comes with imperson-
ation risks due to poor quality passwords or security breaches of service
providers. An additional layer of security can be provided to the au-
thentication through keystroke dynamics, i.e., measuring and comparing
users’ typing rhythm for their password. While this two-factor authenti-
cation is efficient and unobtrusive, the privacy of the biometric charac-
teristics must be ensured. Therefore, we present the Type2 protocol for
secure two-factor authentication based on keystroke dynamics, where the
anomaly detection of the latter is executed in the encrypted domain. In
an experimental evaluation, we show that our proposed protocol achieves
real-time efficiency with an overhead of less than 130 milliseconds com-
pared to password-only authentication.

Keywords: Keystroke dynamics · fully homomorphic encryption · two-
factor authentication

1 Introduction

Reliable user authentication is an important building block in an increasingly
digital world [12]. In many authentication scenarios, it is important to ensure
that data is disclosed only to the intended receiver, and not to a third party using
the receiver’s device with their stolen authentication credentials. This applies,
e.g., to the disclosure of medical data, but also the agreement of legal contracts
or financial transactions.

One of the most common digital authentication methods, passwords, do not
inherently provide this security. Trust in password-authenticated communication
can be impaired by the fact that many users choose simple passwords that are
easy to brute-force [31], or their password may have been compromised by a
large-scale attack on a service provider [25].
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Fig. 1. Seamless integration of biometric authentication using keystroke dynamics.

Biometrics can make such impersonation attacks harder and provide addi-
tional confidence in the authentication. In particular, one efficient and unobtru-
sive way of adding a second trust factor to password-based authentication are
keystroke dynamics, i.e., measuring and comparing the users’ typing rhythm for
their password [24]. Thereby, a second authentication factor can be derived from
the already provided password through extracting the timing information from
the user’s typing rhythm. This motivation is visualized in Figure 1.

However, such biometric characteristics are classified as sensitive by the Eu-
ropean Union’s General Data Protection Regulation (GDPR) [13] and must be
protected according to the ISO/IEC 24745 international standard on biomet-
ric information protection [20]. The latter defines the following three require-
ments for secure biometric authentication: i) unlinkability, two protected bio-
metric templates stored in different applications cannot be linked to the same
subject, ii) renewability, new templates can be created from the same biometric
instance without the need to re-enrol, and iii) irreversibility, it is impossible to
retrieve original templates given only protected templates. In addition, the bio-
metric performance (i.e., accuracy) as well as the computational performance of
the unprotected system should be preserved.

In this work, we present the Type2 protocol for secure two-factor authen-
tication based on keystroke dynamics, where the biometric comparisons are
executed in the encrypted domain. To this end, Fully Homomorphic Encryp-
tion (FHE) [15] is applied to the biometric features both during enrolment
and verification. More concretely, we investigate the compatibility of established
anomaly detectors for keystroke dynamics [24], and present an analysis of the
applicability and feasibility of FHE to these detectors. Further, we give a com-
prehensive security analysis of Type2 with regard to adaptations that have to
be made in order to apply FHE to different detectors. We evaluated our Type2

protocol experimentally on publicly available data [24] and libraries [29]. Our
proposed protocol can be instantiated with detectors that achieve real-time user
authentication at an overhead of less than 130 milliseconds per authentication
attempt.

The rest of this article is structured as follows: Section 2 discusses works that
are closely related to ours, before Section 3 gives more technical background
information. Our protocol and main contribution is presented in Section 4, to-
gether with its experimental evaluation given in Section 5. Finally, we draw our
conclusions in Section 6.
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2 Related Work

One of the first to discuss the application of homomorphic encryption to keystroke
dynamics were Šeděnka et al. [30]. In their work, the authors indicate that their
key generation protocol could also be instantiated with FHE, but that they re-
frained from this choice due to the significant computational overhead of FHE, in
particular with respect to the schemes and implementations that were available
in 2014. Therefore, they use additively homomorphic encryption only [10], which
only allows for additions of ciphertexts, and therefore limits the complexity of
detectors. In their evaluation, they use an in-house data set that does not allow
for reproducibility of their research. Nevertheless, we can estimate a comparison
of the efficiency, as the authors of [30] achieve execution times in the magni-
tude of minutes, whereas our Type2 protocol can be executed in the order of
milliseconds.

More recently, Acar et al. [1] presented a privacy-preserving multi-factor
authentication system named PINTA, where they consider keystroke dynamics
as one potential authentication factor. The authors evaluate their protocol on the
established and publicly available keystroke dynamics dataset provided by [24],
in addition to other modalities such as mouse movements. Their multi-factor
authentication protocol uses fuzzy hashing in combination with FHE, which
impairs the accuracy of the system. Furthermore, the FHE scheme used by [1]
is the BFV [8, 14] encryption scheme, which operates on integers and therefore
requires a quantisation of keystroke dynamic features. The computational cost
of their authentication decision was evaluated at around 370 milliseconds.

The most closely related work to ours was presented by Loya et al. [26]
in 2021. In their work, the authors evaluate a neural network with differential
privacy during the training process, while the keystroke dynamic features are
protected using the CKKS [9] encryption scheme. This is the same FHE scheme
we will use for our experimental evaluation. In addition, the work by [26] utilizes
the same established data set for keystroke dynamic evaluation provided by [24].
However, the execution times of [26] are not applicable for real-time applications,
as they are no lower than 14 seconds.

Table 1. Qualitative comparison of related works on keystroke dynamic authentication
with (fully) homomorphic encryption.

Encryption Accuracy Performance Post-quantum
Scheme Preservation Preservation Security

Šeděnka et al. 2014 [30] DGK ✓ ✗ ✗

Acar et al. 2019 [1] BFV ✗ ✓ ✓

Loya et al. 2021 [26] CKKS ✓ ✗ ✓

Ours CKKS ✓ ✓ ✓
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3 Background

3.1 Password-Authenticated Key Exchange

For the first component of our Type2 protocol, Password-Authenticated Key Ex-
change (PAKE) [21] is used. Compared to traditional hashing and salting of
passwords, PAKE provides additional security against offline attacks and can be
considered the state-of-the-art in password authentication. Popular approaches
include the SRP protocol [32] used among others in the Apple iCloud, or the
more recent the OPAQUE [21] protocol. Similar to biometric authentication, a
PAKE protocol is defined through a registration phase, where the user’s pass-
word information is enrolled into the system in a protected manner, and an
authentication phase, where a cryptographic key is exchanged successfully if
and only if the correct password is provided again. The PAKE component in our
protocol can be easily exchanged and we therefore do not focus on it further for
the scope of this work, but refer the reader to the works of [32] and [21] directly.

3.2 Fully Homomorphic Encryption

FHE allows for the evaluation of arithmetic circuits on encrypted data [15] and
has been determined to fulfil the ISO/IEC 24745 [20] requirements for biometric
information protection [33, 16, 7, 5]. For the scope of our work, we define an FHE
scheme through the following algorithms:

– (sk, pk) ← KeyGen(1λ): on input of the security parameter λ, generates
a secret key sk and public key pk, where pk includes the homomorphic
evaluation keys.

– cm ← HomEnc(pk,m): on input of pk and a message m, outputs a ciphertext
cm.

– cf(m1,m2) ← HomEval(pk, f, cm1
, cm2

): on input of pk, a public function f ,
and two ciphertexts cm1

and cm2
, outputs an encryption cf(m1,m2) of the

evaluation of f on the underlying plaintext messages m1 and m2.

– m′ ← HomDec(sk, cm): on input of sk and ciphertext cm, outputs a message
m′.

These operations can be applied to vectorized data, where all evaluations will
be performed element-wise, yielding an improvement in terms of computational
overhead [7]. It holds that Dec(sk,HomEval(pk, f, cm1

, cm1
)) = f(m1,m2) [9].

3.3 Keystroke Dynamics

In this work, we focus on keystroke dynamic features that can be extracted from
password timings measured using the same keyboard for each authentication
attempt. For a given password, this feature set will always be of fixed length n,
and the order of typed letters will be the same, easing the task of anomaly de-
tection. Different features that can be measured from password typings are [24]:
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(i) keydown-keydown time: time interval between a key is pressed and the con-
secutive key is pressed, (ii) keyup-keydown time: time interval between a key is
released and the consecutive key is pressed, and (iii) hold time: time interval
between a key is pressed and the same key is released.

Using these timings, the typical typing pattern of a user is established during
the enrolment or training phase. In this step, the mean vector over a set of
timing vectors is stored, with additional information such as the covariance of
the features. For neural network-based approaches, this step corresponds to the
training of the weights. For a verification transaction, a fresh probe timing vector
is captured from the data subject. The probe features are compared against the
stored reference template and a distance score or anomaly score [24] is computed.
Using a pre-defined threshold, the anomaly score can be used to grant or deny
the subject access to the system. The combined algorithms of enrolment and
verification are referred to as an anomaly detector in the following.

4 Proposed System

In this Section, we describe the Type2 protocol with FHE protection and nec-
essary modifications and limitations for all of the anomaly detectors described
in [24]. An overview of our proposed system is given in Figure 2.

In the enrolment phase, both the password and biometric reference of a sub-
ject are enrolled into the system. For the password w, the PAKE registration is
performed according to the chosen approach [32, 21]. Additionally, an FHE key
pair (sk, pk) is generated by the key server, and the public key pk is shared with
the other parties. We assume that an attacker has access to the public key. The
client uses pk to encrypt the keystroke timing features after the reference vector
r has been established in the training process. The Computation Server (CS)
stores cr ← HomEnc(pk, r).

In the first step of the verification protocol, the subject provides a password
w′, which is input to the PAKE protocol. If the PAKE authentication phase
is successful, the system proceeds to the keystroke anomaly detection. For an
optimized user experience, both processes can also be run in parallel. Using the
timing features t′ extracted from w′, the client computes the probe ciphertext
cp ← HomEnc(pk, t′) and sends it to the CS. Using the encrypted reference
template cr corresponding to the biometric claim, the CS computes the detector
d(cr, cp), and sends d to the key server. Here, d can be decrypted and the thresh-
old comparison of the decrypted anomaly score against threshold τ is computed.
The system outputs a bit b = 1 if the anomaly score is smaller than τ , and b = 0
otherwise.

4.1 Adversary Model

In our work, we consider all parties to operate in the semi-honest adversary
model. In this model, the participating parties do not deviate from the given
protocol, but may aim to collect information that is available to them. It can
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Fig. 2. Enrolment (left) and verification (right) transactions in the Type2 protocol.

be argued that a more realistic model is given through the malicious adver-
sary model, where parties are allowed to deviate from the given protocol to gain
further information. This model has been discussed in the context of biometric
template protection [4], where zero-knowledge proofs are applied for the protec-
tion against malicious adversaries. Our proposed Type2 protocol is compatible
with such proofs, however, we do not focus further on malicious adversaries in our
work. We assume that the capture process of the timing features takes place in a
controlled environment during enrolment, resulting in trusted reference vectors.
During verification, the system may be confronted with presentation attacks.
However, this work focuses on the application of FHE to keystroke dynamic fea-
tures in a manner that does not alter the unencrypted accuracy of the system.

4.2 Euclidean Detector

The squared Euclidean distance used in the Euclidean detector [11] has been
studied for FHE-based template protection for other biometric modalities, mostly
for face [5, 7]. As the square-root operation is not supported by FHE, the squared
Euclidean distance is preferred to the original Euclidean distance. During the
enrolment phase, [24] describe that the mean vector over the set of training vec-
tors is computed and stored as reference vector. As the enrolment is considered
an offline process, the mean vector is computed on the unencrypted training vec-
tors. Then, the client enrolls a subject by encrypting the mean reference vector
r as cr ← HomEnc(pk, r), and sends cR to CS.

For a verification transaction, the client encrypts the probe feature vector
p as cp ← HomEnc(pk, p), which is sent to CS. Here, CS computes the squared
Euclidean distance

dEuclid(r, p) =

n−1∑
i=0

(ri − pi)
2 (1)

as established in the recent literature [7]: the two ciphertexts cr and cp are sub-
tracted, yielding an element-wise subtraction of their elements. The resulting
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vector is multiplied with itself, corresponding the square of elements in the vec-
tor. To facilitate the computation of the sum over the packed vector, the estab-
lished rotate-and-add technique is applied [7]. The total cost of FHE operations
required for the Euclidean detector is summarized in Table 2.

4.3 Normed Euclidean Detector

The normed Euclidean detector expands upon the Euclidean detector through
normalizing the final anomaly score, i.e., dividing it by the multiplied norm of the
probe and reference feature vectors [6]. During the enrolment phase, the norm
of the reference template is computed and encrypted to an additional cipher-

text c
||·||
r ← HomEnc(pk, ||r||), which is sent to CS together with the encrypted

reference template cr, and both ciphertexts are stored at CS.

During verification, the client computes c
||·||
p ← HomEnc(pk, ||p||) in addi-

tion to cp. The computation of the Euclidean distance follows the description in
Section 4.2. In addition to the Euclidean distance, one homomorphic multiplica-

tion c
||·||
p · c||·||r is performed. Both the encrypted squared Euclidean distance and

the encrypted multiplied norms are sent to the key server for decryption, which
calculates the final anomaly score. Ideally, the division would also be computed
in the encrypted domain. However, division is not directly supported by FHE
operations. In the following, we note the described approach as approach A and
describe a second option yielding a more private computation (approach B).

For a fully private computation of the normed Euclidean distance (approach
B), the client can compute the inverted Euclidean norms 1/||r|| and 1/||p|| from
the reference and probe feature vectors during enrolment and verification, re-

spectively. Then, it can produce ciphertexts c
1/||·||
r ← HomEnc(pk, 1/||r||) and

c
1/||·||
p ← HomEnc(pk, 1/||p||). The computation on the FHE ciphertexts de-
scribed above then corresponds to

d(cp, cr)

c
||·||
p · c||·||r

= d(cp, cr) · c1/||·||p · c1/||·||r , (2)

where d denotes the squared Euclidean distance described in Section 4.2. This
more private computation comes at a cost of one additional homomorphic mul-
tiplication and thereby an increased multiplicative depth of the circuit. The cost
for all homomorphic operations is higher for parameter sets that allow this ad-
ditional circuit depth. Therefore, approach B must be expected to have higher
computational workload than approach A.

4.4 Manhattan Detector

The Manhattan detector utilizes the Manhattan distance, which is another es-
tablished distance metric in pattern recognition [11]. It is defined as

dManhattan(r, p) =

n−1∑
i=0

|ri − pi|. (3)
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On unencrypted data, only a bit shift is required for the computation of the
absolute difference between the reference and probe feature vector elements.
However, a bit shift is not an available computation in FHE. When computing
on integer or float values, the computation of the absolute value corresponds to
a conditional statement. The evaluation of conditional statements is by design
infeasible on encrypted data, as the result of the computation needs to be known
in order to evaluate the statement. Recent approaches have explored conditional
statements in FHE, however, they cannot be considered feasible for real-world
applications [19].

Therefore, the only encrypted computation that can be performed during
verification for the Manhattan detector is the difference between the reference
and probe feature vectors, i.e., cr − cp, and the absolute values and the sum
are computed on the plaintext data at the key server. It can be argued that
the protected computation of the difference yields an additional protection of
the features, in particular during storage, but also during the comparison, as
it can be challenging for an attacker to determine the original features based
on the difference alone. However, the aforementioned privacy limitations apply.
Further privacy protection could be given through a random negation of both
probe and reference feature vectors. However, this approach would correspond
to an additional multiplication of the encrypted probe feature vector during
verification, thereby increasing the authentication workload.

For the filtered Manhattan distance, outliers are excluded during the training
phase [22]. As the enrolment phase is computed on plaintext data however, this
does not impact the application of FHE to the detector in question.

4.5 Scaled Manhattan Detector

The scaled Manhattan distance utilizes mean absolute deviation ai of the i-th
feature of the training vector as a scale factor for the final anomaly score [3].
Similarly to the normed Euclidean distance, this additional vector a can be
computed on the plaintext reference vectors during enrolment. Due to the lack
of a division operation in FHE, we apply the same transform as in Section 4.3 and

let the client encrypt the inverse 1/a into a ciphertext c
1/a
r ← HomEnc(pk, 1/a),

which is stored at CS alongside the encrypted reference vector cr. Then, we can
express the anomaly score as

dscaledManhattan(r, p) =

n−1∑
i=0

|ri − pi|
ai

=

n−1∑
i=0

∣∣∣∣ri − pi
ai

∣∣∣∣ = n−1∑
i=0

∣∣∣∣(ri − pi) ·
1

ai

∣∣∣∣ (4)

and calculate the values ri−pi

ai
in the encrypted domain at the following cost for

a verification transaction (see Table 2): first, one encryption of cp is computed,
then one subtraction of cr − cp. Subsequently, the inverted mean absolute de-

viation vector c
1/a
r is multiplied to the difference, and the result is decrypted.

As in Section 4.4, the absolute values and computation of the sum must be con-
ducted on plaintext data, as the evaluation of conditional statements such as the
absolute value are not feasible on FHE-encrypted data.
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For the computation of the scaled Manhattan distance, the mean absolute
deviation vector a should be stored in encrypted form at CS. It can be assumed
that a encodes sensitive information about the biometric reference stored at
CS, and can therefore be considered to be of similar sensitivity as the feature
vectors themselves. Scaling on the decryption comparison score in plaintext can
therefore not be considered a secure approach.

4.6 Mahalanobis Detector

The Mahalanobis detector [11] is based on the Mahalanobis distance:

dMahalanobis(r, p) = (r − p)⊤S−1(r − p), (5)

where S denotes the covariance matrix over the training vectors. Both S and
the mean reference vector r are computed in plaintext. Then, the following ci-
phertexts are computed by the client: an encryption of the mean reference fea-
ture vector cr, and each column of the inverted covariance matrix S−1 into
a ciphertext cSi , where {cSi ← HomEnc(pk, S−1

i )}n−1
i=0 . During verification, the

client obtains and encrypts a probe feature vector and sends the resulting ci-
phertext cp to CS. In the first step of the distance computation, CS computes
(r−p)⊤S−1 on the corresponding ciphertexts through one subtraction of cr−cp,
and n multiplications of the resulting vector with each of the ciphertexts cSi .
The vector-matrix multiplication is completed by computing the sum over each
(cr − cp) · cSi , which is computed as described in Section 4.2. The total cost
for the Mahalanobis detector is given in Table 2. The approach to the normed
Mahalanobis detector [6] follows the same procedure as the normed Euclidean
detector described in Section 4.2 as approach B. In addition to the computations
for the Mahalanobis distance score, the inverted probe and reference feature vec-

tor norms c
1/||·||
r ← HomEnc(pk, 1/||r||) and c

1/||·||
p ← HomEnc(pk, 1/||p||) are

encrypted. Then, the final comparison score is obtained after a multiplication

by both ciphertexts to the original score, i.e., d(cp, cr) · c1/||·||p · c1/||·||r . The addi-

tional encryption (of c
1/||·||
p ) and two multiplications can be observed in Table 2.

4.7 Nearest-neighbor Detector

The nearest-neighbor approach [18] expands the Mahalanobis detector described
in Section 4.6 by computing the Mahalanobis distance to every training vector
(instead of the mean reference vector), and choosing the lowest out of these
comparison scores as the final outcome. Its cost with regard to FHE operations
can therefore be determined as the N -fold effort of the Mahalanobis detector,
where N is the number of training vectors. As discussed above, conditional
statements cannot be evaluated efficiently in FHE. Therefore, all N distance
scores need to be decrypted, and the lowest score is determined in the plaintext
domain. The nearest-neighbour approach can therefore not be fully realized in
FHE, and furthermore has an infeasible overhead in terms of the number of
required FHE operations.
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4.8 Neural-Network Detector

The neural network detector utilizes a simple fully connected neural network with
one hidden layer. The enrolment phase corresponds to the training phase of the
network, while the comparison score is achieved through inference over one probe
sample [11]. This inference can be expressed as two matrix multiplications with
the encrypted probe feature vector, and can therefore be computed similarly to
the Mahalanobis distance. As the network only has one output node, the second
multiplication corresponds to a similar vector multiplication as in Section 4.6.
The total cost with regard to the originally proposed parameter choices [24]
can be viewed in Table 2. The FHE protection for the auto-associative neural-
network detector introduced by [18] is similar to the previously described ap-
proach with the difference of n output nodes and an additional distance compu-
tation. These additional costs can be viewed in Table 2.

4.9 Fuzzy Logic Detector

The fuzzy logic detector [17] applies a succession of logical statements, i.e., con-
ditional statements, to classify the probe feature set instead of classic distance
metric. While the reference and probe features can still be sent and stored en-
crypted, all computations can only be computed in plaintext due to the chal-
lenge of evaluating conditional statements on encrypted data. FHE protection
can therefore not be meaningfully applied to this detector.

4.10 Outlier-Counting Detector

The outlier-counting detector presented by [17] is derived from the scaled Man-
hattan distance. However, the final score is a count of element-wise scores above
a predefined threshold, rather than the distance scores itself. For every feature
in the feature vector, a so-called z-score defined as

zi =
|ri − pi|

σi
, (6)

where σi is the standard deviation of the i-th feature calculated during the
training phase. We therefore apply the same transformation as in Sections 4.3
and 4.5, and store a ciphertext c1/σ ← HomEnc(pk, 1/σ) at CS during enrolment.
Here, the vector 1/σ contains all inverse standard deviations 1/σi for every
feature i. During verification, client and CS proceed as in Section 4.5 and obtain
the encrypted result of the computation c′z = (cr − cp) · c1/σ. As argued above,
neither the absolute value nor the threshold comparisons can be computed in the
encrypted domain. Therefore, c′z is decrypted and the remaining computations
are executed over the plaintext vector.
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4.11 One-Class Support Vector Machine Detector

For the one-class Support Vector Machine (SVM) detector [34], the training
phase is again conducted on the unencrypted training vectors. After training is
completed, the determined hyperplane h used as the separator is encrypted into
a ciphertext ch ← HomEnc(pk, h) and stored at CS. A verification transaction
then corresponds to a projection of the encrypted probe feature set p into the
higher-dimensional separator space of the SVM, i.e., a matrix multiplication, the
cost of which is presented in Table 2.

4.12 k-Means Detector

The application of the established k-means clustering algorithm [28] has been
proposed for keystroke dynamics by [23]. In terms of the application of FHE
to this detector, the approach corresponds to the Euclidean detector described
in Section 4.2. For each of the k centroids, the Euclidean distance between the
centroid and the probe feature vector is computed, and the closest distance
is determined to be the final comparison score. However, as the evaluation of
this last conditional statement is not feasible within FHE, all three distances
are decrypted, and the minimal distance is determined over the plaintext data.
This means that final comparison score was fully computed in the encrypted
domain, however, the algorithm reveals additional information in plaintext that
may impact the privacy of the enrolled subjects, i.e., the discarded distances to
the remaining k − 1 centroids. This limitation is also indicated in Table 2 for
better transparency with regard to the different approaches.

4.13 Workload and Feasibility Discussion

We have now described all keystroke anomaly detectors from the seminal study
by [24] and their challenges and adaptions under FHE encryption. Due to the
limitations of FHE computations discussed so far, we can classify these detectors
into three categories: (1) vector-based distance metrics such as the Euclidean
and Manhattan distance, (2) detectors requiring matrix-vector or matrix mul-
tiplications, which introduce a significantly higher workload in FHE operations
than the detectors discussed above. These include the (normed) Mahalanobis
detector [11] as well as neural network-based approaches, including SVMs, as
evaluated in [26]. And finally, (3), detectors require the evaluation of conditional
statements, which cannot be realized efficiently in FHE [19]. These include the
nearest-neighbour [18], fuzzy logic and outlier counting [17], and k-means [23] de-
tectors. We give the computational workload of all detectors in Table 2. Further
context to Table 2 is provided through the relative cost of FHE operations given
in Table 3. With regard to their feasibility however, detectors from categories (2)
and (3) are not evaluated them experimentally. The experimental workload for
some detectors of category (3) however can be estimated based on the Euclidean
and Manhattan distance. E.g, the workload of outlier counting can be estimated
as the workload of the scaled Manhattan distance, while the workload of the
k-means detector corresponds to the k-fold workload of the Euclidean detector.



12 P. Bauspieß et al.

Table 2. FHE operations during verification for keystroke anomaly detectors [24],
where n is the feature dimension, N is the number of training vectors, k is the number
of centroids in the k-means clustering, and m is the dimension of the SVM projection
space. Detectors marked with ∗∗ can only be partly computed on encrypted data, while
detectors marked with ∗ reveal more information than the final comparison score.

Detector Enc EvalAdd EvalSub EvalMult EvalAtIndex Dec

Euclidean 1 n− 1 1 1 n− 1 1

Euclidean (normed) (appr. A)∗ 2 n− 1 1 2 n− 1 2

Euclidean (normed) (appr. B) 2 n− 1 1 3 n− 1 1

Manhattan∗∗ 1 — 1 — — 1

Manhattan (filtered)∗∗ 1 — 1 — — 1

Manhattan (scaled)∗∗ 1 — 1 1 — 1

Mahalanobis 1 2n(n− 1) — n2 2n(n− 1) 1

Mahalanobis (normed) 2 2n(n− 1) — n2 + 2 2n(n− 1) 1

Nearest-neighbour∗ N 2Nn(n− 1) — N2n Nn(n− 1) N

Neural-network (standard) 1
⌈
2n
3

⌉
n− 1 —

⌈
2n
3

⌉2
2n(n− 1) 1

Neural-network (auto-assoc) 1 2(n2 − n) 1 n2 + n+ 1 n− 1(2n+ 1) 1

Outlier-counting∗∗ 1 — 1 1 — 1

SVM (one-class) 1 n+m− 2 m m ·m (n− 1) 1

k-means∗ 1 k(n− 1) k k k(n− 1) k

Table 3. Relative cost of CKKS [9] operations implemented in PALISADE [29, 5].

Operation on encrypted data Add Subtract Rotate Decrypt Multiply Encrypt

Relative cost 1 5 24 33 46 52

5 Experimental Evaluation

We implemented our Type2 protocol using the CKKS [9] scheme implemented
in the PALISADE [29] C++ FHE library at a security level of 128bits for all
variants of the Euclidean and Manhattan detectors. All execution times were
measured on an Intel i7 CPU @ 2.60GHz with 32GB RAM and an Ubuntu 20.04
operating system. As a data set, we used the established CMU keystroke dynam-
ics data set provided by [24] and maintain all features and the split into training
and testing data. For the 400 timing vectors captured from each of the 51 sub-
jects in the data set, the first 200 password timings were used for the training
of each detector, and samples from the remaining timings for verification.

The execution times for enrolment and verification for the five discussed de-
tectors are given in Table 4, where N is the number of subjects to be enrolled
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Table 4. Experimentally determined execution times in milliseconds for the evaluated
detectors. Detectors marked with ∗∗ can only be partly computed on encrypted data,
while detectors marked with ∗ are computed on encrypted data, but reveal more infor-
mation than the final comparison score.

Detector Enrolment (ms) Verification (ms)

Euclidean 4N 117

Euclidean (normed) (appr. A)∗ 8N 125

Euclidean (normed) (appr. B) 21N 338

Manhattan∗∗ 4N 4

Manhattan (filtered)∗∗ 4N 4

Manhattan (scaled)∗∗ 8N 8

Table 5. Biometric performance for the evaluated detectors taken from [24]. Detectors
marked with ∗∗ can only be partly computed on encrypted data, while detectors marked
with ∗ are computed on encrypted data, but reveal more information than the final
comparison score.

Detector Equal-Error Rate (EER) Standard Deviation

Euclidean 0.171 0.095

Euclidean (normed) (appr. A)∗
0.215 0.119

Euclidean (normed) (appr. B)

Manhattan∗∗ 0.153 0.092

Manhattan (filtered)∗∗ 0.136 0.083

Manhattan (scaled)∗∗ 0.096 0.069

in the system. As discussed in Section 4, the Manhattan detectors have the
fastest execution times as they use the lowest number of homomorphic opera-
tions. However, they cannot be considered fully secure, as the pre-computation
step is decrypted before anomaly score can be calculated. The Euclidean detec-
tors grant more privacy, with the plain Euclidean and the normed Euclidean
(approach B) being the only fully private detectors with regard to evaluation
under FHE. For the latter, the impact of the increased multiplicative depth of 2
instead of 1 can be observed. The encryption of reference or probe data, which
consists of two encryption operations for the feature vector and its norm (or
inverted norm) for both approach A and B to the normed Euclidean detector,
therefore increases to 21 milliseconds instead of 8 milliseconds due the parameter
set required to accommodate the increased circuit depth.
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In terms of the biometric performance, we refer the reader to the original
evaluation conducted in [24], which we give in Table 5. Through the application
of the CKKS [9] with correct parameter choices, the biometric performance if
not altered in the encrypted domain. In particular, we chose a scaling factor of
50 bits for the CKKS scheme, such the accuracy of the detectors is not affected
by the application of the encryption scheme. Therefore, the accuracy evaluations
given by [24] are maintained.

5.1 Security Analysis

Our proposed Type2 protocol fulfils the ISO/IEC 24745 [20] requirements unlink-
ability, renewability, and irreversibility. Firstly, irreversibility is given through
the hardness of the Ring-Learning with Errors (R-LWE) problem [27], which
the CKKS [9] FHE scheme builds upon. As R-LWE is believed to be secure
against attacks implemented on a quantum computer [2], our Type2 protocol
inherits this post-quantum security. Secondly, unlinkabilty and renewability are
provided through the IND-CPA security of the CKKS scheme, i.e., its indistin-
guishability under chosen-plaintext attacks. Thereby, an attacker cannot distin-
guish between two encryptions of the same featrue vector and two encryptions
of different feature vectors. Finally, our protocol preserves both the biometric
and computational performance of the unprotected authentication as shown in
Section 5. The choice of the PAKE, which is an independent component of the
protocol next to the FHE protection, determines the security of the authentica-
tion as a second factor. However, post-quantum protection may not be necessary
for the PAKE component, as the user password does not require long-term pro-
tection as sensitive biometric features do. This yields more flexibility with regard
to the chosen PAKE approach, where computational efficiency lower than the
workload for the biometric authentication should be considered [21, 32].

6 Conclusion

In this work, we have presented the Type2 protocol for secure two-factor au-
thentication based on keystroke dynamics as second trust factor, where the
protection of sensitive biometric data is ensured through fully homomorphic
encryption. For five established keystroke anomaly detectors, we showed the
potential and limitations of their evaluation under fully homomorphic encryp-
tion. In an experimental evaluation, we show that our protocol outperforms the
state-of-the-art with execution times of under 130 millisecond per authentica-
tion attempt. While the assumption of the semi-honest adversary model remains
a limitation, the cryptographic principles applied in this work can be used to
extend the Type2 protocol in more realistic adversary models. With advances of
the cryptographic components, more complex detectors, e.g., neural networks,
could be investigated in future research. Furthermore, it would be interesting to
extend the Type2 protocol to other behavioral features using mobile phones as
the capture device.
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