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Abstract

Digital rock analysis utilizes various tools available in computer science to repres-
ent and process rock data in a way that enhances our understanding of its geolo-
gical properties. It has become an essential tool for understanding rock samples’
physical and chemical properties, which is crucial for exploration and produc-
tion. It is a multi-step process that includes image acquisition, registration, super-
resolution and segmentation. This thesis proposes various methods to improve the
individual steps in this process to improve the overall digital rock analysis work-
flow.

One of the most critical steps in digital rock analysis is obtaining representative
and high-quality rock images. This step is necessary for high accuracy in down-
stream tasks such as fluid flow simulations. The imaging of rock samples is done
via micro-computed tomography (micro-CT) or electron microscopy. The resol-
ution of the images obtained from micro-CT scanning can often be limited for a
specific task requiring electron microscopes. However, using an electron micro-
scope presents its own challenges, such as high cost and limited field of view.

First of all, this thesis addresses the limitations in the image acquisition process
with the help of upsampling the low-resolution rock images. This process is called
image super-resolution. Two deep learning-based super-resolution methods have
been presented in the first two papers in this work that can potentially improve the
digital rock workflow by enhancing image quality.

A critical and time-consuming aspect of digital rock analysis is image registration,
which aligns multiple images of the same rock sample. Without registration, cor-
relating different images of the same rock samples is impossible. The algorithm
developed in the third paper, a rigid 3D-3D registration algorithm, is a tool that
can finish a registration job in seconds instead of hours taken by current industrial
image registration tools.

A rock sample can contain multiple mineral types and regions with different prop-
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ii Abstract

erties. Accurately identifying those regions is the first step in determining the
properties of the individual parts and, eventually, the whole sample. Rock typing
is the process of identifying those regions. It is an essential step in digital rock
workflow, commonly performed manually. The second last paper in this thesis
presents a deep learning-based method that takes the first steps towards improving
the rock typing of laminar rocks.

Scanning the rock samples is costly and time-consuming. Therefore, it is attractive
to use deep generative models to generate a representative sample of digital rocks
that can be utilized in the workflow. In the fifth and final paper, this thesis presents
a novel Diffusion model-based 2D to 3D image generation method. Using the
proposed method, a complete 3D image of a rock can be generated using only a
single 2D slice, thus addressing the scarcity of 3D data.

In summary, the contributions of this thesis improve the various steps involved in
the digital rock analysis workflow using deep learning and conventional computer
vision-based methods.
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Chapter 1

Introduction

1.1 Significance of Digitization for Geological Analysis
Digitization is impacting a vast spectrum of industries. The primary reason for this
exponential progress in the industry’s digitization rate is the availability of digital
forms of data and the ever-lowering cost of computing power and storage. The
oil and gas industry has also been positively impacted due to this wave of mod-
ernization. It is a crucial industry responsible for a boon in the modern economy.
This industry’s role as the primary energy source for transport and electricity gen-
eration can not be denied. It has impacted all aspects of our lives by contributing
significantly to gross domestic product (GDP) and creating vast employment op-
portunities. Using digital data and computing to digitize this industry can have a
massive impact on the economy. Technological advancements in the field of com-
puter science and imaging acquisition methods have been a major driving force for
progress in this industry by improving the tools available for analysis and opera-
tions. Advanced technologies like 3D imaging and simulations have led to more
efficient and cost-effective analysis of geological samples [9, 14, 39, 5].

The rock samples from a reservoir contain essential information that can reveal
the properties of the reservoir. The determination of these properties is crucial
for safe operation and maximizing production from the reservoir. In a typical
lab analysis, the sample is subjected to various physical and chemical processes
to extract important information about the reservoir. This conventional analysis
is highly effective at determining the desired properties. However, it has many
disadvantages, e.g. the sample is sometimes destroyed, and the analysis can be
time-consuming and costly.
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4 Introduction

1.2 What is Digital Rock Analysis?
Recently, digital rock analysis has emerged as a prominent method. Its main goal
is to develop a digital representation of a rock sample. The process typically begins
with acquiring images through X-ray or electron microscope technology, captur-
ing either 3D or 2D representations of the sample. These images are subsequently
refined through appropriate image processing techniques, preparing them for fur-
ther analysis. The final step involves utilizing the processed images to construct
a digital model of the rock. The digital rock model is finally used in the sim-
ulations to determine various properties of the rock sample. The properties that
are determined during various steps of digital rock analysis include porosity per-
meability, electrical conductance, fluid flow, etc. This analysis can be cheaper and
faster compared to traditional lab-based analysis [9, 41, 14]. In this thesis, we fo-
cus on improving the image processing techniques that are used in the digital rock
analysis pipeline.

1.3 How to Improve Digital Rock Analysis?
The digital rock workflow has multiple steps; it starts from image acquisition or
generation, followed by multiple steps such as image segmentation, registration,
and optional enhancement by super-resolving the image. Finally, a digital model
of the rock is created, which is employed in simulations to determine various prop-
erties such as fluid flow, permeability and porosity. Improving any individual com-
ponent in the pipeline will result in the improvement of the overall workflow.

Computer vision and machine learning have rapidly advanced in recent decades.
The progress in this field has evolved from using hand-crafted features for solving
various problems to using deep features [65, 67, 23]. The digital model of the
rock sample is also a 3D image. Therefore, it seems pertinent that digital rock ana-
lysis benefits from the recent advancements in computer vision and machine learn-
ing. This connection between machine learning and digital rock analysis forms the
basis for this thesis, i.e., the topics of this thesis lie at the intersection of machine
learning, computer vision, and digital rock analysis.

This thesis develops various methods that benefit or have the potential to help
multiple aspects of digital rock analysis directly. In particular, we target the image
processing steps of the digital rock analysis pipeline. By making a better image
processing method, the aim is to provide the digital rock simulation with a better
digital model of the rock since the whole simulation quality depends on the image
provided.
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1.4 Overall Goal and Research Questions
This thesis aims to develop novel tools and methods for improving digital rock
analysis. Within the broad area of digital rock analysis, this work formulates sev-
eral research questions (RQs) related to the digital rock pipeline. For each RQ, the
thesis formulates goals and strategies (RGs) to answer them based on the research
gap in the literature. The RQs are stated as follows:

1.4.1 RQ 1: Can we enhance the image quality from sensors such as
micro-CT for digital rock analysis?

The images from sensors such as micro-CT used in digital rock analysis have sev-
eral limitations [6]. These limitations lead to several issues in image quality, such
as noise, artefacts, and poor image quality. In some cases, sensor costs prohibit the
usage of a higher-quality sensor. The output quality can be enhanced by various
computer vision and image analysis methods, such as noise removal and creating
a higher-resolution image. However, the current methods have much room for
improved output image quality. This thesis seeks to address the question of im-
age quality enhancement that looks more realistic compared to currently available
methods. A more representative and high-resolution image can lead to a more
accurate simulation for property determination.

RG 1: Explore the use of generative models for realistic enhancement of di-
gital rock images To answer RQ 1, we formulate an objective that limits the
scope of multiple means of image quality enhancement to super-resolution. Super-
resolution is converting an image of a given resolution to another image of a higher
resolution. The resulting image should contain more details compared to the ori-
ginal image. Super-resolution is performed using many different methods; how-
ever, deep learning methods have recently become famous due to their effective-
ness [65, 68, 121]. Within deep learning, deep generative models have been iden-
tified to be good at crafting images with high-quality details that look realistic to
human observers.

For digital rock analysis, multiple super-resolution methods have been created [123].
It can be observed from the works that most methods are a direct application of
methods already developed for natural images. Therefore, any method developed
for natural images could also benefit digital rock analysis.

1.4.2 RQ 2: Can we improve the existing registration methods of dry
and wet imaging of the rock samples?

In digital rocks, image registration is a task of spatially aligning two images ob-
tained from a sensor at different times and with variable conditions. A typical
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scenario is obtaining the wet and dry images from scanning rock samples using
micro-CT. A rock sample is first scanned in its dry state during this process. Then,
the same rock sample is scanned in the wet state. The resulting images are re-
gistered to remove misalignment. The registered images can be subtracted to ob-
tain images that can be used to find properties such as microporosity [14].

Registration of wet and dry images takes much time, depending on the sample size.
Usually, it can take hours to register a sample using current industrial tools. In ad-
dition, these tools might fail, which requires an expert to register the sample manu-
ally. This thesis addresses the question of whether the current industrial methods
can be improved such that the resulting registration pipeline has a lower latency
while being accurate.

RG 2: Reduce the latency of wet-dry image registration methods and ensure
robustness The image registration of natural images has been performed using
both conventional methods, such as the intensity-based and feature-based method
[95, 76, 118]. In addition, deep learning-based methods have also been developed
for similar data types like medical imaging [44]; however, they need to be more
robust to be deployed in the industry. Previous works of image registration in the
digital rock industry focus on using conventional methods [66]. However, they
take substantial time to solve the registration task, especially for large 3D images.

Since the current pipelines in the industry have already shown success using con-
ventional methods. This thesis aims to improve these methods by reducing the
latency of the current methods. Specifically, the thesis aims to answer RQ 2 by
formulating a method to speed up the computations of conventional methods for
wet-dry image registration so that they can provide high-quality and robust regis-
tration in the shortest possible time.

1.4.3 RQ 3: Can we replace the manual procedure of rock typing of
samples with an automated pipeline?

A given rock sample can contain multiple rock types in a single sample. Identi-
fying the different types is called the task of rock typing. The different types of
rocks in a single sample have different properties. Identifying various samples in
the rock sample is beneficial since we can determine the properties of the indi-
vidual rock types. These properties can then be propagated to find the properties
of the whole sample [102]. Rock typing is also a part of the digital rock analysis
pipeline.

Rock typing is performed manually since the decision boundary between two rocks
is subjective based on expert opinions. Therefore, in this thesis, we seek to address
automating this task.
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RG 3: Explore automation of rock typing of laminar rocks using deep learn-
ing This thesis aims to answer RQ 3 by automating the rock typing of rock
samples that contain lamination only. This formulation means that the layers of
rock types are deposited over one another, thus marking clear horizontal bound-
aries between various rock types. These boundaries that exist can be subjective
to expert opinion. Therefore, this work aimed to get an expert-labeled dataset
and explore a supervised deep-learning method to create a pipeline that can distin-
guish between various rock types. This strategy addressed the subjective nature of
boundaries.

1.4.4 RQ 4: Can we improve the fidelity of current synthetic sample
generation methods for rock simulation?

The image of the rock sample in the digital rock pipelines is used to create a digital
rock. This digital rock is ultimately used in simulations [14]. These simulations
reveal various properties of the rock. The step of obtaining the original rock image
can be costly, and sometimes only 2D images are available. Whereas the simula-
tions require a 3D image. Therefore, various synthetic sample generation methods
are used to create 3D samples that can be used in simulation in place of real im-
ages [59]

The fidelity of samples generated by current works is low [1, 113, 17, 114, 115,
59]. This leads to samples that do not represent the underlying statistical distribu-
tion of samples in the real image. Therefore, to improve the digital rock pipeline
from this aspect, RQ 4 seeks to ask the question about improving the fidelity of
current synthetic sample generation methods.

RG 4: Explore diffusion models for high fidelity 3D sample creation from 2D
rock images Currently, the most promising methods for synthetic sample gen-
eration are based on deep learning-based generative model [59]. In addition, the
challenging task of 3D image generation from 2D samples has also been targeted
for rock image generation. However, previously generative adversarial networks
(GANs) have been utilized for this task, which are prone to various problems that
lead to low-fidelity samples. Recently, diffusion models have become a popular al-
ternative to GANs for high-fidelity generation [47]. However, they have not been
explored for the task of 2D to 3D image generation in digital rock analysis.

Therefore, to address RQ 4, we formulate a goal focusing on 2D to 3D generation
of synthetic rock samples using diffusion models.
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1.5 List of Papers
This thesis is being delivered as a collection of papers. Three papers have been
accepted, respectively. Two are under review at the time of submission of this
thesis. The work consists of the following articles:

• Paper A: Muhammad Sarmad, Leonardo Ruspini, and Frank Lindseth, ”Photo-
Realistic Continuous Image Super-Resolution with Implicit Neural Networks
and Generative Adversarial Networks” Accepted to the Proceedings of the
Northern Lights Deep Learning Workshop. Vol. 3. 2022 (Oral Presenta-
tion).

• Paper B: Muhammad Sarmad, Leonardo Carlos Ruspini, Frank Lindseth
”SIT-SR 3D: Self-supervised slice interpolation via transfer learning for 3D
volume super-resolution”, Accepted to Pattern Recognition Letters (Journal).

• Paper C: Muhammad Sarmad, Johan Phan, Leonardo Ruspini, Gabriel Kiss,
Frank Lindseth, ”GPU Assisted Fast and Robust 3D Image Registration of
Large Wet and Dry Rock Images Under Extreme Rotations”, Under Review
in Journal of Computers and Geosciences.

• Paper C: Muhammad Sarmad, Johan Phan, Leonardo Ruspini, Gabriel Kiss,
Frank Lindseth, ”Core-Scale Rock Typing using Convolutional Neural Net-
works for Reservoir Characterization in the Petroleum Industry”, Accep-
ted in 23rd International Multidisciplinary Scientific GeoConference SGEM
2023.

• Paper E: Johan Phan∗, Muhammad Sarmad∗, Leonardo Ruspini, Gabriel
Kiss, Frank Lindseth, ”Generating 3D Images of Material Microstructures
from a Single 2D Image: A Denoising Diffusion Approach”, Under Review
in Nature Machine Intelligence Journal. (∗ indicates equal contribution)

The Figure. 1.1 demonstrates how various papers are related to research questions.
Here, it is relevant to inform the reader about the overlap between RQ 1 and RQ
4, as shown in Figure. 1.1. The method created while addressing RQ 1 produces
high-resolution images given low-resolution images. Meanwhile, the methods that
were developed to answer RQ 4 create synthetic images from scratch. Therefore,
the methods from RQ 1 can be used to enhance the synthetic image resolution from
RQ 4 further. However, testing this is not within the scope of this work.



1.6. Research Contributions 9

Figure 1.1: Research Questions (RQs) formulated in the scope of digital rock analysis.
This diagram shows the link of the list of Papers from A to E to their respective RQ.

1.6 Research Contributions
Table. 1.1 provides an overview of all the research questions, goals formulated to
answer those questions, publications and contributions made within the publica-
tions.

1.6.1 Contribution 1

RQ 1 seeks to find the answer to the question of image quality enhancement of
sensors for digital rock analysis as shown in Table. 1.1. According to the formu-
lated goal, the scope of the investigations was limited to deep generative models
for realistic image enhancement. In pursuit of this goal, it is demonstrated in the
table that the first contribution was made in Paper A.

Paper A contributes by formulating a novel method for deep learning-based super-
resolution. This work focuses on the use of a particular type of deep network
called the implicit neural network [107]. This neural network is capable of out-
putting better-quality images compared to convolutional neural networks (CNNs).
Previous works use the standard loss function L1, which promotes blurry image
output [68]. The main contribution is that we propose to train implicit neural net-
works using generative loss functions that promote realistic image generation.
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Table 1.1: Thesis Overview

Research
Questions

Research Goals Paper Contributions

RQ 1: Enhance the
quality of images
from CT.

RG 1: Explore use of
generative models for
realistic enhancement of
digital rock image

A Proposed a generative model for
realistic image super-resolution
of 2D images

B Proposed a method for utilizing
2D generative model for 3D
image super resolution for rock
images

RQ 2: Improve
current dry-wet
image registration
methods

RG 2: Reduce latency
and improve robustness
of conventional methods

C Formulated a registration tool
that utilizes graphical
processing units to reduce
method latency from hours to
minutes

RQ 3: Automate
rock typing
pipeline

RG 3: Explore deep
learning based methods
for rock typing of laminar
rocks

D Proposed a supervised deep
learning method for rock typing
of laminar rocks and performed
explainability analysis on model

RQ 4: Improve
methods to
generate high
fidelity synthetic
rock samples

RG 4: Explore deep
generative models for 2D
to 3D generation

E Proposed a novel method based
on deep generative diffusion
models for 2D to 3D image
generation
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This contribution addresses RQ 1 as the improved model for 2D image super-
resolution that can be used to enhance the quality of images from sensors such as
micro-CT and SEM.

1.6.2 Contribution 2

Paper B contributes a novel algorithm that performs 3D image super-resolution.
Previous methods for digital rock analysis mostly learn 2D image super-resolution
[123]. The method suggested in this work focuses on realistic 3D image super-
resolution, which has not been addressed in previous work. In addition, it is cap-
able of learning 3D image super-resolution using only 2D image ground truth.

Contributions 1 and 2 provide novel methods for image enhancement that address
RQ 1. The resulting pipelines are capable of enhancing the image quality of the
images obtained from sensors such as micro-CT and SEM. The focus was that im-
ages are enhanced such that they look more realistic to the human expert observer.
These enhanced images lead to more accurate simulations due to higher quality
images.

1.6.3 Contribution 3

It can be observed from Table. 1.1 that Paper C contains the contribution that ad-
dresses RQ 2. More specifically, Paper C provides a registration tool that uses
graphical processing units (GPUs) to parallelize the computations of a conven-
tional image registration algorithm. A novel aspect of this paper is that the con-
ventional base method is augmented with a novel algorithm that can handle ex-
treme rotations. For example, if someone accidentally places the wet sample up-
side down before imaging, then even in that case, the algorithm can successfully
perform registration. Since the computations are based on GPUs, the algorithm
completes the task in under minutes compared to the hours used by the current
standard method. Addressing RQ 2 with the contribution in Paper C will thus lead
to a time-efficient digital rock pipeline.

1.6.4 Contribution 4

Semantic segmentation is the task of pixel-wise classification. This means that
each pixel in an image is classified and assigned a distinct class. To address RQ
3, paper D contributes a method that treats the rock typing problem as a semantic
segmentation problem. The method assigns each pixel in the image a class la-
bel corresponding to the rock type. The method used in the paper is based on
supervised learning. Therefore, it utilizes an expert-labelled dataset to learn the
boundary between various rock types. The output of the network is a segment-
ation map of all the rock types that exist in the sample. This method positively
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contributes to automating the rock typing and digital rock workflow by addressing
RQ 3.

1.6.5 Contribution 5

The Table. 1.1 shows that Paper E contributes a novel diffusion model that is
capable of generating 3D rock images from 2D samples. This is exactly in line
with the goals that were set out to answer RQ 4.

The diffusion model is capable of generating 3D high-fidelity synthetic samples
from 2D images, overtaking the previous state-of-the-art in performance [59]. This
directly contributes to making a more accurate digital rock pipeline. This will lead
to the availability of high-quality synthetic samples for the digital rock simulation,
thus leading to accurate determination of the properties of the underlying rock.

1.7 Other Notable Works
In addition to the list of papers included in this thesis, the author was also involved
in the following works during the PhD program related to computer vision and
deep learning, as well as their applications in the automation industry.

• Paper F: Muhammad Sarmad∗, Mishal Fatima, Jawad Tayyub∗, ”Reducing
Energy Consumption of Pressure Sensor Calibration Using Polynomial Hy-
perNetworks with Fourier Features” Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. 2022. [105]

• Paper G: Rabia Ali∗, Muhammad Sarmad∗, Jawad Tayyub∗, Alexander Vo-
gel, ”Accurate Detection of Weld Seams for Laser Welding in Real-World
Manufacturing”, Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 37. 2023. [3]

• Paper H: Jawad Tayyub∗, Muhammad Sarmad∗, Nicolas Schönborn∗, ”Ex-
plaining deep neural networks for point clouds using gradient-based visual-
isations”, Proceedings of the Asian Conference on Computer Vision. 2022.
[116]

• Paper I: Tejaswini Medi∗, Jawad Tayyub∗, Muhammad Sarmad∗, Frank Lind-
seth, Margret Keuper, ”FullFormer: Generating Shapes Inside Shapes”, Ac-
cepted to DAGM German Conference on Pattern Recognition 2023. [79]

∗ indicates equal contribution.
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1.8 Dissertation Outline
This section shows the outline of the thesis. The various topics in this thesis have
been divided into chapters as follows:

• Chapter 1 contains the introduction and overview of the thesis.

• Chapter 2 provides the necessary background knowledge and related work
for the contributions.

• Chapter 3 summarises the key points in the methodology of each paper.

• Chapter 4 discusses the salient results of respective methods.

• Chapter 5 discusses the results on a higher level.

• Chapter 6 concludes with the limitations and possible future works.

• Part II of the thesis includes the list of articles related to this thesis.
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Chapter 2

Background

2.1 Rock Analysis in Oil and Gas Industry

2.1.1 Conventional Core Analysis

Conventional core analysis (CCA) is a prevalent technique in the oil and gas in-
dustry to ascertain the properties of rock samples extracted from petroleum reser-
voirs. The comprehensive evaluation of these samples’ physical and chemical
properties, obtained through drilling, facilitates a deeper understanding of reser-
voir characteristics such as porosity, permeability, and fluid saturation. Such para-
meters are critical in determining the quantity and quality of production from the
reservoir. [39, 5]

In conjunction with CCA, special core analysis (SCAL) is also utilized to provide
more complex reservoir properties, such as capillary pressure, relative permeabil-
ity, and electrical properties. SCAL often complements CCA by offering a more
detailed understanding of fluid flow behaviour and rock-fluid interactions within
the reservoir. [41, 78]

CCA and SCAL necessitate using specialized equipment and skilled personnel for
collecting and subsequent laboratory analysis of rock samples. Although these
methods yield accurate results, they are time-consuming and resource-intensive,
incurring substantial costs. Nevertheless, despite the inherent challenges, CCA
and SCAL maintain their positions as essential techniques within the oil and gas
industry, offering invaluable insights into reservoir properties and informing de-
cisions on reservoir management strategies.

15
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2.1.2 Digital Rock Analysis

Digital rock technology (DRT) is an umbrella term encompassing two related but
distinct methodologies employed within the oil and gas industry: digital rock ana-
lysis (DRA) and digital rock physics (DRP). These methodologies contribute to a
deeper understanding of the reservoir’s complete properties, such as porosity and
permeability. [9, 41, 14]

DRA, the initial step in DRT, focuses on characterizing rock properties using ad-
vanced digital imaging methods, such as X-ray tomography, rather than CCA. This
approach allows for a more accurate and detailed characterization of rock proper-
ties and their distribution throughout the reservoir. [19]

DRP, the subsequent step in DRT, integrates DRA with numerical modelling to
derive critical rock physics. This process involves solving transport equations on
digital representations of rock samples to simulate various rock physics phenom-
ena. [9, 41, 14]

Both DRA and DRP contribute to complete reservoir understanding. However,
the scope of the present thesis is limited to DRA. Implementing DRA offers sev-
eral advantages over CCA. These advantages include being non-destructive for the
rock sample, faster property determination, and more cost-effective analysis. As
a result, DRA is becoming an increasingly indispensable tool for rock analysis.
The fast pace of development in computer science is benefiting the development
of novel DRA tools.

2.2 Imaging Techniques
The starting point of DRA is obtaining the rock sample data in digital form, mostly
in the form of an image of the rock sample. This image can be obtained using vari-
ous modalities and instruments such as electron microscopes and X-ray computed
tomography.

2.2.1 3D Images

Employing a cutting-edge imaging method, X-ray computed tomography (CT)
reconstructs three-dimensional depictions of samples by capturing X-ray images
from an assortment of viewpoints. This innovative technology has profoundly in-
fluenced numerous domains, including the medical and oil industries, which have
utilized it extensively for several decades. The data obtained from CT is mostly
3D data, which is advantageous for analysis since it provides a complete 3D view
of the rock sample [30].
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Common Lab CT Currently, laboratory-based micro-CT instruments are the go-
to solution for procuring 3D depictions of rock samples in digital rock physics
studies. The X-ray source and detector remain stationary in most laboratory micro-
CT systems while the sample is in motion [126, 125, 48, 42, 32]. However, micro-
CT gantry scanners with moving parts are used in some instances. This setting
prevents undesirable movements of the sample and fluid flow phenomena from
happening within the sample, thus helping in accurate evaluations of properties.
[21]

Use of Medical CT in Rock Analysis The oil industry has also leveraged med-
ical CT imaging for various applications, such as the inspection of cores, the under-
taking of core flooding experiments, and the appraisal of rock characteristics [126].

Synchrotron Imaging Determining effective rock properties from digital im-
ages of pore structures demands adequate resolution to discern all pertinent struc-
tural elements. Consequently, DRP calls for a greater image resolution than that
offered by conventional medical CTs. Initially, high-resolution images of rock
samples were acquired by employing synchrotron facilities’ beam lines as the X-
ray source in previous works. However, currently, synchrotron imaging mainly
focuses on recording rapid transient phenomena at the pore level, highlighting its
crucial role in enhancing our understanding of intricate rock formations [38, 15].

In Table. 2.1, the comparison of different CT imaging techniques mentioned above
is provided. The table provides information such as the movement of source and
sample and an estimate of the relative expense of various methods.

Table 2.1: Comparison of different CT imaging techniques

Imaging Technique Source Movement Sample Movement Cost Citation

Gantry Rotates w/ detector
around sample

Stationary $$ [21]

Synchrotron Fixed Rotates on a stage $$$$$ [15, 38]
Medical CT Rotates w/ detector

around patient
Stationary $$$ [126]

Lab CT Stationary Rotates $ [126]

2.2.2 2D Images

The most desirable form of image of a 3D sample is also a 3D image. However,
sometimes, the imaging method can only provide a high-resolution sample at the
cost of providing a 2D image of a thin slice part of the 3D sample.

Although medical CT provides 3D images, it trades off resolution for the ability to
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cover a more comprehensive volume. In contrast, scanning electron microscopes
(SEM) images can be stitched together through an automated process, generating
comprehensive, large-scale images, albeit remaining two-dimensional [20].

Backscattered electron (BSE) imaging, a critical mode in SEM, enables high-
resolution, sub-micron examination of rock samples. While BSE imaging excels
in providing detailed two-dimensional information, it cannot produce the three-
dimensional images required for specific applications [20].

Focused ion beam scanning electron microscopy (FIB-SEM) presents an alternat-
ive approach to acquiring 3D images [69]. This technique employs an ion beam to
remove thin layers from the sample sequentially, enabling the SEM to image each
exposed surface layer by layer, ultimately creating a 3D representation. How-
ever, FIB-SEM has its limitations. Its primary constraint lies in its localized fo-
cus, which results in images covering a relatively small volume of approximately
five µm3. Consequently, this technique may not provide a comprehensive sample
view [58]. Additionally, FIB-SEM’s destructive nature may limit its applicability
in specific contexts, mainly when sample preservation is crucial.

When considering the strengths and limitations of BSE, FIB-SEM, and medical
CT imaging techniques, it becomes apparent that each method serves a distinct
purpose. BSE imaging delivers high-resolution, two-dimensional information on
rock microstructure and mineralogy but lacks the three-dimensional capabilities of
FIB-SEM and medical CT. Conversely, FIB-SEM’s destructive nature and local-
ized focus may impede its effectiveness in certain situations, particularly when a
more comprehensive view is required. Medical CT offers a broader 3D perspective
at the expense of reduced resolution compared to SEM-based approaches.

2.3 Image Analysis
The image acquisition process is a critical first step, followed by the core image
analysis component. Issues often arise in CT images, such as beam hardening,
ring artefacts, and partial volume effects, necessitating pre-processing techniques
to mitigate noise and enhance image quality. Such techniques include histogram
equalization, spatial filtering, and adaptive thresholding [126]. Furthermore, soph-
isticated approaches, such as super-resolution, may be employed to upsample the
image for improved analysis.

Subsequent digital rock image analysis stages involve determining properties such
as mineral composition, porosity, water saturation, and grain size distribution. Seg-
mentation algorithms are employed to delineate distinct regions within the image,
allowing for extracting these properties. Techniques such as region growing, wa-
tershed, and level-set segmentation have been widely adopted in the literature.
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Analytical techniques are further applied to evaluate the interconnectivity and geo-
metry of the pore space to understand fluid flow behaviour and transport phenom-
ena [7, 70].

2.3.1 Mineralogy

The application of image analysis techniques enables the elucidation of mineralo-
gical composition within geological samples. Traditional X-ray diffraction ana-
lysis methodologies can allow for determining mineral constituents; however, they
lead to the mechanical disintegration of the specimen. In addition, this approach
can not provide insight into the spatial distribution and geometric relationships
among the constituent minerals within the sample [112].

In contrast, micro-CT and SEM offer the advantage of non-destructive, high-resolution
visualization of geological specimens’ internal structure and composition. These
techniques yield grayscale images, from which quantitative information on mineral
phases, porosity, and other microstructural attributes can be extracted. The gray-
scale values in these images facilitate the classification of the constituent materi-
als within the specimen, including solids, pores, and clay minerals, among others.
This comprehensive characterization of mineralogical composition, in conjunction
with spatial and geometric information, enables the differentiation of various rock
types based on their unique attributes.[9, 41, 14]

2.3.2 Grain Size

The grain size distribution within a geological material is a critical parameter that
significantly influences its microstructural and macroscopic properties. As such,
the arrangement and packing of grains within a sample are vital in determining
crucial characteristics such as porosity, permeability, and mechanical strength as
shown in Fig. 2.1. Grain sizes may vary across a spectrum from fine to coarse,
and samples may exhibit homogeneous or heterogeneous grain size distributions.
The variability in grain size and packing configurations within a single geological
sample can yield distinct rock types with divergent properties, thus making grain
size analysis an essential tool in classifying and differentiating geological mater-
ials. Understanding grain size distribution and packing patterns is crucial for de-
veloping accurate models.

2.3.3 Simulation

Simulation is central to DRP, encompassing the final stage after digital rock ana-
lysis. By employing simulations, crucial properties such as permeability and fluid
flow can be effectively calculated, enriching our understanding of the behaviour
of porous media. Permeability calculations can be performed using two distinct
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(a) (b)

(c) (d)

Figure 2.1: Examples of different grain packing settings in rock samples: (a) large grains,
(b) random grains, (c) small grains, and (d) a mix of large and small grains. The arrange-
ment and size of grains impact the porosity and permeability of the rock.

approaches: direct modelling based on binarized images of the pore structure or
network modelling that considers the overall topology of the pore network.[19,
102]

Additional properties that can be derived through DRP simulations include elec-
trical conductance, diffusion, and elastic properties. However, it is interesting to
note that the quality of these simulations is heavily affected by the first step, i.e.
image analysis. If artefacts and noise are present in the image, they propagate and
lead to poor results in the simulation step.[126]

2.4 Machine Learning and Computer Vision
The genesis of computer vision research dates back to the 1960s, with initial efforts
concentrating on detecting simple shapes and patterns. The development of found-
ational edge detection algorithms, such as Sobel and Canny operators, marked a
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significant milestone in the field [35]. Popularizing scale-invariant feature trans-
form (SIFT) and other feature descriptors for object recognition and tracking dur-
ing the 1980s and 1990s opened up new avenues for computer vision applications
[73].

Machine learning and computer vision have evolved in tandem, with techniques
like support vector machines (SVM) being employed for object classification and
recognition [85]. In the early stages, these machine learning approaches for com-
puter vision relied on hand-crafted features. However, the introduction of deep
learning by Geoffrey Hinton and his collaborators revolutionized the field, en-
abling significant advancements in computer vision applications without depend-
ing on hand-crafted features [65].

It has been discovered through further research that a combination of hand-crafted
and deep features can be even more effective at solving various computer vision
problems, showcasing the continued relevance of traditional techniques alongside
modern deep learning methods.

2.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized class of deep learn-
ing models designed explicitly for handling grid-like data structures, such as im-
ages [65, 67, 23]. The primary function of CNNs is to automatically and adaptively
learn spatial hierarchies of features from the input data. The architecture of a CNN
consists of a series of layers, including convolutional layers, pooling layers, and
fully connected layers. In the convolutional layer, a set of filters or kernels slide
across the input image, performing element-wise multiplication and aggregation
to generate feature maps. These filters are adept at detecting local patterns, such as
edges and textures, while preserving the spatial relationships within the image. The
pooling layer, which typically follows the convolutional layer, reduces the spatial
dimensions of the feature maps, thereby reducing computational complexity and
promoting translation invariance. This process is repeated across multiple layers,
with higher layers learning increasingly complex and abstract features. Finally, the
extracted features are flattened and fed into fully connected layers, which enable
the network to make predictions or classifications based on the learned hierarch-
ical feature representations. CNNs have demonstrated exceptional performance in
various computer vision tasks, such as image classification, object detection, and
semantic segmentation, revolutionizing the field and paving the way for numerous
applications.
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2.4.2 Generative Adversarial Neural Networks

Generative Adversarial Networks (GANs) were presented by Goodfellow et al. in
2014 as a novel approach to generative modelling. The core idea behind these
models is to train two neural networks in tandem. The first network is a generator
network, which generates samples from a given distribution. The second network
is a discriminator network, which distinguishes between real samples from the
true data distribution and the samples produced by the generator. The training
process can be seen as a two-player minimax game, where the generator seeks to
create samples that can fool the discriminator. In contrast, the discriminator tries
to improve its ability to detect fake samples [43].

Deep Convolutional GANs (DCGANs) by Radford et al. [97] significantly im-
proved these models, providing architectural guidelines for stable training using
convolutional layers. This work paved the way for further improvements in GANs,
such as the introduction of Wasserstein GANs (WGANs) by Arjovsky et al. [8],
which presented a new training objective that improves stability and convergence.

2.4.3 Implicit Neural Networks

Implicit Neural Representations or Implicit Neural Networks (INNs) refer to a
class of neural networks that learn to represent data implicitly without explicitly
defining the dimension of output. These networks can model complex, high-
dimensional data such as images, 3D shapes, or functions. INNs map from a
lower-dimensional input space (e.g., coordinates) to the desired output (e.g., col-
our or density values) [108].

One popular approach to implicit neural representations is using continuous Signed
Distance Functions (SDFs) for 3D shape representation, as Park et al. [89] pro-
posed in their work on DeepSDF. DeepSDF is a deep neural network that learns to
represent a 3D shape by mapping 3D coordinates to signed distance values, which
are positive outside the shape and negative inside. This continuous representa-
tion allows for high-resolution shape generation and can be easily manipulated or
combined with other shapes.

Another prominent example of implicit neural networks is Neural Radiance Fields
(NeRF), introduced by Mildenhall et al. [81]. NeRF is a method for representing
complex 3D scenes as a continuous function, which maps 3D coordinates and
viewing directions to RGB colour values and densities. This technique allows for
reconstructing high-quality, novel scene views from a sparse set of input images
by optimizing the neural network to minimize the discrepancy between rendered
and observed images.
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2.4.4 Progress in Super-Resolution

Reducing Distortion: Many previous works in the field of super-resolution fo-
cus on minimizing distortion by improving the Peak Signal-to-Noise Ratio (PSNR).
These approaches aim to minimize the discrepancy between the reconstructed
high-resolution image and the ground truth, often measured by pixel-wise met-
rics such as Mean Squared Error (MSE) or PSNR. Early efforts include the work
of Dong et al. [36], who proposed an end-to-end CNN-based super-resolution
network that does not require handcrafted features. Later, Kim et al. [61] in-
corporated residual connections with recursive CNNs for the same purpose. The
advancements in CNN architectures, such as skip connections [46], have also been
applied to Single Image Super-Resolution (SISR) [68]. Furthermore, the DenseNet
architecture [50] was adapted by Zhang et al. [132] for SISR tasks. RCAN [131]
demonstrated even better performance using a deeper network, reducing distortion
in the super-resolved images.

Improving Perceptual Quality: The other SISR methods focus on perceptual
quality-based metrics [130, 18] to generate more visually appealing and realistic
outputs. The introduction of VGG features as a perceptual loss function [56] has
shifted the research focus towards improving perceptual quality. Adversarial train-
ing using GANs [43, 68] has further contributed to this direction. The ESRGAN
[121] model uses a relativistic discriminator [57] to enhance the quality of the out-
put images. Edge and gradient-based methods additionally focus on geometry and
perceptual quality [84], producing sharp details; however, they may sometimes
induce artefacts. To preserve fine details while achieving state-of-the-art perform-
ance on benchmarks [129, 16, 51, 77] based on the LPIPS metric [130], Ma et al.
[75] propose a gradient branch and loss. This approach combines distortion reduc-
tion and perceptual quality improvement, producing a more balanced and visually
appealing super-resolution output.

Applications to Digital Rocks

The literature on super-resolution techniques for 3D data falls into two primary
categories. In the first category, 3D images are considered as sets of 2D slices, and
conventional 2D SISR methods designed for coloured images are employed. This
approach allows for super-resolution in two dimensions; however, it neglects the
lower resolution of the third dimension. To effectively upsample 3D images, it is
crucial to account for all three dimensions. There have been numerous instances
of using CT data for training 2D SISR networks to super-resolve 2D slices within
a 3D image, both in the medical and digital rock fields [123, 25, 128].

The second category involves training end-to-end 3D networks for the super-resolution
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of volumes. Although these methods are more challenging to develop and thus re-
latively scarce, they provide a more comprehensive solution [29, 93]. Chen et al.
[29] proposed the mDSCRN method for 3D volume super-resolution, inspired by
DenseNet [50]. On the other hand, Peng et al. [93] presented SAINT, arguing
that mDCSRN yields suboptimal results and has a higher memory and computa-
tional burden. However, the SAINT method requires ground truth high-resolution
data for supervised training. While this technique has been applied to medical CT
data that only require one-dimensional upsampling via frame interpolation, it is
ill-suited for data necessitating three-dimensional upsampling.

2.4.5 Progress in Registration

Conventional Methods Correlation methods have been employed for unimodal
image registration methods since they gained prominence due to their efficacy, as
highlighted by Pratt et al. [95]. However, these methods often require supplement-
ary preprocessing and cleaning steps to guarantee successful cross-correlation. As
demonstrated by Althof et al. [4], employing correlation-based approaches can
result in reasonably accurate solutions for various registration challenges. In the
context of multimodal images, Viola et al. [118] and Maes et al. [76] proposed
utilizing mutual information, offering enhanced robustness for such image types.

An alternative approach involves Fourier-based methods, which operate on the
Fourier representation of images and boast faster performance compared to cross-
correlation techniques De et al. [34]. Focusing on the optimization algorithm in-
volved in the process, Jenkinson et al. [54] developed a global optimization al-
gorithm tailored explicitly for image registration tasks, resulting in more efficient
registration processes.

An appropriate similarity measure (e.g., correlation versus mutual information) is
critical to registration success. In order to facilitate this decision-making process,
Roche et al. [100] provided valuable insights and guidance on selecting the optimal
measure for the best possible results. Despite the effectiveness of these traditional
methods, they often require multiple iterations to converge to an acceptable solu-
tion. Open-source libraries Pytorch [91] and AIRLab [104] allows to harness the
power of graphical processing units (GPUs) to expedite gradient computation ne-
cessary for optimization.

Deep Learning Methods With the advent of deep learning, novel solutions for
various registration challenges have emerged, particularly leveraging the capabilit-
ies of CNN [65, 67]. Learning-based approaches have been incorporated into every
stage of the registration process, leading to innovative methods and improved res-
ults. For instance, Haskins et al. [45] proposed using a CNN to learn the similarity
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metric while preserving the traditional optimization process. In contrast, Miao
et al. [80] and Chee et al. [24] utilized synthetic transform-based data generation
techniques to train a CNN model capable of predicting the transformation matrix
in a single attempt, significantly reducing computation time.

Taking a different approach, Liao et al. [71] employed a reinforcement learning-
based technique to train an agent for robust image registration, opening up new
possibilities for adaptive registration strategies. While these methods primarily
utilize medical image datasets and exhibit impressive speed during inference, they
face limitations when applied to datasets that lack sufficient distinguishing fea-
tures. Additionally, unsupervised approaches for deformable image registration
have been explored by Hu et al. [49]; however, this thesis is limited to rigid
transformations. For a more comprehensive understanding of learning-based ap-
proaches, consult the surveys presented by Haskins et al. [44] and Fu et al. [40].

Application towards Digital Rocks

Image registration represents a crucial preliminary phase in numerous investiga-
tions on the estimation of rock properties, as demonstrated in various studies [64,
10, 88, 96]. Despite the ubiquity of image registration solutions in the medical
imaging domain, there need to be more well-developed approaches for wet and dry
image registration. This is true due to the lack of well-defined matching features
and key points in some wet and dry rock samples. The seminal work of Latham
et al. [66] utilized a correlation-based technique with an optimization algorithm
for 3D dry-to-wet image registration. However, the iterative nature of this optim-
ization process renders the method significantly time-consuming. Research that
harnesses GPU technology’s capabilities is essential as it can substantially reduce
the computation duration from hours to mere seconds.

The AIRLab open-source library, founded on Pytorch and employing GPU techno-
logy, has proven highly effective for image registration [104]. Although alternative
toolboxes such as ITK [127], Elastix [63], and ANTs [11] are available, they do
not exploit GPU capabilities as transparently and efficiently as AIRLab. As a res-
ult, the prototyping process with these methods is time-intensive and error-prone,
potentially creating obstacles in industrial applications. Various other toolboxes
are also available for registration. Each of them has their weakness and strengths.
For an in-depth examination of other toolboxes for image registration tasks, we
refer the reader to the comprehensive survey conducted by Keszei et al. [60].

2.4.6 Progress in Segmentation

Segmentation is a process in computer vision that involves dissecting an image into
different regions, each representing a specific object or category. It goes beyond
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simply recognizing objects in an image by determining the boundaries and extent
of each object, effectively assigning a label to every pixel. This pixel-wise clas-
sification allows for a deeper understanding of the visual content. It comprehens-
ively represents the scene, enabling more advanced analysis and decision-making
in various applications.

Fully Convolutional Networks (FCNs) demonstrated remarkable performance in
semantic segmentation by replacing fully connected layers with convolutional lay-
ers to preserve spatial information [72, 86]. Following this, encoder-decoder archi-
tectures such as SegNet [12] and U-Net [101] emerged, leveraging the hierarchical
structure of CNNs to generate high-resolution segmentation maps.

U-Net proved to be highly effective, especially for biomedical image segmenta-
tion [101]. Its architecture incorporated a contracting path for capturing context
and a symmetric expanding path for precise localization, improving segmentation
quality. The success of U-Net led to its widespread adoption and further adapta-
tions in various domains.

Application towards Rock Typing

In digital rock analysis, the objective is to ascertain the comprehensive properties
of reservoirs. It is beneficial to partition the reservoir into distinct sub-regions, or
rock types, that share similar properties. This process, referred to as rock typing,
involves classifying sub-regions based on criteria such as their physicochemical
properties.

Ismail et al. [53] employed regional Minkowski measures, which characterize the
geometric properties of objects, in conjunction with a multivariate Gaussian mix-
ture model for rock-type classification. Wang et al. [124] proposed an image ana-
lysis approach for rock typing that utilizes the iterative Chan-Vese segmentation
model to segment binary images into distinct rock types. However, this model is
subject to hyperparameter selection, sensitivity to initial condition selection, and
slow convergence and is not adequate when handling noisy images or images with
poorly defined boundaries. These manual methods fall under the category of fea-
ture engineering.

Nuclear Magnetic Resonance (NMR) is crucial for rock typing, particularly when
assessing fluid diffusion. NMR is effective in such situations because it relies on
the presence of hydrogen nuclei, which are prevalent in oil or water samples. Des-
pite its utility, NMR has several drawbacks, including requiring a fluid sample,
low spatial resolution, significant sample preparation efforts, high cost, and slow
image acquisition. Cui et al. [33] investigated the impact of diffusional coupling
on NMR measurements of saturated laminated sandstone at the layer scale to eval-



2.4. Machine Learning and Computer Vision 27

uate the feasibility of NMR-based rock-typing approaches. In contrast, Jiang et
al. [55] utilized more cost-effective X-ray images and introduced efficient numer-
ical techniques based on Minkowski functionals for deriving regional Minkowski
measure fields for large-scale three-dimensional X-ray tomography (3D) datasets.
Although still reliant on manual intervention, the researchers demonstrated the
applicability of these 3D feature fields to microstructure classification by imple-
menting a multivariate Gaussian mixture model and thin-bedded sandstone.

Alhwety el al. [2] examined the conventional interpretation of NMR measurements
on fluid-saturated reservoir rocks, with the fluid being a crucial component of most
NMR analyses. They emphasized that the transverse relaxation time and pore size
distributions, expected to be most directly related, are often not directly correlated
in many multi-scale porosity systems due to diffusion coupling between varying
pores. This framework presents yet another approach to developing rock typing
methodologies.

Existing research employing deep learning for rock typing has primarily concen-
trated on classifying rock types within image patches based on the rock’s elemental
composition rather than segmenting full images according to the significant phys-
ical properties of regions [13]. Consequently, this thesis focuses on a deep learning
based segmentation method to generate more accurate boundaries between distinct
rock types based on essential properties such as porosity while utilizing more af-
fordable and prevalent image modalities like CT/X-ray.

2.4.7 Progress in Image Generation

Implicit Generative Models Generative adversarial networks (GAN) have been
phenomenal in achieving realistic-looking image generation [43]. However, they
are prone to multiple issues, due to which they are not always the preferred model
for the task of image generation. Some issues that commonly affect GANs are sus-
ceptibility to model collapse and catastrophic forgetting in the case of conditional
generation [117]. In a conditional generation, the model can generate an image
based on a condition, e.g. to generate a 3D image; we can input a 2D image as a
conditional, and then the model will generate a 3D image that is conditioned on
the 2D image.

Likelihood-based Models A way to model data is to model the distribution of
the data using a likelihood function. Such models are known as likelihood models.
The Likelihood Function for a model M with some parameters θ, and data D, then
the likelihood function can be represented as L(θ|D). Variational auto-encoders
are a class of likelihood models that are very fast at inference and do not suffer
from mode collapse. However, generally have a lower quality than GAN [62, 99].
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Similarly, Auto-regressive models can also accurately capture the data distribution
with superior sample quality. However, they are slow at inference, making them
impractical for multiple applications [87, 98, 90, 26]. Various hybrid models have
recently become very popular, capable of generating high-resolution images by
combining transformer architecture in the framework of likelihood-based model
and generative adversarial networks [37]. Such models attempt to use the strengths
of each framework.

Score-Based and Diffusion Models A third category of the model is the de-
noising diffusion probabilistic model which is also known as score matching mod-
els [52, 47, 109, 110]. The score function S(θ|D) is the gradient (derivative)
of the log-likelihood with respect to the parameters θ. This can be written as
S(θ|D) = ∇θ logL(θ|D). Score matching is a technique to find the best paramet-
ers θ that makes the model’s score function match the true score function of the
data. They have accomplished exceptional results in multiple downstream tasks
such as super-resolution, generation, and diverse computer vision problems [103,
22, 27]. Our work also adopts these models for 3D generation of rock samples
from 2D data.

Applications to Digital Rocks

The generation of 3D microstructure is a beneficial application of generation mod-
els for digital rock workflow. However, this task presents unique challenges. Many
previous works explore the solution.

Rules based Models Before the advent of data-driven and deep learning mod-
els, conventional methods based on stochastic modelling were used to generate 3D
models. One such stochastic model is based on modelling the sedimentation pro-
cess, which can model a wide variety of rock configurations [1, 113, 17, 114, 115].
However, each minor component needs to be modelled in this simulation-based
tool, due to which they are cumbersome to develop and maintain. In addition, they
are very limited, so they cannot capture the complexities of actual rock samples.

Implicit Generative Models The advent of deep learning and generative ad-
versarial networks has dramatically improved the generation of rock data for di-
gital rock workflow. Previous work has utilized GANs for unconditionally gen-
erating a singular rock type [82, 83]. The conditional generation provides more
control over the output, essential for utilizing these models for digital rock work-
flow. Previous works have also explored such models [59, 119, 133, 31]. However,
they are negatively affected by certain limitations due to inherent limitations of the
GANs, such as mode collapse. Kench et al.[59] demonstrated the ability to learn
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from 2D images to generate 3D microstructures similar to our method; however,
we utilize score-matching / diffusion-based models.

Likelihood-based Models Phan et al. [94] have utilized a likelihood-based
model to generate high-quality 3D rock samples from 2D conditional images. But
they always require a 3D ground truth. On the other hand, we utilize score based
model and only need the 2D sample to synthesize 3D images.
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Chapter 3

Methods

The motivation for the choice of method for each paper in this thesis is primarily
based on the research goals set out in the introduction section. In this section, the
thesis will aim to first motivate the choice of the method based on the research
goals already established, followed by more details on the implementation and
algorithm. The method section aims to provide a gentle introduction to the reader
about the method developed in each paper. The complete details of the method
developed for each paper are provided in the respective article found in the part II.

3.1 Motivation for Method to Achieve RG 1
The RG 1 was to explore the use of deep generative models for the realistic en-
hancement of digital rock images. A famous deep generative model is the gener-
ative adversarial network (GAN)s [43]. GANs are primarily used for image gen-
eration. GANs consist of two networks, a generator that generates fake samples
and a discriminator capable of classifying real data and fake samples. However,
we want to use them to enhance the quality of rock images. One way to enhance
the quality is super-resolution, which is the task of increasing the resolution of a
given image such that more details are visible in the super-resolved image. The
details added by the task of super-resolution are vital for accurate simulation in
digital rock analysis. In addition, it is an observation from previous works that
most super-resolution techniques developed for natural images can be adapted for
digital rock images with appropriate changes.

Super Resolution using Generative Loss Functions Super-resolution can be
performed using a neural network in a self-supervised manner. Usually, given a
high-resolution image of size h x w, a low-resolution image h

s x w
s is obtained
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by downsampling by scale factor s. The image obtained is then fed into a neural
network. The neural network output is the super-resolved image of size h x w. The
super-resolved image is then compared to the high-resolution image using a loss
function to update the weight of the neural network using the backpropagation
algorithm. The most common form of loss function used for super-resolution is
the L1 loss function, also known as the mean absolute error (MAE), is given as
L1(y, ŷ) = 1

n

∑n
i=1 |yi − ŷi| where y represents the actual values, ŷ represents

the predicted values, and n is the number of samples. However, this loss function
can lead to blurry images [68]. Previous work has demonstrated that GANs can
be used as a loss function in addition to the L1 loss. In this setting, the output of
the super-resolution from the neural network is sharp and photo-realistic [68] as
shown in Fig. 3.1. The generative adversarial loss function derived from GANs
is sometimes known in the literature as adversarial loss. In an adversarial loss
setting, the generator is the CNN for super-resolution, and the discriminator is a
CNN used to create the output of the adversarial loss. Note that both generator and
discriminator are neural networks. However, the discriminator is a neural network
with fewer parameters than the generator.

Figure 3.1: Adversarial loss based output (right) vs MSE loss based model output (left)

Another type of loss function that provides photo-realistic outputs is perceptual
loss [56]. The perceptual loss calculates the style and perceptual differences between
the predicted and target images. This loss is calculated by separately passing both
the input image and the target image to a CNN that has been pre-trained on a large
dataset such as ImageNet. Then, the distance between the feature maps of the
neural network is calculated using Euclidean distance.

Therefore, the primary motivation for choosing the methods developed in papers
A and B is to use adversarial and perceptual losses such that the networks trained
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as a result can enhance rock data and reveal crisp details that can aid digital rock
analysis. Paper A focuses on super-resolving 2D images, while paper B focuses
on super-resolving 3D images.

3.1.1 Method: Paper A

It has been noted from previous works that super-resolution methods developed for
colored image datasets such as ImageNet can be applied to super-resolve related
datatypes like medical CT and digital rock images [123, 25, 128]. Therefore,
the methods developed for paper A are primarily tested on colored images. This
method focuses on developing a new method to utilize adversarial and perceptual
losses with neural networks for super-resolution.

There are many different types of neural network layers. The most common ones
are fully connected layers and CNN [65]. In a CNN, an a discrete array of the
image is the output of the neural network. There is another type of neural network
that is know as the implicit neural network (INN) as shown in Fig. 3.2. The
implicit neural network takes input coordinates and outputs a color value (RGB)
corresponding to the coordinates. It can represent an image in a continuous space
as we can input any floating point number as the input coordinates while querying
the neural network. This property makes it superior to CNNs as they are discrete.
For super-resolution, this means that when we train a CNN to upsample a low-
resolution image, then it can be trained and tested for that particular discrete scale.
However, in the case of INN, we can use an arbitrary scale. For example, consider
a CNN trained to upsample an image by four times. Then, it can not upsample an
image up to 10 times as the output of CNN is a discrete array. However, in the
case of INN, it is possible due to a continuous representation. The INN is usually
parameterized using a multiple fully connected layer as shown in Fig. 3.3.

f(x, y)Input coordinates
(x, y) Color value Output

Figure 3.2: Illustration of an implicit function that takes coordinates as input and provides
colour values as output.

Adversarial loss and perceptual loss have been previously used with CNN for the
task of super-resolution. This combination has resulted in super-resolution output
that looks realistic and sharp [68, 121, 122]. However, whether INN can benefit
from adversarial and perceptual losses has not been investigated. Therefore, in
Paper A, we use adversarial and perceptual losses with INN for super-resolution
in pursuit of RG 1 as shown in Fig. 3.4. The rest of the details about the method
in paper A can be found in appendix A.
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Input coordinates
(x, y) color value Output

Figure 3.3: Illustration of a neural network-based implicit function that takes coordinates
as input and provides color values as output.

Figure 3.4: Training Method: The low-resolution image I↓s is passed through CNN
encoder to get feature vector z. A random patch is selected from the coordinate space of
the desired high-resolution image to obtain high-resolution coordinates xhr. z and xhr

are passed through the Local implicit function image (LIIF) generator to obtain the super-
resolved output image I . This I is compared with IGT using adversarial loss (‘Adv loss’),
perceptual loss (‘VGG loss’) and with IHR using pixel loss L1.

3.1.2 Method: Paper B

Paper B proposes a method to super-resolve a digital rock image using generative
models to achieve RG 1. Most samples of rock images are 3D images, e.g. from
image sources such as micro-CT. The 3D image is a three-dimensional variant of
a 2D image. The 2D images consist of pixels, whereas the basic building block of
a 3D image is called a voxel. The CNNs that consume 3D images are called 3D
CNNs. 3D CNNs and 2D CNNs are very similar, with 3D CNNs having an extra
dimension in the weight matrices. CNNs are very popular for super-resolution
of both 2D and 3D images of rocks. Previously, many efforts have been made
by previous works to perform super-resolution of digital rock images. However,
most of the previous works utilize 2D CNNs [123]. The adversarial and perceptual
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losses have been used to train 2D CNN to produce realistic rock images. However,
it is not possible to realize a 3D CNN equivalent. This is due to the behavior of
adversarial and perceptual loss functions with 3D images.

The generator and discriminator are 3D CNNs in the adversarial setting. However,
since the 3D equivalent of a 2D CNN increases the GPU memory consumption,
therefore training this setting can be prohibitively expensive. Therefore, we de-
veloped a method in Paper B to ensure that we can utilize the 2D variant of the
GANs since they can be trained more efficiently.

As mentioned before, the perceptual loss uses the weights of a pre-trained neural
network that is always a 2D CNN. A 2D CNN can not consume a 3D image dir-
ectly. Therefore, we can not use a perceptual loss to train 3D CNN directly. How-
ever, some approaches that use perceptual loss by calculating it slice by slice on
3D image. However, this does not lead to a better result than a 2D CNN trained
with GANs. Therefore, we propose a more elegant method to utilize the perceptual
loss for 3D CNN.

The summary of the proposed method is shown in Fig. 3.5. The idea behind the
method is to super-resolve a low-resolution 3D image into a high-resolution 3D
image through slice-by-slice super-resolution and then fuse the results into a single
3D cube. We propose a method that consists of two parts. The first part is a super-
resolution by slice pipeline whereas the second part is a fusing module.

The first part uses a 2D CNN. The 2D CNN is used to upsample the 3D low-
resolution image by a certain scale factor. A 2D CNN can not process a 3D image
completely. Therefore, we apply a 2D CNN slice by slice along a given dimension.
We apply the 2D CNN slice by slice along the x, y, and z axes to obtain three cubes
of high resolution as shown in the figure. These cubes are blurry on all faces of
the cube except for the two faces along the direction of the slice-by-slice super-
resolution. So the next step is to combine the results from all of the cubes into
one cube. It is interesting to note that a pre-trained 2D model can also be used for
slice-by-slice super-resolution in this first part. In this work, we specifically train
the 2D model with adversarial and perceptual loss to achieve RG 1.

In the second part of the pipeline, we use a 3D CNN as a fusion module. That
fuses the three cubes as shown in the figure. The output is a 3D high-resolution
image. To train this network, we can use the L1 loss with a 3D ground truth image.
In addition, we have also used a loss which is named the consistency loss Lc. This
is shown below:
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Figure 3.5: SIT-SR 3D: The architecture of our proposed method. The low-resolution
image I↓r is upsampled along x, y and z respectively with the pre-trained 2D SISR, as a
result, the volumes I↓rx , I↓ry and I↓rz are obtained. Ix, Iy , and Iz are the corresponding
volumes obtained after the interpolation operation. Ix, Iy and Iz are passed through the
Fusion module to get the output volume I .

Lc = ∥Ix − I∥1 + ∥Iy − I∥1 + ∥Iz − I∥1 (3.1)

This loss Lc uses the output image from the neural network I and compares it with
the three intermediate cubes (Ix, IyandIz) formed by the first part that uses the 2D
CNN. This means that we do not need a ground truth image. We train the whole
pipeline end to end in three settings i.e. first with L1 loss, consistency loss, and
finally with a combination of the two. We use rock images to train this pipeline.
The details about the algorithm and hyperparameters are given in the paper.

As demonstrated, the method achieves RG 1 by developing a method that can
perform 3D super-resolution while using 2D super-resolution networks that have
been trained by an adversarial and perceptual loss. The intricate technical details
of the method can be found in the appendix B.

3.2 Motivation for Method to Achieve RG 2
The RG 2 was formulated to reduce the conventional dry-wet rock image registra-
tion latency. The main conventional method for micro-CT images are intensity-
based methods and feature-based methods [40]. Dry and wet rock images are
both obtained from the same sensor. Therefore, they are unimodal images. A
popular method to perform registration of unimodal images rock images is cross-
correlation based image registration [66]. Therefore, we also focus on improving
the inference speed of image registration using cross-correlation.
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3.2.1 Method: Paper C:

Maximizing the cross-correlation through optimization can determine the trans-
formation between two images. The transformation between the dry and the wet
rock image can be in translation, rotation or scaling. When transformation is ap-
plied to either wet or dry image, then the cross-correlation between the two is
maximized and the images are in perfect alignment and thus registered as shown
in Fig. 3.6. The process of optimization using cross-correlation can be time-

Figure 3.6: We solve the problem of Dry-Wet rock Image registration. Our Registration
Method (Blue box) can register Image pairs efficiently and accurately. In this figure, the
Fixed 3D Image is the Dry Image, whereas the Moving 3D Image is the Wet Image. The
registration method finds the transformation required to warp the Moving 3D image to
register it to the Fixed 3D Image.

consuming since it takes several interactions to reach the optimal solution. There-
fore, we use an open-source image registration library called AIRLAB [104]. It
uses Pytorch [92] to calculate the the analytic gradients of the objective functions
such as cross-correlation automatically. This enables the calculations on the graph-
ical processing unit. The result is the the operation can be performed on the GPU.

We develop a GPU-based robust algorithm for image registration that registers the
two wet and dry images. Transformations between the two samples can be signi-
ficant, as demonstrated in Fig. 3.7. For instance, the wet image may rotate around
the z-axis by ±180 degrees and around the x and y-axes by ±5 degrees. The sample
can be inadvertently placed upside down during handling, resulting in a complete
inversion around the x and y axes. The cross-correlation measure is highly depend-
ent on the visuals of the images on which it is applied, and the wet and dry images
can appear drastically different. We employ a histogram normalization technique
to ensure the images look as similar as possible before cross-correlation optimiza-
tion. The complete details of the algorithm are given in the paper in the appendix
C. However, here we summarize the main steps:
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Figure 3.7: Extreme Rotation: A micro-CT image of a wet and dry sample are shown.
Note that The wet sample can have extreme rotation of ±180◦ along z-axis and a 180◦

inversion around the x or y axes.

Summary of the Proposed Registration Algorithm The dry and wet images
may exhibit extreme mismatches, such as a 180-degree inversion or rotation about
the z-axis, as illustrated in Fig. 3.7. The dry image serves as the source image,
while the wet image is the target image for registration.

The dry and wet images may exhibit extreme mismatches, such as a 180-degree
inversion or rotation about the z-axis, as illustrated in Fig. 3.7. The dry image
serves as the source image, while the wet image is the target image for registration.
The dry and wet images are prepared for registration by performing the necessary
pre-processing step of histogram normalization to reveal details in each image.
Initially, the method conducts an initial registration step to obtain an approximate
match, providing coarse transformation parameters.

This initial registration involves transforming the wet image by angles along the
z-axis, checking the registration match for each angle in a complete 360-degree
rotation. This process repeats until the full rotation is completed. The registration
match is assessed for each angle using cross-correlation, and the highest cross-
correlation value is recorded.

Subsequently, the wet image is rotated by 180 degrees about the y-axis, and the
rotation with delta angles along the z-axis is repeated. Again, the highest cross-
correlation value for each delta angle is noted for both the original wet image and
its inverted counterpart. The maximum cross-correlation value between the ori-
ginal wet image and the inverted one is compared, and the highest cross-correlation
value is retained.

This highest cross-correlation value serves to determine the initial transformation.
Finally, another step of image registration is performed, involving a larger number
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of steps to ascertain the precise transformation between the wet and dry images.

3.3 Motivation for Method to Achieve RG 3
The third goal, RG 3, was to explore the deep learning-based models for rock
typing of rocks that contain laminations, i.e. the samples formed such as one layer
is deposited on another, thus creating clear boundaries. Our study focuses on core
sample scale and employs porosity trends as the properties for grouping laminar
rock regions to determine properties. These properties are then propagated to the
whole sample as shown in Fig. 3.8. This choice is motivated by recent works
that utilize these trends to calculate region-specific properties. The process can
be repeated at different scales until the desired properties are propagated to the
desired scale [102].

Figure 3.8: Rock typing and Upscaling Workflow: There are multiple steps involved in
upscaling.

Deep learning was chosen to achieve this goal primarily due to the subjective
nature of the boundaries that separate the two rocktypes. The boundaries for one
expert can be slightly different from the boundaries of another. Therefore methods
that are unsupervised and based on clustering can lead to imperfect results. A good
solution is to label a dataset using experts and then learn the task of rock typing
using a deep neural network. An example of expert labelled image is shown in Fig.
3.9. Apart from rocks that contain lamination, other type of rock types also exist
with more complex patterns. However, they are out of the scope of current work.

3.3.1 Method: Paper D

We formulate the rock typing as a semantic segmentation problem [72]. Semantic
segmentation is a task where each pixel in an image is assigned a class. In the
case of rocks, the class corresponds to the type of the rock, e.g. 0, 1, 2 etc.. The
image of the rock sample is processed by a class of neural networks called UNet
[101]. UNet has been previously shown in the literature to work well for the task
of semantic segmentation. Therefore, we also adapt this neural network for rock
typing via semantic segmentation. The Unet is trained by a cross-entropy loss
using the images with labels provided by the experts.
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Figure 3.9: Example of labelling of a rock image for rock types

The UNet like all deep learning networks is a black box, therefore the paper utilizes
an explainability technique GradCAM [106] to use gradients activations logged
from the last layers of the UNet to get an insight into the decision-making pro-
cess of the neural network. The details of the algorithm and hyperparameter are
provided in the appendix D.
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3.4 Motivation for Method to Achieve RG 4
This thesis’s final goal, RG 4, was to explore using deep generative models called
diffusion models for high-fidelity 3D sample creation from 2D rock images [47].
The digital rock workflow is dependent on simulations of a digital rock image. This
digital rock image is 3D. However, in certain situations, the 3D image of the rock
sample is not available, and only a 2D image is available. In this scenario, it is de-
sirable to use a 2D to 3D synthetic sample generation method. However, creating
a 3D image from a 2D slice is an inverse problem. The famous method includes
Process-based modelling that is based on the simulation of the physical mech-
anism of rock formulation through deposition [1, 113, 17, 114, 115]. However,
simulation cannot model all the uncertainties of the real samples. Another type of
approach is machine learning based models that learn to to generate 3D synthetic
samples from 2D data. Previously 2D to 3D generation has been demonstrated to
work well using neural networks, but require 3D training data [94]. However, we
are interested in an even more difficult task of learning from 2D data to generate
3D synthetic samples. Previously this has been achieved by GANs [59]. However,
GANs are known to have issues such as mode collapse that adversely affect the
diversity of the generated samples [117]. On the other hand, the diffusion model
is a deep generative model that can generate high-quality, diverse samples. How-
ever, they are very slow at generating new samples as they iteratively generate a
sample by removing noise from a random noise image. To achieve this goal, we
combine the GANs with diffusion models to reduce the generation latency while
maintaining high-quality sample generation.

3.4.1 Method: Paper E

Figure 3.10: Understanding the diffusion process

Diffusion Model Sampling Procedure Starting from a 2D image, diffusion
adds a small noise to the image in multiple steps, as shown in Fig. 3.10. After
a sufficient number of steps, the image is destroyed, and now the image is an array
of noise. This is the forward process. The reverse process is the opposite, i.e. we
start from a pure noise vector and remove noise from the image step by step until
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we reach an image. In denoising diffusion models using deep learning, the reverse
process is modelled by a neural network, e.g. a UNet. This means that starting
from a noise vector, the noise is removed step by step using a trained UNet until
we obtain an image. This process is also known as sampling. As sampling re-
quires several steps of using the neural network to estimate the noise for each step,
it is time-consuming. From the theory of diffusion models, it is known that the
more steps there are, the better the quality of the generated sample. In practice, the
number of steps is 1000 to 2000 steps.

Diffusion Model Training Procedure Until now, we have only discussed sampling,
the inference step. However, we first need to train the UNet before it can be used
for sampling. We need pairs of input and output data to train the neural network.
The input of the UNet is the noisy image, and the output of the UNet is the noise
present in the image. To formulate the pairs, we return to the forward diffusion
process that generates several noisy image chains by adding noise to the clean im-
age. For each step of the forward process, we know how much noise we have
added to create a noise image. Therefore, we form pairs of input and output train-
ing data using the noisy image and the noise added to obtain the image during the
forward process. We do this for all the images in the training dataset to obtain a
large data set of images and noise to train the UNet.

GANs for Diffusion Model GAN consists of a generator and a discriminator.
In a GAN, the generator creates synthetic samples, and the discriminator learns to
classify the generator samples as fake. In this adversarial game, both the generator
and discriminator get better. The generator network generates the sample in one
single shot from noise. This setting is also the source of GAN problems like mode
collapse [117]. The generator is forced to generate the sample in several steps to
convert this GANs to a diffusion GAN. This ensures stability.

2D to 3D Generation We use the diffusion GAN in the proposed method. How-
ever, we modify it to learn to generate 3D samples by learning from 2D data. The
key idea is to start from a noise cube and denoise it using a 3D UNet, as shown in
Fig. 3.11. To train the 3D UNet, we need paired 3D data from the forward diffu-
sion process. However, we do not have it; we only have real 2D data. Therefore,
the sampling/ inference process was used to generate the simulated 3D data using
3D UNet. This is not ideal as 3D UNet is untrained at the beginning of train-
ing. However, this works mainly because following the diffusion GAN, we use the
output of the 3D UNet generator to obtain 2D slices along the x, y, and z-axis of
the output cube and feed it to a 3D discriminator. In addition, the discriminator
also receives the real samples from 2D real image data. This means we use the
adversarial loss training signal for both the generator and the discriminator. This



3.4. Motivation for Method to Achieve RG 4 43

provides the necessary training for the 3D UNet and allows it to learn to generate
noise-free synthetic 3D images from 2D real data.

Since we do not have any real 3D data, we store all the samples generated by the
3D UNet in a data bank and use them as training data to train the 3D UNet. This
strategy slowly teaches the 3D UNet to denoise the cube. When the training fin-
ishes the fully trained 3D Unet can generate novel 3D rocks by denoising a random
cube of noise. A new novel sample can be obtained by initializing a random cube
of noise and denoising using the sampling procedure with 3D UNet. The intricate
details of the method are provided in the appendix E.

Figure 3.11: Diffusion-GAN Model: The proposed method is based on a denoising dif-
fusion process combined with a generative adversarial framework. In this setting, at test
time, starting from a cube of noise, the noise is iteratively estimated using a Unet, re-
moved, and then added back to the sample. This process is repeated to obtain a noise-free
representative sample. Our method can learn from only a few 2D slices of the training
image, as shown on the left.
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Chapter 4

Results

This chapter presents the results obtained from the new digital rock imaging and
analysis pipeline due to the novel methods developed in this work. Each method
affects the digital rock analysis pipeline positively. The overall effects of the meth-
ods can be one of the following:

• Increases the efficiency by reducing the time it requires to complete the rock
analysis.

• Improves the accuracy of the analysis by enabling more accurate simulation
and property determination.

• Improves both the accuracy and efficiency of analysis.

• Provides a novel alternative method to perform digital rock analysis.

The research objectives were structured around four key research questions to im-
prove different aspects of rock imaging and analysis. These questions focused on
enhancing image quality, improving image registration methods, automating rock
typing processes, and refining synthetic rock sample generation techniques. The
digital rock analysis and imaging pipeline improvements obtained from achieving
each research goal are provided below. In addition, Table. 4.1 summarises the
improvements due to each method.
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Table 4.1: Result of the New Analysis Pipeline

Research
Questions

Research Goals Paper Contributions Improvement in Pipeline

RQ 1: Enhance the
quality of images
from CT

RG 1: Explore use
of generative
models for realistic
enhancement of
digital rock image

A Proposed a generative model for
realistic image super-resolution
of 2D images

Increased accuracy of
analysis

B Proposed a method for utilizing
2D generative model for 3D
image super resolution for rock
images

Increased accuracy of
analysis

RQ 2: Improve
current dry-wet
image registration
methods

RG 2: Reduce
latency and
improve robustness
of conventional
methods

C Formulated a registration tool
that utilizes graphical
processing units to reduce
method latency from hours to
minutes

Reduced time
requirement for analysis

RQ 3: Automate
rock typing
pipeline

RG 3: Explore
deep
learning-based
methods for rock
typing of laminar
rocks

D Proposed a supervised deep
learning method for rock typing
of laminar rocks and performed
explainability analysis on model

Increased accuracy and
reduced time for analysis

RQ 4: Improve
methods to
generate high
fidelity synthetic
rock samples

RG 4: Explore
deep generative
models for 2D to
3D generation

E Proposed a novel method based
on deep generative diffusion
models for 2D to 3D image
generation

Increased accuracy for
existing analysis and
novel analysis possible
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4.1 RQ 1: Realistic Enhancement of Image Quality via
Generative Models

The first research goal aimed to enhance the quality of images obtained from CT
scans. Two papers, labelled A and B, proposed novel generative models for real-
istic image super-resolution of 2D and 3D images, respectively. Implementing
these models significantly increased the chosen image quality metrics on famous
distortion and perception-based metrics such as PSNR and LPIPS metrics [74,
130]. In addition, the methods also demonstrated superior performance due to
improved image clarity and photo-realistic outputs from models.

After applying these methods to the related rock image data, the resolution of
the image quality will be better. This provides a better image for the digital rock
pipeline, thus potentially increasing the accuracy of the rock properties determined
through analysis and simulation.

4.1.1 Salient Results from Paper A

By employing perceptual and adversarial loss functions with implicit neural net-
works known for generating photorealistic images, the method in paper A has
taken a step towards resolving the challenge of upsampling micro-CT images to
achieve SEM-level detail. Our qualitative and quantitative experiments on col-
oured images showcase the potential of this approach as shown in Fig. 4.1 and
Table. 4.2. The results in the figure show that the proposed method generates
photo-realistic output compared to mean square error trained only implicit neural
network-based method [28]. In addition, the comparison in Table. 4.2 with other
state-of-the-art CNN-based neural networks demonstrates that our method sur-
passes other networks on perception-based metrics such as LPIPS on benchmark
datasets. Previous works [123] have demonstrated that performance on generic
datasets correlates with the performance on digital rock datasets. So, even though
digital rock datasets were not tested with this pipeline, the method will demon-
strate similar results on rock data.
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Figure 4.1: Qualitative Comparison on Set 14[129]:. This figure shows the high-
resolution ground truth image (HR), the low-resolution image (LR), the super-resolved
image using LIIF model [28] and our model’s output. All input images are 6x down-
sampled from ground-truth images and super-resolved to 6x. All models were trained for
1x-4x only. We observe the same smoothing effect for LIIF outputs where the high-level
details such as water waves and texture in the fence has been blurred, while our model
retains the high-level details and the image produced is much more realistic than LIIF.

Dataset Metric SFTGAN [122] SRGAN [68] ESRGAN [121] SPSR [75] CiSR-GAN (ours)

Set5 LPIPS 0.0890 0.0882 0.0748 0.0644 0.0604
PSNR 29.932 29.168 30.454 30.400 30.05

Set14 LPIPS 0.4393 0.1663 0.1329 0.1318 0.1160
PSNR 26.100 26.171 26.276 26.640 26.62

B100 LPIPS 0.5249 0.1980 0.1614 0.1611 0.1436
PSNR 25.961 25.459 25.317 25.505 25.72

Urban100 LPIPS 0.4726 0.1551 0.1229 0.1184 0.1179
PSNR 23.145 24.397 24.360 24.799 24.36

Table 4.2: Quantitative comparison with CNNs on benchmark datasets This table
shows our method with other perceptual quality-focused methods. The best results are in
bold. All models have been trained and tested on 4x down-sampled images.
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4.1.2 Salient Results from Paper B

As depicted in the associated Fig. 4.2, the results compare the performance of our
model (SIT-SR 3D) vs other state-of-the-art, i.e. 3D ESRGAN [121]. RRDBNet is
the ESRGAN trained without the adversarial losses. The figure shows that the pro-
posed method produces photorealistic and sharp results. ESRGAN also produces
sharp results. However, it has been trained with the 3D ground truth using 3D
GANs and perceptual losses, requiring many more parameters and a much larger
computing budget. On the other hand, our method required only a 2D ground truth
to train and much fewer compute resources while producing comparable results.
The proposed method enhances the resolution and reveals the intricate details in
the rock image used for analysis, thus promoting accurate determination of prop-
erties through simulation and analysis. These results contribute to answering RQ1
by enhancing the image quality of the 3D digital rock image.
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Figure 4.2: This figure shows a visual comparison of different methods. HR, LR indic-
ates high-resolution and low-resolution images. 3D RRDBNet is a 3D convolution-based
network supervised with L1 loss. 3D ESRGAN is trained with GAN and VGG loss using
pre-trained weights of 3D RRDBNet. SIT-SR 3D is trained in a self-supervised setting
using only the consistency loss.
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4.2 RQ 2: Reduced Latency and Increased Robustness of
Image Registration

To achieve the second research goal, efforts were made to improve existing dry-
wet image registration methods. Paper C focuses on reducing the processing time
of the image registration task while maintaining accuracy.

The image registration is a part of the digital rock analysis pipelines. By reducing
the time it takes to perform wet-dry rock image registration from hours to minutes,
this method has successfully reduced the time required for completing the analysis.

4.2.1 Salient Results from Paper C

The proposed image registration method’s performance on dry-wet image sample
pairs from each rock dataset considered in paper C is shown in the Table. 4.3. The
algorithm calculates the transformation needed to transform the ’Moving Image’,
which is the wet image and align it with the ’Fixed Image’, which is the Dry
image. The table compares the warped moving image with the ’Ground Truth (GT)
Moving Image’ and displays the quantitative parameters of the transformation:
translation in x, y, and z in pixels (Trans X, Trans Y, Trans Z), rotation in x, y,
and z respectively in degrees (Angle X, Angle Y, Angle Z), and scaling in x, y,
and z respectively (Scale X, Scale Y, Scale Z). The figure demonstrates that even
when the original and moving images are extremely misaligned, our method can
successfully find the transformation between the dry and wet images, and it can do
so in under a minute, thus answering RQ2. Our method has been developed as a
tool for use in industry.
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Table 4.3: Dry Wet Image Registration

Dataset
Image

Fixed Image Moving Image Warped Moving Image GT Moving Image Difference Image Parameter Prediction Ground Truth

[120]

Trans X : -27.73 -28.00
Trans Y : 1.04 1.00
Trans Z : -16.20 -16.00
Angle X : -4.83 -4.82
Angle Y : 177.09 177.06
Angle Z : 80.91 80.88
Scale X : 1.05 1.04
Scale Y : 1.05 1.04
Scale Z : 1.04 1.04
Trans X : 10.22 10.00
Trans Y : -27.92 -28.00
Trans Z : -16.92 -17.00
Angle X : -1.93 -1.93
Angle Y : 1.15 1.13
Angle Z : -57.06 -57.00
Scale X : 1.03 1.02
Scale Y : 1.03 1.02
Scale Z : 1.03 1.02
Trans X : 27.89 28.00
Trans Y : -12.35 -12.0
Trans Z : 3.15 3.00
Angle X : -4.74 -4.74
Angle Y : -3.36 -3.36
Angle Z : 162.23 162.23
Scale X : 1.02 1.02
Scale Y : 1.02 1.02
Scale Z : 1.03 1.02

ST C14

Trans X : -6.10 -5.00
Trans Y : 3.80 3.00
Trans Z : -9.88 -10.00
Angle X : -3.34 -4.38
Angle Y : 0.16 -0.78
Angle Z : 93.23 94.17
Scale X : 1.08 0.97
Scale Y : 1.01 0.97
Scale Z : 1.00 0.97
Trans X : -4.49 -3.00
Trans Y : -0.50 -1.00
Trans Z : 2.06 3.00
Angle X : -0.69 -1.59
Angle Y : 179.69 178.57
Angle Z : -90.27 -87.77
Scale X : 1.03 1.00
Scale Y : 1.07 1.00
Scale Z : 1.14 1.00
Trans X : -7.92435 -10.0
Trans Y : 10.66 11.00
Trans Z : -2.86 -2.00
Angle X : 3.33 3.94
Angle Y : 0.34 0.85
Angle Z : -7.11 -7.87
Scale X : 1.00 0.98
Scale Y : 1.00 0.98
Scale Z : 1.03 0.98

[111]

Trans X : -10.71 -10.00
Trans Y : -8.17 -9.00
Trans Z : 9.45 10.00
Angle X : 2.70 2.23
Angle Y : 184.28 184.14
Angle Z : -35.39 -35.77
Scale X : 1.06 0.99
Scale Y : 1.02 0.99
Scale Z : 1.02 0.99
Trans X : -13.29754 -13.0
Trans Y : -16.31 -16.00
Trans Z : -5.65 -6.00
Angle X : -1.14 -1.76
Angle Y : -1.25 -1.75
Angle Z : 128.61 128.53
Scale X : 1.02 0.98
Scale Y : 0.98 0.98
Scale Z : 0.99 0.98
Trans X : 0.70478 1.0
Trans Y : 1.92 2.00
Trans Z : 10.57 11.00
Angle X : -2.82 -2.83
Angle Y : 4.28 4.44
Angle Z : -20.30 -20.25
Scale X : 0.97 0.96
Scale Y : 0.97 0.96
Scale Z : 0.97 0.96
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4.3 RQ 3: Automation of Rock Typing via Deep Learning
The third research goal focused on automating the rock typing pipeline. Imple-
menting the method in Paper D resulted in a substantial increase in the accuracy
and a significant reduction in the time required for rock typing analysis.

Experts predominantly do rock typing manually since the boundaries between vari-
ous rock types in the case of lamination can be subjective. Therefore, the analysis
takes substantial time. It is also possible that human interaction can generate er-
rors. Therefore, the use of the model automates this laborious process. The process
of rock typing is important for the accurate determination of the properties of the
sample. Therefore, the introduction of the method has resulted in an improvement
in both the accuracy and efficiency of digital rock analysis and imaging.

4.3.1 Salient Results from Paper D

The results of our deep learning-based rock typing method, as demonstrated in
Fig. 4.3, exhibit strong performance. The output of the model is a segmentation
mask. Compared to the ground-truth mask, the output of the results shows good
segmentation capability of the proposed deep learning model. After dividing the
rocks into rock types, the digital rock analysis can determine the properties of each
rock type segment separately instead of treating the whole sample. This will lead
to more accurate property determination. Additionally, the neural network takes
only one to two seconds to perform this compared to much more time required by
a human expert, thus addressing RQ 3.

Additionally, we examine the decision-making process of the neural network using
a famous explainability method, gradient-weighted class activation mapping [106].
This analysis provides valuable insights into the black box model’s decision-making
process as shown in Fig. 4.4. In particular, for each chosen rock type, we check
which pixels in the image were responsible for the decision made by the neural
network. The figure clearly shows that the chosen rock-type pixels in the input
image were highlighted by the explainability method. These pixels are responsible
for the decisions of the neural network. This analysis increases our confidence
in the black box model by demonstrating that the model is indeed looking at the
relevant regions to make a decision and not overfitting the dataset.
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Figure 4.3: The Qualitative results of our model are shown. From left to right, we have
the input image, ground truth segmentation mask and predicted segmentation mask.
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Figure 4.4: Grad Cam Explain ability Analysis: We query each class as shown by the tag
’Chosen Class’ in the GT masks. It can be seen that the CAM mask image shows the area
where the neural network is paying attention for obtaining the Pred Mask.



56 Results

4.4 RQ 4: Synthetic 3D Rock Generation from 2D Image
via Diffusion Models

Finally, the fourth research goal aimed to improve methods for generating high-
fidelity synthetic rock samples. Paper E introduced a novel method for 3D image
generation from a single 2D slice of a micro-CT image of a rock. The genera-
tion of 3D rock sample using the proposed method produces high-quality, diverse
synthetic samples that represent the grain distribution in the real sample accurately.

Multiple analyses on digital rocks require a 3D image. e.g. determining the fluid
flow using simulation. Given a single slice of a 2D rock, the proposed method
determines the synthetic 3D image of the rock sample, which can be used to run
simulations for fluid flow and other properties. Therefore, this method addresses
RQ 4 and opens avenues for novel analysis by providing more realistic synthetic
samples.

4.4.1 Salient Results from Paper E

The results of our deep learning-based generation method, as demonstrated in Fig.
4.5, exhibit strong performance compared to previous state-of-the-art [59]. Our
model can generate 3D images from only a few 2D image ground truth slices. The
most challenging structures to generate have been shown in this figure, where our
model excels at capturing the distribution of the rock structure much more than
SliceGAN. Along with capturing the distribution, we notice that our model can
also capture the colour distribution of the original 2D image in a better manner.
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Figure 4.5: Visual comparison with micro-CT images: Cross-sections of 3D images
generated by our method and SliceGAN [59], alongside their respective ground truth or
training data. The ground truth images are 3D X-ray micro-CT scans obtained at vary-
ing resolutions. The Glassbeads case showcases our method’s superior performance over
SliceGAN. Our model can capture the spherical shape of the object, even though it only
sees circles at the 2D input. In more challenging cases like the Savoniere - a carbonate
of fossilized microorganism - our method proves its robustness by generating images that
bear a higher resemblance to reality, despite the heterogeneous nature of the original im-
age.
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Overall, the performance assessment of the new analysis pipeline resulted in a
considerable improvement in the efficiency and performance of rock imaging and
analysis processes. The contributions made by each method addressed specific
challenges in the field, leading to enhanced accuracy, reduced processing time,
and the facilitation of automated analysis tasks. The combined impact of these
advancements demonstrates the efficacy of the proposed pipeline in advancing the
state-of-the-art in rock imaging and analysis.



Chapter 5

Discussion

In this chapter, the overarching contributions of the research work are discussed,
aligning the results from the different papers with the identified research questions
and addressing the gaps in the field of digital rock analysis. A comprehensive
overview of each paper’s key outcomes is provided, linking them to the overall
research plan and the identified research goals.

5.1 Plan Revisited
Before delving into the detailed discussion of novel contributions of each paper,
it is pertinent to revisit the summary of research questions and the improvement
to the digital rock pipeline outlined in Table. 5.1. We will refer to this Table to
summarize the novel contributions of each paper and identify the gaps addressed
by each of the papers for digital rock analysis. The Table demonstrates that the re-
search contributes novel methods that improve the pipeline of digital rock analysis
in terms of efficiency by saving time and improving the accuracy of the properties
determined by the digital rock pipeline.
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Table 5.1: Discussions of the New Analysis Pipeline

Research
Questions

Paper Contributions Improvement in Pipeline

RQ 1: Enhance the
quality of images
from CT

A Proposed a generative model for
realistic image super-resolution
of 2D images

Increased accuracy of
analysis

B Proposed a method for utilizing
2D generative model for 3D
image super resolution for rock
images

Increased accuracy of
analysis

RQ 2: Improve
current dry-wet
image registration
methods

C Formulated a registration tool
that utilizes graphical
processing units to reduce
method latency from hours to
minutes

Reduced time
requirement for analysis

RQ 3: Automate
rock typing
pipeline

D Proposed a supervised deep
learning method for rock typing
of laminar rocks and performed
explainability analysis on model

Increased accuracy and
reduced time for analysis

RQ 4: Improve
methods to
generate high
fidelity synthetic
rock samples

E Proposed a novel method based
on deep generative diffusion
models for 2D to 3D image
generation

Increased accuracy for
existing analysis and
novel analysis possible
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5.2 RQ 1: Enhance the Quality of Images from CT

5.2.1 Paper A: Enhancing Image Quality with Generative Models

Novel Contributions Paper A addresses RQ 1 by proposing a generative model
for realistic image super-resolution of 2D images. The novel contributions of the
work are given below:

• The paper proposes to use an INN with adversarial and perceptual losses.

• The adversarial loss produces photo-realistic results.

• The INN ensures continuous super-resolution i.e. using a single INN model
we can upsample 10x even though the network was only trained for 1x to
4x.

Addressed Research Question The above contributions address the research
question RQ 1 by providing a pipeline that can enhance the quality of all types
of images photo-realistically. Even though the paper demonstrates the results on
generic images, this is not a limitation of the work, as superior performance has
been demonstrated on multiple famous benchmark datasets. Therefore, it is simple
to extend the results of the pipeline to a rock dataset. The results on benchmarks
indicate the generalization capability of the method. It indicates that the quality of
the digital rock analysis will enhanced by using the method contributed in Paper
A.

Targeted Research Gaps The research gap identified at the beginning of the
study was that the images coming from micro-CT could be enhanced to reveal
important, intricate details crucial for property determination. However, the cur-
rent state-of-the-art deep learning methods based on CNNs do not generalize well
for a scale (e.g. 10 x) outside the training scale (e.g. 1 x to 4x). In addition,
the methods based on (INNs) that generalize well for a scale outside the training
scale do not produce sharp results. Therefore, there was a gap that needed to be
addressed by combining INNs) with adversarial losses. To address this gap, the
paper formulated a pipeline that trained INNs with adversarial losses. The result-
ing pipeline produced super-resolved images with enhanced details. The enhanced
details can lead to superior simulation performance and finding accurate rock prop-
erties. When we combined INNs with adversarial loss, we obtained the benefits
of both INNs and adversarial loss. This means the method obtained sharp images
that could be zoomed into much more than the training scale.



62 Discussion

5.2.2 Paper B: Utilizing Generative Models for 3D Image Super Res-
olution

This paper also addresses RQ 1 by enhancing the quality of images from CT.
The proposed model provides a very high-resolution ( 4x) rock image. This high-
resolution image contains important and intricate details that can be used for ac-
curate property determination and simulations. The focus of this method was also
on photo-realistic quality thus the produced images are crisp. This addresses the
research questions. The novel contributions of the work are given below:

• The method is a self-supervised method for 3D image super-resolution which
we train using a proposed consistency loss with only 2D ground truth.

• The method can adopt state-of-the-art 2D pre-trained models out of the box,
thus being more flexible than end to end 3D super-resolution method. As a
direct consequence, the method developed in Paper A can be adopted in the
2D super-resolution pipeline.

• The approach is data and compute efficient compared to end-to-end deep 3D
super-resolution alternative. It requires fewer parameters (one-third) com-
pared to the 3D super-resolution models.

Addressed Research Question The above contributions address the research
question RQ 1 by providing a pipeline that can enhance the quality of 3D rock
images photo-realistically. This work answers the question by specifically demon-
strating the results of the method on the micro-CT rock images.

Targeted Research Gaps The work addressed important gaps that existed in
the literature. The current photo-realistic 3D super-resolution method requires
3D GANs and 3D perceptual losses. 3D GANs are computationally heavy to
train, and 3D perceptual losses did not exist. In addition, many state-of-the-art
2D super-resolution pipelines exist. In the literature, there was no way to util-
ize these 2D super-resolution pipelines to perform 3D super-resolution or train a
compute-efficient 3D super-resolution pipeline. The method proposed in this work
provides a compute-efficient way of training a 3D super-resolution pipeline from
scratch using only 2D data (self-supervised). It also supports using the pre-trained
weights from any existing state-of-the-art 2D super-resolution pipeline. Thus ad-
equately addressing the research gap that existed.
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5.3 RQ 2: Improve Current Dry-Wet Image Registration
Methods

5.3.1 Paper C: Accelerating Dry-Wet Image Registration with GPU

Addressing RQ 2, Paper C introduced a novel registration tool utilizing GPUs to
reduce the latency of conventional dry-wet image registration methods. By har-
nessing the computational power of GPUs, the proposed tool significantly reduces
the registration time from hours to minutes, enhancing the efficiency of digital rock
analysis workflows. This advancement is crucial for expediting data processing
and analysis in the field of digital rock characterization.

• The paper proposes a robust pipeline for image registration under extreme
rotation and transformations of wet and dry image registration

• The proposed method can complete the task in minutes due to the usage of
parallel processing of the optimization problem.

• The method was validated on synthetic transformation on three different
rocks to demonstrate the effectiveness of the method

Addressed Research Question The RQ 2 was to improve the current dry-wet
image registration method. This method was developed for industrial applica-
tions. Therefore it was best to avoid the deep learning-based method due to lack
of enough data. The classical image registration was the best candidate since they
were tried and tested in the industry. Therefore, we focused on improving the
latency of the current image registration method thus addressing the research ques-
tion.

Targeted Research Gaps The gap existed in the literature to reduce the latency
of the image registration algorithm and utilize the increased speed. The latency
of current dry-wet registration methods was reduced by improving the implement-
ation to a Pytorch-based framework[104]. This new implementation reduced the
latency drastically. The paper utilized the increased speed by proposing a novel
wet-dry image registration algorithm with enhanced robustness. The algorithm
proposed is capable of being robust under extreme rotation. Therefore, it will
work under extreme requirements that are accompanied by industrial deployment
and fill the existing gap for a tool.
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5.4 RQ 3: Automate Rock Typing Pipeline

5.4.1 Paper D: Deep Learning-Based Rock Typing of Laminar Rocks

Paper D contributes to addressing RQ 3 by proposing a supervised deep learning
method for rock typing of laminar rocks. Through extensive experimentation and
explainability analysis, the paper demonstrates the efficacy of deep learning-based
approaches in automating the rock typing pipeline. This not only streamlines the
characterization process but also provides insights into the underlying geological
features contributing to rock typing decisions. The contributions of the model are
given as follows:

• The paper formulates the rock typing problem as a supervised semantic seg-
mentation problem.

• A dataset labeled by industry experts was collected for training.

• The explainability analysis of the proposed model was performed to enhance
the trustworthiness of the model.

Addressed Research Question The research question of automating the rock
typing pipeline was adequately addressed based on the above contributions. The
choice of supervised method was important for this problem as the boundary
between rock types was subjective. Therefore, successful automation depends on
getting labels from an expert instead of an unsupervised method. However, the
adoption of a deep learning-based method introduces a black box method. It was
important to perform an explainability analysis to ensure that the outputs of the
model can be trusted.

Targeted Research Gaps The gap in research was based on the industry’s need
for an automated rock typing pipeline. In this regard, the network (UnNet) and
explainability analysis tools (GradCAM) already existed. However, there was a
gap in terms of data collection and then training the model with the appropriate
neural network architecture with this data. The proposed method not only pro-
posed an optimal training formulation but also analyzed the neural network with
an explainability method to enhance confidence in the black box tool. Therefore,
an important industrial application was addressed in this paper.
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5.5 RQ 4: Improve Methods to Generate High Fidelity
Synthetic Rock Samples

5.5.1 Paper E: Deep Generative Models for Synthetic Rock Sample
Generation

Lastly, Paper E tackles RQ 4 by introducing a novel method based on deep generat-
ive diffusion models for 2D to 3D image generation of synthetic rock samples. By
leveraging deep generative models, the proposed method enables the generation
of high-fidelity synthetic rock samples with realistic structures and textures. This
contributes to advancing the field of digital rock analysis by providing researchers
with synthetic datasets for training and validation purposes, ultimately improving
the accuracy and reliability of rock characterization algorithms. The contribution
of this method are given below:

• The proposed method is based on diffusion GAN that ensures the stable and
high-quality generation of 3D images by training only on 2D samples.

• The proposed method can learn efficiently from very few 2D images

• The proposed method was tested for the generation of many different 3D
structures including geological rock data.

Addressed Research Question The research question addressed the need to im-
prove generative methods for 3D high-fidelity data from 2D samples. By address-
ing the question in Paper E, 3D data can now be produced using only 2D data using
better generative models. This ensures that simulations can be performed in low
or no 3D data situations addressing RQ 4.

Targeted Research Gaps The gap existed in the literature since the previous
state of the art was mainly based on GANs, which had qualities like one-shot
generation and some drawbacks like mode collapse [117]. The work identified
that diffusion models are better than GANs at generation quality. However, they
had their drawbacks, like slow inference speed. Therefore, to get the best of both
worlds, the models were combined to get diffusion GAN. Equipped with this tool,
a novel 2D to 3D generation pipeline was proposed based on the diffusion-GAN
pipeline that excelled at both inference speed and high quality of image generation,
thus addressing the gap.
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Chapter 6

Conclusion

6.1 Final Reflection
This thesis has presented a comprehensive suite of innovative solutions to add
value to the digital rock workflow in an industrial environment by implementing
advanced concepts of machine learning, deep learning, and computer vision. This
body of work targets the key component of digital rock workflow, which is image
processing. The thesis made a case for the importance of image processing by ob-
serving that the complete pipeline is dependent on the image. The better the image
provided at the image processing step, the better the analysis that can be carried out
in the rest of the pipeline. The image processing part of the digital rock analysis
can be improved in several ways. The thesis formulated research questions related
to the improvement of digital rock pipelines. However, the research goals were
fine-tuned based on gaps in the literature as well as industrial requirements. To
achieve the goal, deep learning methodologies were found to be the best candidate
to achieve three out of the four goals set out in this work; however, a non-deep
learning-based method was used for one of the goals. However, the parallel pro-
cessing capability made available due to the advent of deep learning was used to
speed up conventional methods. In this way, all the goals achieved in this thesis
benefit from the latest developments in deep learning and computer vision.

Each goal achieved in this work resulted in academic contributions in the form of
new knowledge and industrial value. The contributions affected the digital rock
workflow by either improving the accuracy and efficiency of the analysis or both.
In the case of the generation of a new rock sample from 2D images, the meth-
ods developed made novel analysis feasible. In short, the work demonstrates the
application of deep learning and computer vision for digital rock analysis.
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6.2 Limitations
The work presented in this work has several limitations.

6.2.1 Size of 3D Rock Images

The images of the rock samples obtained are enormous and can even be several
gigabytes. This leads to several delays in the pipeline due to the time it takes to
visualize these images.

These huge images can quickly fill up a computer’s entire Random Access Memory
(RAM). Loading these images into the RAM can take several minutes. This
presents a significant challenge and an essential choice over the method for load-
ing these images, as loading and unloading data can take several minutes. The first
choice is to load all the 3D data into the CPU’s (Central Processing Unit’s) RAM
and perform training. The second option is to read the data from the hard disk as
required. In the first option, loading the data on the RAM can take time; however,
once the data is loaded, the RAM reading is fast. In the second option, the data
is read from the hard disk. This can be very slow if a huge image has to be read
repeatedly from the disk. A hybrid approach based on the number of files in the
complete dataset and system specification works best.

The training using famous scripting languages such as PyTorch can quickly reach
the computing limits on two fronts: the CPU RAM and the GPU RAM. We have
already addressed the issue of CPU RAM. The GPU RAM requirement is de-
pendent on the size of the neural network model. The parameter count of neural
networks that handle 3D data, such as 3D micro-CT images, requires much more
GPU RAM than those that operate on 2D data. Therefore, digital rock technolo-
gies utilizing 3D data and models require more GPU RAM. This limitation can be
tackled by designing efficient models or using GPUs with higher RAM.

6.2.2 Paper A and B: Super Resolution

The most critical limitations identified in the super-resolution tasks are the lack
of real low-resolution and high-resolution ground truth image pairs. The low-
resolution images used in training this model and all related works are created
artificially; therefore, they do not represent the actual low-resolution images. This
leads to unpredictable performance in the real-world domain. This lack of data
needs to be addressed in the future by collecting registered low-resolution and
high-resolution ground truth data using suitable micro-CT images.

Another challenge is that sometimes, the high-resolution ground truth does not
exist. Therefore, the super-resolution model’s performance depends on experts’
subjective opinions. This opinion can vary considerably between experts.
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6.2.3 Paper C: Image Registration

Transitioning into the field of image registration, the third paper addressed a per-
sistent issue in industry-level applications: the registration of wet and dry images.
The proposed solution delivered significant time savings through GPU-accelerated
processes, reducing the standard image registration time from at least an hour to
just a minute.

The main limitation in the image registration work is that sometimes, the pair of
dry and wet images do not contain significant distinguishing features that can be
used to correlate and register images. This was mitigated somewhat in this work
by using appropriate normalization techniques.

6.2.4 Paper D: Rock Typing

The fourth paper tackled the challenge of rock typing using a UNet-based seg-
mentation network, capitalizing on the visual characteristics of rock types to en-
able more accurate and efficient segmentation. The proposed method offered a
supervised learning approach to the problem by leveraging labelled in-house data.

The fundamental limitation of the current method is the need for more training
data. A very vast amount of labelled data is needed to make sure that the current
pipeline generalizes well to unseen data. However, this is a limitation of supervised
deep learning methods.

6.2.5 Paper E: 2D to 3D Generation

Finally, the fifth paper ventured into 3D microstructure generation, using only 2D
images for both testing and training. The proposed solution, a unique diffusion
GAN model, opens up new possibilities for creating 3D synthetic image repres-
entations from limited 2D data. The general limitation of generative models is that
they are not perfect at reflecting the statistical properties of the real data.

The fundamental limitation specific to this work is that the diffusion-GAN model
can be slow in generating the desired sample. The multistep inference leads to
slow speed compared to the shot inference of GANs. The incorporation of GANs
improves the speed somewhat; however, it is still slower than the one-shot genera-
tion. The slow generation performance might be undesirable in some scenarios.

6.3 Future Works
Future works can address various limitations of the current work, as follows:
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6.3.1 Training with SEM Data

The methods in papers A and B can be trained on large amounts of SEM data and
tested with micro-CT data. The input to the model can be the micro-CT images,
and the expected output can be an image with intricate details enhanced to the
resolution of an SEM image. However, this would require future work to address
the challenge of inter-sensor differences and domain differences between SEM and
micro-CT images.

6.3.2 Rock Typing for Diverse Rock Topologies

The scope of current rock typing automation was limited to rock samples that
contain laminations. However, future work can extend this pipeline to samples
that contain rock types and layers that exist in other patterns. This would require
more data collection of various rock-type topologies.

6.3.3 Image Registration of Dry-Wet Images with Few Common Fea-
tures

The proposed pipeline struggles in the case of a lack of common features between
the wet and dry images. This can often happen when the wet rock sample under-
goes complete transformation due to conversion from a dry to a wet sample. As
long as there are a few common features, image registration can be performed suc-
cessfully. Future methods can develop new methods to perform registration under
a few standard features.

6.3.4 Generating 3D SEM Images from 2D SEM Images

The current method in Paper E produces 3D micro-CT images from 2D micro-CT
images. However, a reasonable extension would be to generate 3D SEM images
given 2D SEM images. However, SEM images have different physics in image
formation compared to micro-CT images. Therefore, future work can study the
feasibility of 3D SEM image generation.
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Photo-Realistic Continuous Image Super-Resolution with

Implicit Neural Networks and Generative Adversarial Networks

Muhammad Sarmad∗1, Leonardo Ruspini2, and Frank Lindseth1

1Norwegian University of Science and Technology, Trondheim, Norway
2Petricore, Norway

Abstract

The implicit neural networks (INNs) can represent
images in the continuous domain. They consume
raw (X, Y) coordinates and output a color value.
Therefore they can represent and generate images
at arbitrarily high resolutions in contrast to con-
volutional neural networks (CNNs) that output a
constant-sized array of pixels. In this work, we
show how to super-resolve a single image using an
INN to produce sharp and photo-realistic images.
We employ a random patch-based coordinate sam-
pling method to obtain patches with context and
structure; we use these patches to train the INN
in an adversarial setting. We demonstrate that the
trained network retains the desirable properties of
INNs while the output is sharper compared to pre-
vious work. We also show qualitative and quan-
titative comparisons with INN and CNN baselines
on benchmark datasets of DIV2K, Set5, Set14, Ur-
ban100, and B100. Our code will be made public
at https://github.com/iSarmad/CiSRGan.

1 Introduction

Image enhancement and super-resolution find ap-
plications in various consumer products such as
smartphone photography, TV and video, etc.
The advent of deep learning and neural networks
has enabled advancements in single-image super-
resolution (SISR). Convolutional neural networks
(CNNs) are the most popular method for SISR [11].
However, the output of CNNs is an array of pixels
with a fixed size. Therefore, we need to train a new
network for different scaling factors. This strategy

∗Corresponding Author: muhammad.sarmad@ntnu.no

can be very inconvenient and time-consuming.

Recently a class of neural networks called im-
plicit neural networks (INNs) has gained attention
[33, 25, 28]. These networks can represent an image
by storing the color value of each pixel correspond-
ing to a given pixel coordinate [26, 31]. This image
representation leads to a continuous model where
one can zoom in to a single image arbitrarily by
changing the discretization level of the input coor-
dinates.

Chen et al. [8] proposed an INN based method
called local implicit image function (LIIF) for SISR.
They used a single INN to perform SISR for any
scale and achieved arbitrary zooming capability
i.e. given a neural network that was trained for
scales in the range of 1x to 4x (we refer to this
range as in-scale), their model can perform super-
resolution on 6x and 8x etc (out-of-scale). This
ability to extrapolate makes LIIF very beneficial
for super-resolution. Furthermore, LIIF is on par
with CNNs in terms of distortion metrics such as
the PSNR [22]. Despite these advantages, LIIF
suffers from blurry outputs for out-of-scale super-
resolution due to the use of pixel-wise loss function.
In this work, we propose continuous image super-
resolution generative adversarial network (CiSR-
GAN) that trains INNs in an adversarial setting
for super-resolution, thus improving the perceptual
quality and photo-realism of output for out-of-scale
SISR. To the best of our knowledge, training im-
plicit network for the task of out-of-scale single im-
age super-resolution in an adversarial setting has
not been proposed before.

We compare our method with previous state of
the art in INN and CNN based super-resolution
methods.

https://doi.org/10.7557/18.6285
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2 Related Works

Convolutional Neural Network based SISR
Before convolutional neural networks (CNNs) [18,
19, 13], handcrafted algorithms were used to per-
form single image super-resolution (SISR); e.g.,
Yang et al. [39] used sparse coding to solve this
task. Recently, SISR using CNN has become main
stream [20, 27, 23, 37]. SISR can be divided into al-
gorithms that either focus on lowering distortion or
improving perceptual quality [6]. Our work focuses
on improving the perceptual quality.

Implicit Neural Networks for SISR Implicit
neural networks (INNs) have recently become pop-
ular as a way to represent continuous images and
shapes [26, 38, 4, 9, 3, 10]. Occupancy Networks
[25] and Deep SDF [28] used INNs for 3D shape rep-
resentation. Then Sitzman et al. [31], and Tancik
et al.[34] showed that the INNs could also be used
to represent images with high fidelity. Later works
learned GANs using INNs [7, 32, 30, 2]. Local
implicit image function (LIIF) [8] recently showed
that continuous representation could also be used
to perform SISR. The resulting SISR model is ag-
nostic to resolution, and a single model can be used
to super-resolve images to any required resolution.
LIIF [8] uses the L1 loss to train the network, which
renders the output blurry. However, we train our
model in the adversarial setting to perform photo-
realistic SISR and achieve a better result.

3 Method

Consider a low-resolution 2D Image I↓s that con-
sists of arrays of pixels. The high resolution 2D im-
age corresponding to I↓s is given as I −→ I(x, y) ∈
RX×Y . Where I↓s(x, y) ∈ R

X×Y
s , and s is the scal-

ing factor. Each pixel in I has coordinates x and y.
Let’s assume that a continuous image can be rep-
resented by a function fθ. Then the discrete image
I can be represented as:

I = fθ(c, z), (1)

z is the latent vector of the features of low-
resolution image I↓s. Note that c = xhr − v, xhr
are the pixel coordinates of image I and v are the
coordinates of the feature vector z in the image do-
main. In this work, fθ is the implicit neural (INN).

Figure 1: Training Method: The low-resolution
image I↓s is passed through CNN encoder to get
feature vector z. A random patch is selected from
the coordinate space of desired high resolution im-
age to obtain high resolution coordinates xhr. z
and xhr are passed through Local implicit function
image (LIIF) generator to obtain the super-resolved
output image I. This I is compared with IGT using
adversarial loss (‘Adv loss’), perceptual loss (‘VGG
loss’) and with IHR using pixel loss L1.

More specifically, for fθ we employ the local im-
plicit image function (LIIF) with default configu-
rations. For details, we refer to the paper [8].

Training LIIF in an Adversarial Setting An
overview of our approach is shown in Figure. 1.
The input image is passed through a convolutional
encoder to obtain a latent vector z. This latent
vector z and the image I coordinates xhr are used
to obtain the color values of the pixels at input co-
ordinates xhr using LIIF block [8]. Note that the
INN consists of a few multilayer perceptron (MLP)
layers that are present inside the LIIF block. We
need an output image patch to train the INN us-
ing adversarial and perceptual loss. The previous
method [8] uses a random set of coordinates from
the image. This sampling method works well when
the objective is to minimize the pixel-wise loss, e.g.,
L1. However, looking at only pixels means the con-
textual information is lost. Therefore, we propose
a random patch-based sampling procedure instead
of a random point-based sampling method to re-
tain contextual information. We first train LIIF
[8] with random patches instead of random points
with only a pixel-wise loss. We notice that this ran-
dom patch-based sampling method performs simi-
lar to a random coordinate-based sampling method
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in terms of performance.

We use the L1 loss following previous work [8],
which trains with only the L1 objective leading to
smooth images which blur the textural information
for out-of-scale super-resolution.

The use of a patch-based sampling procedure
permits the use of adversarial loss that is based on
generative adversarial network (GAN) [12]. The
GAN consists of a generator and a discriminator
that compete against each other. The goal of the
generator is to generate realistic images, whereas
the goal of the discriminator is to get good at clas-
sifying generated images as fake. In this joint train-
ing, both get better, resulting in realistic image
generation. However, instead of using a standard
GAN formulation, we use a relativistic GAN for-
mulation instead [16]. This formulation is differ-
ent from the standard discriminator, which esti-
mates the probability that an input image is real.
Instead, the discriminator predicts the probability
that a real image is relatively more realistic than a
fake one. We define a discriminator network DθD ,
which is optimized in an alternating manner along
with generator network GθG to solve the adversar-
ial min-max problem. The relativistic GAN solves
the following min-max problem:

min
θG

max
θD

EX [logDθD (IGT , GθG (I↓s))]+

EX [log(1−DθD (GθG (I↓s), I
GT ))]

(2)

Note that, X = (IGT , I↓s) ∼ (ptrain(IGT ), pG(I↓s)) and
DθD (IGT , GθG (I↓s)) = σ(C(IGT )−EGθ(I↓s)[C(GθG (I↓s))])

. Where EGθ(I↓s)[.] is mean over the generated data
in the mini-batch. σ is the sigmoid activation func-
tion and C is the output of discriminator before the
activation function. For details, we refer to [16].

We also use the perceptual loss that is the dis-
tance between the features of a pre-trained VGG
network between the predicted image I and the
ground-truth image IGT [15]. The complete train-
ing objective for the generator is as follows:

Lt = λ1L1 + λ2LG + λ3LV GG (3)

Where L1,LG and LV GG are the content, adver-
sarial and perceptual losses respectively. The λ1,
λ2 and λ3 are weighting hyperparameters terms for
each of the objectives respectively. We set them
following guidelines from previous work [37].

4 Experiments

We employed Pytorch for the implementation of all
our models [29]. We trained all the networks on an
NVIDIA RTX Titan GPU. The code is built on the
open-source implementations [8, 35].

Dataset and Metrics Like [8], we use the
DIV2K dataset with standard split for training and
validation [1] for fair comparison. Testing is per-
formed on multiple test datasets including Set5,
Set14, Urban100 and B100 [5, 40, 14, 24]. The
results for the related works were generated for
comparison using pre-trained models provided by
Chen et al. [8], and SPSR [23]. We use peak
signal-to-noise ration (PSNR) as a metric for com-
parison. PSNR (measured in dB) is a measure of
quality between super-resolved image and ground
truth. Even though it is a good measure of dis-
tortion, however, it is a poor indicator of percep-
tual quality [6]. Therefore we additionally report
perceptual similarity metric (LPIPS) [41] for com-
parison with previous works. LPIPS measures the
distance in VGG [15] feature space between the
super-resolved and the ground-truth image. The
lower the distance, the more perceptually similar
the super-resolved image is to the ground truth.

Training Details Similar to LIIF [8], we use
RDN [42] as the encoder, where a feature map z
is generated with the same size as the input image.
The INN fθ is a 5-layer MLP with ReLU activation
and hidden dimensions of 256. Encoder and INN
act as the generator in our model. The discrim-
inator is based on the architecture used by ESR-
GAN [37]. We use input patches of 64 x 64 during
training. The generator’s output is the same as the
input patch size, i.e., 64 x 64; therefore, the dis-
criminator is adjusted to cater to an image patch
of this size. We use transfer learning and initial-
ize the weights of our generator from a pre-trained
RDN-LIIF [8]. We train all models for 75 epochs
with batch size 16 on the DIV2K training set. We
utilize the Adam [17] optimizer for both generator
and discriminator with a learning rate of 1−4. The
weights for λ1, λ2 and λ3 are set to 1−2, 5−3 and 1
[37]. For a fair comparison with LIIF, we also train
the models from the 1x-4x scale range.
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Figure 2: Out-of-Scale Qualitative Comparison on DIV2K:. This figure shows the reference image
from DIV2k, the low-resolution input image (LR), super-resolved image using LIIF [8] and finally our
model’s output (CiSR-GAN). LR images are 6x and 12x down-sampled from ground-truth HR images
and super-resolved to 6x and 12x in the top 2 and bottom 2 rows respectively demonstrating out-of-scale
performance. All models were trained for 1x-4x only therefore we refer to 6x and 12x as out-of-scale.
From the images we can see that LIIF has a smoothing effect where it blurs out the high-level detail in
the images. Comparatively, our models clearly produces sharper results retaining textural details like
waves of water, texture in butterfly wings and fine hair of animals.

Qualitative Analysis

Out-of-Scale: The qualitative results on
DIV2K validation set [1] and Set14 [40] test set are
shown in Figure. 2 and Figure. 3 respectively. The

proposed CiSR-GAN produces realistic images
containing textures due to the adversarial and
perceptual nature of the objective as compared
to the LIIF [8]. LIIF’s output is always blurry
for out-of-scale super-resolution smoothing out
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Figure 3: Out-of-Scale Qualitative Comparison on Set 14:. This figure shows the high resolution
ground truth image (HR), the low-resolution image (LR), super-resolved image using LIIF model [8] and
our model’s output (CiSR-GAN’s). All input images are 6x down-sampled from ground-truth images
and super-resolved to 6x. All models were trained for 1x-4x only. We observe the same smoothing effect
for LIIF outputs where the high level details such as water waves and texture in the fence has been
blurred, while our model retains the high-level details and the image produced is much more realistic
than LIIF.

the textural information. At the same time, we
also maintain all the desired properties of an
implicit network, e.g., a single model can perform
super-resolution at higher scales even if the model
is not trained for it. All the results presented
in the qualitative comparison are for 6x or 12x
upsampling to compare with LIIF, whereas we
train our models on 1x-4x down-sampled images.

In-Scale: Please note that CNN decoder based
models [37, 27, 21] are not a direct competitor
of our method since they can not perform out-of-
scale super-resolution. However, we test their per-
formance for in-scale super-resolution i.e. for 4x
scaling factor for the sake of comprehensiveness.
We compare with the best performing recent CNN-
based method Structure-Preserving Super Resolu-
tion (SPSR) [23], that recently showed great results
in retrieving sharp lines and geometry. All images
are 4x down-sampled from the ground truth HR
images and super-resolved to 4x. The performance
is shown in Figure. 4. SPSR model adds edge ar-
tifacts like lines or texture to the super-resolved
image whereas CiSR-GAN produces more realistic
results.

Quantitative Results

CiSR-GAN vs LIIF We compare our model
(CiSR-GAN) with previous work on the DIV2k
dataset, as shown in Table. 1. The perceptual sim-
ilarity metric (LPIPS) is a distance metric; there-
fore, the lower the value, the better. Whereas the
higher the peak signal-to-noise ratio (PSNR), the
better. Blau et al. [6] have previously shown
that there is a trade-off between distortion and
perception, and this can also be observed for our
model. CiSR-GAN formulation has lower PSNR
values than local implicit image function LIIF [8] as
it is trained on the adversarial and perceptual loss.
However, it consistently performs better than LIIF
in terms of LPIPS metric. Lower LPIPS means
that we can expect aesthetically pleasing results
from CiSR-GAN. CiSR-GAN can also be evaluated
for out-of-scale models easily since it is based on an
INN. It maintains the edge over LIIF in terms of
perceptual metrics for all scales evaluated.

In-Scale: We further compare the performance
with state-of-the-art methods, including SRGAN,
ESRGAN, and SPSR [23, 37, 20]. We notice that
CiSR-GAN outperforms all in LPIPS while main-
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Method
Metric In-Scale Out-of-Scale

×2 ×3 ×4 ×6 ×12 ×24 ×30

RDN-LIIF [8]
PSNR 34.99 31.26 29.27 26.99 23.89 21.31 20.59
LPIPS 0.0558 0.1344 0.1947 0.2760 0.4163 0.5506 0.5845

CiSR-GAN (ours)
PSNR 32.01 27.95 26.30 24.27 21.67 19.52 18.92
LPIPS 0.0254 0.0641 0.1016 0.1642 0.3409 0.4839 0.5319

Table 1: Distortion vs Perception. Scaling factor for training is in range ×1–×4. Best values are bold.

Dataset Metric SFTGAN [36] SRGAN [20] ESRGAN [37] SPSR [23] CiSR-GAN (ours)

Set5
LPIPS 0.0890 0.0882 0.0748 0.0644 0.0604
PSNR 29.932 29.168 30.454 30.400 30.05

Set14
LPIPS 0.4393 0.1663 0.1329 0.1318 0.1160
PSNR 26.100 26.171 26.276 26.640 26.62

B100
LPIPS 0.5249 0.1980 0.1614 0.1611 0.1436
PSNR 25.961 25.459 25.317 25.505 25.72

Urban100
LPIPS 0.4726 0.1551 0.1229 0.1184 0.1179
PSNR 23.145 24.397 24.360 24.799 24.36

Table 2: In-Scale Quantitative comparison with CNNs on benchmark datasets This table shows CiSR-

GAN with other perceptual quality focused methods. Best results are in bold. All models have been trained

and tested on 4x down-sampled images.

Figure 4: In-Scale Qualitative Comparison
with CNN:. This figure shows the reference im-
age, the high resolution image (HR), the 4x super-
resolved image using Structure-Preserving Super
Resolution (SPSR) [23] and our model’s output
(CiSR-GAN). In the SPSR output, we see lines in
the background and artifacts in the eye and the hair
whereas CiSR-GAN produces more realistic result.

taining comparable PSNR, as shown in Table. 2.
Generally there is large gap between the SPSR and
CiSR-GAN based on LPIPS metric, however, the
difference is small in the test set Urban100 [14].
This behavior is expected as the gradient guidance
based structure priors used in their model encour-
age the retrieval of lines and geometry that are
commonly found in that dataset.

5 Conclusion

In this work, we improved the perceptual qual-
ity of the implicit neural network based single im-
age super-resolution. The main hindrance in uti-
lizing adversarial losses for continuous image rep-
resentation models was the random co-ordinate-
based sampling procedure adopted by previous
works. We proposed to use a patch-based sampling
method. Then we trained the implicit neural net-
work with additional objectives based on adversar-
ial and perceptual losses. We demonstrated that
the resulting network produces sharp and photo-
realistic images while maintaining the desirable
properties of the implicit neural networks i.e out-of-
scale super-resolution. As future work, our method
can also be trained with gradient guidance based
structure prior to improve PSNR.
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Appendix B

Paper B: SIT-SR 3D:
Self-supervised slice interpolation
via transfer learning for 3D
volume super-resolution
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a b s t r a c t 

We present SIT-SR 3D, a novel self-supervised method for 3D single image super-resolution (SISR). Scaling 

2D SISR networks to 3D SISR requires code redesign, high computing resources, and 3D ground-truth. 

However, we circumvent this by (1) using a pre-trained 2D SISR for indirect supervision and (2) using a 

novel consistency loss to learn frame interpolation. Any pre-trained state of the art 2D SISR method can 

replace the 2D SISR used in SIT-SR 3D, thus transferring the merits of 2D to 3D and ensuring modularity. 

We trained two end-to-end 3D baselines in a supervised setting; a 3D RRDBNet trained only with L1 loss 

and a 3D ESRGAN trained with adversarial and perceptual loss. We show that the proposed pipeline’s 

self-supervised version is qualitatively better than the baselines. When trained in a supervised setting, 

SIT-SR 3D achieves better PSNR than its counterparts. Furthermore, our pipeline uses fewer parameters 

compared to the baselines. We demonstrate our results on an open-source digital rock CT dataset. Our 

code and pre-trained models will be made publicly available. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The future depends on our capacity to minimize the emissions 

of CO2 in the atmosphere while keeping the economy’s wheel in 

motion to reduce poverty and improve the quality of life in de- 

veloping countries. Upcoming technologies such as Carbon diox- 

ide Capture and Storage (CCS) and more efficient oil and gas pro- 

duction will play a significant role in achieving carbon neutrality. 

The derivation of rock properties from high-resolution CT images 

(Digital Rock) is a disruptive technology in that it can fundamen- 

tally change the way we characterize rocks. High-resolution photos 

can help characterize the properties of rocks and minerals, such 

as porosity, permeability, and flow [1] . Often it is beneficial to en- 

hance or super-resolve a 3D image before usage in other domains, 

e.g., medical CT [ 2 , 3 ]. 

Super-resolving a 3D image presents unique challenges com- 

pared to a 2D image because of three prominent reasons. The first 

reason is the lack of high and low-resolution ground-truth image 

pairs in 3D. It is often costly and time-consuming to obtain such 

images. However, recent advances in deep learning [ 4 , 5 ] and single 

image super-resolution (SISR) [6] rely heavily on such paired data, 

∗ Corresponding author. 

E-mail addresses: muhammad.sarmad@ntnu.no (M. Sarmad), Leonardo. 

ruspini@petricore.com (L.C. Ruspini), frankl@ntnu.no (F. Lindseth) . 

which is not always available. While 2D image pairs are available 

in abundance, they cannot be used directly to train 3D pipelines. 

Secondly, the advances in 2D image super-resolution techniques 

are not always scalable to 3D images. e.g., a 3D equivalent of 

perceptual loss does not exist to the best of our knowledge [7] . 

Similarly, a 3D version of SRGAN requires a 3D convolutional dis- 

criminator, which adds many training parameters [8] . Some recent 

advances in 2D SISR have custom operators and layers [9] that 

are not easily adaptable to the 3D domain and require low-level 

code redesign. Similarly, transfer learning from well-known archi- 

tectures, e.g., ResNet50 [10] is not possible as the state-of-the-art 

encoders consist of 2D convolution layers. The only option to train 

3D variants of deep networks on 3D data is to design from scratch. 

Thirdly, if we design the 3D variants of novel operators from 

the 2D domain by writing custom code, the training cost increases 

cubically with the resolution. For example, the cost of training in- 

creases when enhancing the input size of the 3D convolutional dis- 

criminator in an adversarial setting. Some of the custom loss func- 

tions, such as perceptual loss, need to be applied to individual 2D 

slices of the 3D image and cause additional computation and la- 

tency overhead. To overcome these challenges, we propose an ar- 

chitecture that transfers the benefits of advances in 2D SISR to 3D 

SISR without engineering a 3D version of 2D SISR. We also do not 

require any paired 3D ground-truth data. 

https://doi.org/10.1016/j.patrec.2023.01.008 

0167-8655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. SIT-SR 3D: The architecture of our proposed method. The low-resolution image I ↓ r is upsampled along x , y and z respectively with the pre-trained 2D SISR, as a 

result, the volumes I ↓ r x , I ↓ r y and I ↓ r z are obtained. I x , I y , and I z are the corresponding volumes obtained after the interpolation operation. I x , I y , and I z are passed through 

the Fusion module to get the output volume I. 

In this work, we present SIT-SR 3D, a novel self-supervised 3D 

volume super-resolution technique. Our architecture is shown in 

Fig. 1 . We employ transfer learning by utilizing a 2D SISR model 

trained on 2D feature-rich networks. We use this pre-trained 2D 

SISR to train the 3D SISR model on low-resolution 3D data only. 

We super-resolve the 3D image using this 2D SISR model along 

each of the three possible dimensions. We obtain the final volume 

by merging the three images using a Fusion module. This slice 

interpolation network’s weights can be learned in an entirely 

self-supervised manner or with high-resolution ground-truth, if 

available. We introduce a consistency loss to train our method in 

a self-supervised manner. Our pipeline’s self-supervised version 

compares well to the supervised baseline. We perform ablation 

studies and also compare the qualitative and quantitative results 

with multiple baselines. Our key contributions are the following: 

• We present SIT-SR 3D, a novel self-supervised interpolation and 

transfer learning framework for 3D volume super-resolution. 

• Our method can use any pre-trained 2D SISR model with de- 

sired qualities to transfer the merits of 2D SISR to the 3D 

pipeline. 

• We propose a novel consistency loss for training SIT-SR 3D 

without 3D ground-truth. 

• The approach is data-efficient, uses fewer parameters. More- 

over, training converges fast and does not require 3D high- 

resolution ground truth. 

2. Related works 

2.1. Super resolution 

The advent of convolutional neural networks (CNNs) [4] led 

to applications of deep learning for various computer vision 

problems. Single image super-resolution (SISR) is one such task 

that has benefited from the progress in deep learning. Initially, 

Dong et al. [11] proposed to perform end-to-end SISR using SR- 

CNN. They established state of the art by outperforming con- 

ventional methods such as the sparse coding-based method by 

Yang et al. [12] . Kim et al. [13] added skip connections and de- 

signed a lightweight recursive CNN architecture. Generative ad- 

versarial networks [14] can produce photo-realistic images but 

are hard to train due to the adversarial nature of training. Ledig 

et al. [15] utilized adversarial training in conjunction with the 

content loss to obtain photo-realistic SISR. Lim et al. [16] im- 

proved a ResNet based architecture [10] by removing batch nor- 

malization layers and introduced a multi-scale architecture to 

further enhance performance. Zhang et al. [17] applied an im- 

proved DenseNet [18] for SISR by removing batch normaliza- 

tion layers, pooling layers, and introduced a global feature 

fusion. 

Various super-resolution quality measures have been devel- 

oped, such as peak signal-to-noise ratio (PSNR) and structural 

similarity index (SSIM). There is no single metric that is con- 

sidered better than the other, and both have their merits as 

shown in various work [ 19 , 20 ]. Both of these metrics have their 

shortcomings since they do not model human perception. There- 

fore, some works have employed human-based perceptual evalua- 

tion [15] . However, such measures are costly and time-consuming 

to obtain. We can extend state of the art 2D SISR methods 

for 3D images with significant customized code changes. How- 

ever, we propose to utilize 2D SISR without extending them to 

3D. 

2.2. 3D s uper resolution 

Previous works which super resolve 3D data are of two distinct 

types. The first one treats the entire 3D image as a collection of 

2D slices and then performs SISR on individual slices. Therefore, 

we can utilize any traditional 2D SISR methods applicable to col- 

ored images. However, such methods can only super-resolve a 3D 

image along two dimensions, and the third dimension is still of 

lower resolution. 3D images contain contextual information in all 

dimensions, and we must consider all three dimensions to upsam- 

ple such images. There are many examples of using CT data to train 

2D SISR networks for super resolving 2D slices of a 3D image in 

both the medical and digital rock domain [21–23] . 

The other type trains end-to-end 3D networks to super-resolve 

volumes. These methods are more challenging to design; hence 

only a few works exist, but they provide a complete solution [ 2 , 3 ]. 

Chen et al. [2] proposed mDSCRN for 3D volume super-resolution 

inspired by DenseNet [18] . Peng et al. [3] proposed SAINT and 

demonstrated that mDCSRN suffers from sub-optimal results and 

also has a higher memory and compute footprint. However, their 

method needs ground truth high-resolution data for supervised 

training. The approach has been applied to medical CT data that 

requires upsampling in one dimension. Therefore, they perform a 

frame interpolation method. However, our data requires upsam- 
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pling in all three dimensions. They do not provide any code for 

comparison. 

3. Method 

3.1. Problem formulation 

The proposed work provides a solution to 3D volumetric super- 

resolution. We demonstrate our method on 3D CT Images. Consider 

a 3D image I → I( x , y , z ) ∈ R X × Y × Z which represents a densely 

sampled CT image. For I, the corresponding sparsely sampled vol- 

ume I ↓ r is defined as: 

I ↓ r = I ( r · x, r · y, r · z ) (1) 

where I ↓ r ∈ R 
X×Y×Z 

r , and r is the sparsity factor along the x , y and z

axis from I to I ↓ r and the up-sampling factor from I ↓ r to I . 

Along each axis, there can be three kinds of slices which are 

referred to as follows: 

• The down sampled slices along x-axis are given as: I ↓ r x = 

I( r · x , y , z ) , ∼ ∀ x . Interpolated version of I ↓ r x is given as I x . 

• The down sampled slices along y-axis are given as: I ↓ r y = 

I( x , r · y , z ) , ∼ ∀ y . Interpolated version of I ↓ r y is given as I y . 

• The down sampled slice along z-axis are given as: I ↓ r z = 

I( x , y , r · z ) , ∼ ∀ z . Interpolated version of I ↓ r z is given as I z . 

The objective of SIT-SR 3D is to find a mapping F : R 

X × Y × Z 
r → 

R X × Y × Z that can convert I ↓ r back to I for a given resolution fac- 

tor r . 

3.2. Overview of the proposed approach 

Fig. 1 : shows the overview of SIT-SR 3D. The low-resolution im- 

age I ↓ r is upsampled along x , y , and z respectively, using a pre- 

trained SISR network trained on 2D images. After this operation, 

we obtain I ↓ r x , I ↓ r y and I ↓ r z . These anisotropic 3D volumes are 

converted to isotropic volumes using an interpolation operation. 

After the interpolation, we obtain the volumes I x , I y , and I z , which 

are stacked to form a single volume with three channels. We then 

process this volume by a 3D convolution-based 3D EDSR [16] . The 

average of I x , I y , and I z is also added to the output of the 3D EDSR 

to form I . We can supervise the output of 3D EDSR using the high- 

resolution ground-truth I GT with L 1 loss to learn how to combine 

I x , I y and I z . We can also train it in a self-supervised manner using 

I x , I y and I z and a novel consistency loss. One can also combine 

both loss functions to obtain a hybrid loss formulation that pro- 

vides control over the network’s output. We demonstrate results 

with all three loss function settings. Next, we will describe each of 

the modules in SIT-SR 3D in detail. 

4. Single image super-resolution 

This module’s objective is to super-resolve 3D images efficiently 

using transfer learning based on models trained on 2D single 

image super-resolution (SISR). The proposed pipeline is modular, 

which means we can train it with any domain-specific dataset, e.g., 

2D CT images, or it can also be trained on colored image datasets 

to learn useful features depending on the objective. Recent work of 

Asano et al. [24] demonstrated that a single image contains enough 

information to train the initial layers of a neural network given 

enough data augmentation. Our fundamental motivation is to en- 

able rapid prototyping by selecting any 2D SISR trained on a cus- 

tom dataset. 

We process the low-resolution image I ↓ r using a state-of-the- 

art 2D SISR pipeline. The selection of a 2D SISR pipeline is cru- 

cial for transfer learning and self-supervised learning of the sub- 

sequent module, i.e., the Fusion module. The Fusion module relies 

Fig. 2. 2D SISR slices overlap: I ↓ r x , I ↓ r y and I ↓ r z can be superimposed to obtain I xyz . 

The empty regions are missing information that SIT-SR 3D learns. 

on the pre-trained 2D SISR model in the self-supervised case. We 

use ESRGAN [25] trained on 2D CT images to demonstrate that the 

properties such as realism and sharpness, inherited from a pre- 

trained 2D SISR, can be transferred to the Fusion module. ESRGAN 

is an encoder-decoder-based architecture trained using L 1 , adver- 

sarial and perceptual loss. 

The input image I ↓ r is processed along three axes x , y , and z 

using a pre-trained 2D SISR. Consider the dimensions of I ↓ r given 

by Eq. (2) . 

I ↓ r : c × X × Y × Z (2) 

Where c are the number of channels of greyscale or RGB image. 

We need to process I ↓ r along each dimension x , y , and z . However, 

2D SISR can process images of the form I 2D : B × c × H × W 

only, where B is the batch size, H and W are the dimensions of 

the 2D image. Therefore, in order to process I ↓ r , we first need to 

transpose it to obtain three copies I ↓ rcx , I ↓ rcy and I ↓ rcz as shown in 

Eqs. (3) , (4) and (5) . 

I ↓ rcx : X × c × Y × Z (3) 

I ↓ rcy : Y × c × X × Z (4) 

I ↓ rcz : Z × c × X × Y (5) 

We transpose I ↓ r such that the considered axis is along the first 

dimension, whereas the remaining axes are on the third and the 

fourth dimension. We then process images I ↓ rcx , I ↓ rcy and I ↓ rcz by 

2D SISR by considering the first dimension as the batch size. We 

again transpose the output of 2D SISR to restore the axes to normal 

for all three inputs. This operation’s output gives us three upsam- 

pled anisotropic volumes I ↓ r x , I ↓ r y and I ↓ r z . All three inputs I ↓ rcx , 

I ↓ rcy and I ↓ rcz share the weights of 2D SISR, i.e., we use the same 

network for upsampling along axes x , y , and z . 

4.1. Anisotropic volume interpolation 

Three anisotropic volumes I ↓ r x , I ↓ r y and I ↓ r z contain unique in- 

formation. If they are overlayed on each other to fit in a isotropic 

cube, they result in a sparsely populated cube I xyz which contains 

several empty and filled regions as shown in Fig. 2 . One can treat 

the transformation from I xyz to I as an inpainting problem. How- 

ever, We first interpolate I ↓ r x , I ↓ r y and I ↓ r z to form I x , I y and I z . To 

achieve this, we employ a trilinear interpolation operation. The in- 

terpolated volumes, I y and I z are now isotropic and still contain all 

the useful information which was present in I ↓ r x , I ↓ r y and I ↓ r z . We 

feed these three volumes to the Fusion module as input. 

4.2. Fusion module 

We combine the information contained in the isotropic volumes 

I x , I y , and I z into a single volume I using the Fusion module. The 

Fusion module’s goal is to learn how to combine this information 
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Fig. 3. Consistency Loss: I x , I y , and I z are compared with I based on L 1 distance. 

This leads to unsupervised training compared to L 1 loss between I and I GT . 

in the best possible way. The Fusion module stacks the three inputs 

on the channel dimension such that we obtain a three-channel vol- 

ume I stack : 3 ∗c × X × Y × Z . This volume passes through a 3D 

convolutional neural network. We adapt EDSR [16] architecture to 

3D for our purposes by converting all operations such as convolu- 

tion and batch normalization to 3D to form 3D EDSR. We also take 

the average of the three input cubes and add it to the output of 

the 3D EDSR as shown in Eq. (6) . 

I avg = 

I x + I y + I z 

3 

(6) 

Note that the input to the 3D EDSR has three channels, whereas 

this module’s output is a 3D volume with a single channel. The in- 

put and output of the average module is a 3D volume with a sin- 

gle channel. The Fusion module’s output is I with a single channel, 

which is the upsampled version of I ↓ r by a factor r . 

4.3. Loss function formulation 

We train the Fusion module in a supervised or self-supervised 

manner. We achieve this by employing various loss functions. Next, 

we describe these loss functions in detail. 

4.4.1. Supervised training with L 1 loss 

If ground truth paired images are available, Fusion module can 

be trained in a supervised setting by using L 1 loss. We calculate 

the L 1 distance between I and the ground-truth high-resolution 

image I GT by using the Eq. (7) : 

L 1 = ‖ 

I − I GT ‖ 1 (7) 

The L 1 loss has a smoothing effect on the output, which is a 

known property of L 1 loss [ 15 , 25 ]. If we train 2D SISR on the ad- 

versarial loss, training the Fusion module with L 1 loss alone can 

lead to over smoothing of the output image I . This formulation 

leads to an inadequate transfer of properties of 2D SISR to I , but 

this method achieves the highest possible PSNR. This method also 

requires ground truth that is either not available or is expensive to 

obtain in medical CT or digital rock domains. 

4.4.2. Self-Supervised training with consistency loss 

We propose a unique formulation of loss to transfer the 2D SISR 

properties to the Fusion model. We call this formulation the con- 

sistency loss. The loss is given in Fig. 3 and Eq. (8) : 

L c = ‖ 

I x − I ‖ 1 + ‖ 

I y − I ‖ 1 + ‖ 

I z − I ‖ 1 (8) 

This loss calculates the L 1 distance of I from each of the three 

interpolated volumes I x , I y and I z . It does not require ground truth 

image I GT . In our experiments, we note that consistency loss main- 

tains the desirable properties of preceding 2D SISR in the output 

image I . It can also filter out some high-frequency noise due to the 

L 1 nature of the three terms. The resulting image is sharp and also 

has lower noise levels than the real image. This noise filtering is 

Fig. 4. 3D EDSR Architecture: We modify EDSR [16] and add 3D convolutional lay- 

ers instead of 2D. This 3D EDSR is the part of the fusion module of our SIT-SR 3D 

model. 

Fig. 5. 3D RRDB: The 3D residual in residual dense block contain 3D convolutional 

layers instead of 2D. We use this as the building block of our 3D RRDB-Net and 3D 

ESRGAN baselines [25] . 

an added advantage as CT images often suffer from high-frequency 

noise. 

4.4.3. Hybrid loss 

We also propose to use L 1 loss in tandem with consistency loss 

that allows controlling the quality of the output. We, therefore, in- 

troduce a hybrid loss. The hybrid loss is given in Eq. (9) . 

L 〈 = αL 1 + ( 1 − α) L 
 (9) 

The parameter α serves as a tuning parameter that can control 

the contribution of each loss. By changing the parameter α, we can 

obtain the desired quality in the output image I . We can set the α
value closer to 1 to achieve a higher PSNR. On the other hand, if 

the output needs to be closer to the 2D SISR model, a lower value 

can be used. 

5. Experiments 

5.1. Data 

We utilize the digital rock dataset provided by Wang et al. 

[21] since it is the largest dataset available for this study. This 

work uses the default train, validation, and test split. This dataset 

consists of paired 2D (12,0 0 0 images) and 3D (30 0 0 images) low 

and high-resolution images of various rock types. We use the in- 

put (x4 downsampled) and output image pairs for this study while 

using all rock types they provide. We used the 2D image pairs 

to train 2D ESRGAN while using 3D image pairs to train the 3D 

baselines and the Fusion module in supervised mode. They pro- 

vide low-resolution images by downsampling high-resolution im- 

ages using various downsampling operations such as box, triangle, 

lanczos2, lanczos3, and Lanczos. We use this dataset to ensure that 

the model is robust to the type of down-sampling operation used. 

5.2. Training and testing details 

We used PyTorch for all our models, and experiments. We uti- 

lize two RTX Titan GPUs for training our models. We build upon 

open-source Github repositories [ 26 , 27 ]. 
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Fig. 6. Why the Fusion module is necessary? The first slice of cubes I GT , I 
x , I y , I z from all three faces, i.e., xz, xy, and yz, is shown. Only one of the frames for each I x , I y , and 

I z contains sharp details. To form I , all three frames should be super-resolved. The Fusion module helps to combine the best of I x , I y , and I z . 

5.2.1. 2D SR image pipeline 

We train a 2D ESRGAN [25] for the image super-resolution us- 

ing 2D paired images provided by Wang et al. [21] . We modify the 

generator of ESRGAN to have 23 residual blocks. We use a batch 

size of 16. The image size used for training was 128 × 128. We use 

rotation and flipping to augment the training data. We first train 

the generator for 50 epochs with L 1 loss. Then we use the weights 

of this generator to train it further for 15 epochs with adversarial 

and VGG loss to obtain the final 2D ESRGAN configuration. More 

training details are in the supplementary section. 

5.2.2. Interpolation of anisotropic 3D volumes 

The anisotropic volumes produced after the 2D operation are 

converted to isotropic volumes using an interpolation operation. 

We used trilinear interpolation for this purpose due to its low 

computational cost. We also considered the consistency loss vari- 

ant, which works with anisotropic volumes directly without the in- 

terpolation. However, this leads to checkerboard artifacts since the 

network is not motivated to learn anything meaningful or spatial 

consistent in the empty 3D regions. 

5.2.3. Fusion module 

Fig. 6 shows the importance of the Fusion module to combine 

I x , I y and I z to formulate I . We train SIT-SR 3D in three differ- 

ent configurations (supervised, self-supervised and hybrid) as de- 

scribed in the method section. We can train the hybrid configu- 

ration with various values of the parameter α. We document the 

result with α set to 0.5, but in our experiments, we found that this 

parameter can control the output quality. Choosing a high value for 

α leads to smooth output and high PSNR, while low values drive 

the results closer to the underlying pipeline’s properties. The train- 

ing converges in about 12 h with a batch size of 2. We use a 3D 

EDSR architecture for the Fusion module as shown in Fig. 4 . This 

custom 3D EDSR contains 16 residual blocks. 3D EDSR is the only 

component in the Fusion module that needs to be learned. 

5.2.4. 3D baseline 

To perform a comparison, we create our own 3D baseline net- 

works. The baseline of choice is ESRGAN [25] due to its good per- 

formance in 2D domain. We designed the baseline network by con- 

verting all 2D operations such as convolution, batch normalization, 

etc., into 3D versions. The basic building block of our baselines 

is the 3D residual in residual dense block (3D RRDB) as shown 

in Fig. 5 . Similarly, the 3D version of adversarial loss is obtained 

by converting the 2D convolution-based discriminator model to a 

3D convolution-based model. However, a 3D version of VGG loss 

[7] does not exist. Therefore, we apply a 2D VGG loss frame by 

frame on the complete 3D volume along all three dimensions such 

that we obtain three-loss values along each dimension. We take 

the average of the three VGG loss terms to ensure the best possi- 

ble training for the network. 

3D ESRGAN uses 3D RRDBNet as the generator architecture. We 

first train 3D RRDBNet with L 1 loss. We then use this 3D RRDB- 

Net as one of the baselines. We train 3D RRDBNet with the L 1 loss 

as 3D RRDBNet for reference in the quantitative and qualitative 

results. We then train the 3D ESRGAN by using weights of pre- 

trained 3D RRDBNet as initial weights. This network formulates the 

second baseline, and we call it 3D ESRGAN in results. This work 

uses the default test, and train splits provided by [21] . 3D RRDB- 

Net was trained with the batch size 6, while we train the 3D ES- 

RGAN with the batch size two due to the GPU memory constraint 

caused by an additional discriminator network. The input channel 

size for both networks was one instead of three due to the train- 

ing set’s greyscale nature. We flip and rotate the training images 

for data augmentation. The size of the high-resolution image used 

for training was 92 3 . 

5.3. Quantitative results 

Table 1 summarizes the quantitative results. SIT-SR 3D per- 

forms well in both supervised and self-supervised settings. It out- 
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Fig. 7. This figure shows a visual comparison of different methods. HR, LR indicates high-resolution and low-resolution images. 3D RRDBNet is a 3D convolution-based 

network supervised with L 1 loss. 3D ESRGAN is trained with GAN and VGG loss using pre-trained weights of 3D RRDBNet. SIT-SR 3D is trained in an utterly self-supervised 

setting using only the consistency loss. 
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Fig. 8. Effect of α: This figure shows the ablation study with various values of α in Eq. (9) . The values are 1, 0.5, and 0 for supervised ( L 1 Loss), hybrid, and self-supervised 

(consistency loss) respectively of SIT-SR 3D. 

Table 1 

Quantitative comparison of SIT-SR 3D with 3D baselines. The 

best supervised case is underlined . The self-supervised case 

is shown in bold . We perform all experiments with x4 down- 

sampled image as input. 

Arch Loss Params PSNR (dB) SSIM 

3D RRDBNet L 1 50.05 M 30.84 0.71 

3D ESRGAN GAN 101.15 M 28.41 0.60 

SIT-SR 3D sup L 1 31.44 M 30.98 0.69 

SIT-SR 3D self L c 31.44 M 29.78 0.64 

Table 2 

Effect of α and Average Module: We performed an ablation 

study to see the effect of α and average module on the PSNR 

and SSIM. The value of α is 1, 0.5 and 0. The best supervised 

case is underlined , whereas the best self-supervised case is in 

bold . 

Scale Loss Average Module PSNR (dB) SSIM 

x4 L 1 Yes 30.987 0.6921 

L c Yes 29.789 0.6441 

L h Yes 30.932 0.6846 

L 1 No 30.932 0.6935 

L c No 29.788 0.6440 

L h No 30.90 0.6844 

performs the end-to-end 3D learning methods such as 3D RRDBNet 

in purely supervised settings. In the self-supervised setting, it has 

a higher PSNR than the 3D ESRGAN. The number of training pa- 

rameters used by SIT-SR 3D are lesser than both 3D RRDBNet and 

3D ESRGAN, demonstrating the merit of this approach. 

5.4. Qualitative results 

Fig. 7 shows the qualitative performance of SIT-SR 3D on the 

test set of 3D image pairs provided by Wang et al. [21] . The figure 

shows that SIT-SR 3D learns sharp details in the self-supervised 

setting well, and it also transfers the properties of the underly- 

ing 2D ESRGAN to the 3D SISR. The output of SIT-SR 3D is sharper 

than the one produced in a wholly supervised 3D RRDBNet (with 

L 1 loss). The produced result has less noise and artifact than the 

GT data and 3D ESRGAN’s output due to the L 1 loss formulation of 

the consistency loss. Unfortunately, all the slices of the 3D image 

cannot be shown here due to presentation constraints. We have 

attached 3D images in the supplementary with the section and in- 

structions on how to view them. 

5.5. Ablation study 

We performed ablations as shown in Fig. 8 and Table 2 to see 

the effect of α and the average module on the performance of SIT- 

SR 3D. The hybrid loss allows us to control the quality of the out- 

put, i.e., higher α leads to more blurry images with high PSNR re- 

sults, and lower α favors the consistency loss and produces sharper 

results with lower PSNR. In this work, we only used α value of 0.5, 

which can be changed based on the required output. We also note 

that the average module has a relatively small effect on the PSNR, 

but since it consistently improves PSNR values in all experiments, 

we choose to keep it in the pipeline. 

6. Discussion and future work 

We have presented SIT-SR 3D, a modular and efficient network 

for super-resolution of 3D images. The proposed approach learns to 

super-resolve 3D low-resolution images in a self-supervised man- 

ner. We achieved this task by utilizing a 2D SISR pipeline trained 

with adversarial and VGG loss on 2D image pairs. We applied this 

2D SISR along three dimensions of the 3D image to obtain three 

asymmetric cubes. We interpolated these anisotropic volumes us- 

ing trilinear interpolation to obtain isotropic volumes. Then these 

symmetric cubes were fused to form a single cube. The fusion op- 

eration was learned by a 3D CNN using a novel consistency loss. 

The proposed approach outperformed the end-to-end 3D baseline 

when trained in a supervised manner in quantitative and qualita- 

tive metrics while using fewer parameters. We can use any 2D SISR 

pipeline depending on the desired output characteristics. SIT SR-3D 

is especially useful when 3D ground-truth is not available, but 2D 

ground-truth is available. In the case of digital rocks, it is often the 

case that 3D high-resolution ground truth is not available. We can 

go beyond a particular resolution using backscattered electrons in 

a scanning electron microscope (BSEM) [28] to obtain 2D images. 

We can then train a 2D SISR on 2D SEM images in these scenar- 

ios and transfer the knowledge to upsample low-resolution 3D CT 

images. However, this will be a subject of future study. 
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• Our method accurately performs image registration for dry-wet image pairs of various textures
• Our algorithm can find a solution in under one minute compared to 1 hour taken by human expert by utilizing a graphical

processing unit (GPU) for optimization.
• The algorithm can handle extreme rotation along the vertical and horizontal axes of the sample.
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A B S T R A C T
Image registration is a process used to align or register multiple images or volumes to facilitate
comparison or combination of the data. In the context of 3D wet and dry images of rock samples,
it is essential to accurately align these images to analyze and utilize the data in various experiments.
These images can be huge and contain minimal corresponding key points in the wet and dry images. A
lack of these key points makes the registration problem extremely difficult. Traditional intensity-based
optimization-based methods for image registration can be slow, while deep learning-based "one shot"
methods fail due to a lack of key points and training data.

We propose a new optimization-based algorithm for image registration of large 3D wet and
dry images of rock samples to address these issues. Our algorithm can handle extreme rotations
of the samples and even complete inversion along horizontal axes. Additionally, it is optimized for
speed while maintaining high accuracy by utilizing a graphical processing unit (GPU). We have
demonstrated that our algorithm can provide a solution in under a minute for samples of size 10003
cube, compared to the several hours of expert time needed by the current industrial practice. We
provide quantitative and qualitative results and compare our algorithm to the solution time of a human
expert.

1. Introduction
Digital rock analysis is a sub-field in the geology field

that involves using advanced imaging techniques to analyze
rocks and other geological materials at a microscopic level.
These techniques allow geologists to study rocks’ internal
structure and composition in great detail, which can provide
valuable insights into the physical and chemical processes
that have shaped the Earth’s crust over time. Digital rock
analysis can be used to study various rocks, including sedi-
mentary, metamorphic, and igneous rocks. It can be applied
to various research areas, including hydrocarbon reservoirs,
environmental geology, and geomechanics. Some of the
main techniques used in digital rock analysis include X-ray
computed tomography (CT), scanning electron microscopy
(SEM), and micro-computerized tomography (micro-CT).

Digital rock analysis often begins with creating an ac-
curate 3D porosity model based on porous media X-ray
images. This model can calculate various physical and fluid
flow properties through image analysis techniques and flow
simulations. This approach can be faster and less destructive
than traditional laboratory measurements. However, when
working with complex porous materials such as reservoir
rocks, it is often necessary to use multiple X-ray images
due to the wide range of pore sizes present in the sample.
Additionally, it is typical for micro-CT images of rocks to
have a significant portion of the percolating porosity below
the resolution limit, making it challenging to model the pore
network accurately Aarnes et al. (2007). Using a dry-wet

∗Corresponding author
muhammad.sarmad@ntnu.no (M. Sarmad); johan.phan@ntnu.no (.J.

Phan); leonardo.ruspini@petricore.com (.L. Ruspini)
ORCID(s): 0000-0002-8635-9000 (M. Sarmad)

image pair is common to obtain a more accurate porosity
image in such cases. It can explain how the pore network
changes as the rock absorb fluids. Feali et al. (2012); Long
et al. (2013); Bhattad et al. (2014); Ruspini et al. (2021).

In dry-wet imaging, a sample is first scanned using X-
rays while it is dry and then re-scanned after it has been
saturated with a high X-ray attenuation fluid, such as brine.
Comparing the images taken at these two states makes it
possible to create a map showing the porosity level at each
voxel. However, one of the main challenges of this imaging
technique is the need for image registration, which is the
process of aligning the images taken in the dry and wet
states. This procedure is necessary because the wet sample
must be aligned with the dry sample to compare the two
states accurately.

Dry-wet imaging is a powerful technique in digital rock
analysis, but it also presents several challenges in terms of
image registration. The significant differences between the
dry and wet images, as well as the relatively homogeneous
nature of rock images at the texture level, can make it difficult
to use feature point matching techniques for alignment.
Additionally, the large size of 3D images obtained from
micro CT, which can contain billions of voxels and multiple
gigabytes of data, makes it resource-intensive to load and
manipulate these images. This can hinder the performance of
automated registration algorithms and require a significant
amount of expert labor. Improving the image registration
process for digital rock analysis is therefore important for
streamlining the digital rock workflow and reducing the
amount of labor required.

In this work, we aim to address the unique challenges
associated with image registration in dry-wet imaging for
digital rock analysis. Specifically, we recognize that the
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significant textural differences between the dry-wet images,
extreme misalignments, and large image sizes can make it
difficult to align these images quickly using traditional tech-
niques. To address these challenges, we propose a solution
based on a GPU-accelerated implementation of an intensity-
based registration algorithm. This approach allows for fast,
robust and accurate image registration in a practical setting.
Our contributions are summarized as follows:

• Our method accurately performs image registration
for dry-wet image pairs of various textures.

• Our algorithm can find a solution in under one minute
by utilizing a graphical processing unit (GPU) for
optimization.

• The algorithm can handle extreme rotation along the
vertical axis of cylindrical samples, as well as inver-
sion along the horizontal axes of the sample.

• Evaluations on various datasets demonstrate our algo-
rithm’s performance. We also compare the method to
a human expert who takes more than one hour for the
same task.

2. Related Work
Common techniques for unimodal images include corre-

lation methods, as described in Pratt (1974). These meth-
ods often require additional cleaning steps to ensure the
success of cross-correlation. Althof et al. (1997) demon-
strated that automatic and fast solutions with reasonable
accuracy can be achieved through correlation-based meth-
ods. For multimodal images, Viola and Wells III (1997)
and Maes et al. (1997) proposed the use of mutual in-
formation, which is more robust to such images. Fourier-
based methods, which work with the Fourier representa-
tion of images, are faster than cross-correlation methods
De Castro and Morandi (1987). Jenkinson and Smith (2001)
focused on the optimization algorithm itself and tailored a
global optimization algorithm specifically for registration.
The choice of similarity measure (e.g., correlation vs mutual
information) is crucial for the success of registration, and
Roche et al. (2000) provided guidance on how to select the
correct measure for the best results. While these methods are
effective, they can require a number of iterations to reach
the final result. In this work, we also utilize optimization-
based methods, but leverage the power of graphical process-
ing units (GPUs) through the use of open-source libraries
Pytorch Paszke et al. (2017) and AIRLab Sandkühler et al.
(2018) for gradient calculation required for optimization.

Deep learning has been a popular choice for solving
many registration problems since convolutional neural net-
works (CNN) have become popular Krizhevsky et al. (2012);
LeCun et al. (1990). Learning-based methods have been
used for every stage of the registration process. Haskins
et al. (2019) propose to learn the similarity metric using a
CNN while keeping the classical optimization process. On
the other hand, Miao et al. (2016) and Chee and Wu (2018)

use a synthetic transform-based data generation method to
train a CNN model that predicts the transformation matrix in
one shot.Liao et al. (2017) utilize a reinforcement learning-
based method to train an agent for robust image registration.
These methods mostly use medical image datasets and are
impressive as they are fast at inference time. However, they
do not work well with our dataset due to the lack of enough
distinguishing features in the dry and wet images. There are
unsupervised approaches for deformable image registration
as well Hu et al. (2018). However, we are limited to rigid
transform. Haskins et al. (2020) and Fu et al. (2020) present
a through survey on learning based approaches.

Image registration is the first step in many problems
where the properties of the rock need to be estimated Knack-
stedt et al. (2004); Arns et al. (2002); Padhy et al. (2007);
Prodanović et al. (2007). Even though the problem of image
registration has been solved in the medical image domain by
many methods, that is not the case for wet and dry image
registration. The seminal work of Latham et al. (2008) uses
a correlation-based method coupled with an optimizer to
perform 3D dry image to wet image registration which is
slow due to the iterative nature of the optimization process.
We bring the time from hours to seconds due to using a
graphical processing unit (GPU).

Our work is based on the open-source librarry AIRLab
Sandkühler et al. (2018). However, other toolboxes are also
available, e.g. ITK Yoo et al. (2002), Elastix Klein et al.
(2009), and ANTs Avants et al. (2011). However, these
toolboxes and libraries do not utilise the GPU transparently
and efficiently as AIRlab. Therefore, prototyping in these
methods is time-consuming and error-prone, which can be
problematic in an industrial setting. For a detailed review of
other toolboxes available for the task of registration, we refer
to Keszei et al. (2017).

3. Method
In this section, we provide the detailed working of our

registration algorithm. The problem overview is shown in
Fig. 1. We solve the problem of Dry-Wet Image registration.
Consider a dry image 𝐼𝑚𝐷𝑟𝑦. This image is a micro CT scan
of a rock sample. This sample can then be imbibed with
liquid, e.g. brine or mercury, to obtain a wet image 𝐼𝑚𝑊 𝑒𝑡 of
the same rock sample. The injection of liquid in this sample
changes the visual characteristics of this sample to a large
extent under a micro CT. This phenomenon can be seen in
the figure.

Fig. 1 shows a perfectly registered dry and wet image
pair as the output of the registration process on the right
side of the image. A close examination of the registered
images reveals that the regions in the Dry-Wet image pair
that correspond well are sparse. Secondly, the regions that
correspond to each other in both samples reside in different
colour spaces. This input setting can lead to a problem
for intensity-based methods since they rely on these visual
cues to determine a feasible solution through optimization.
Therefore, we utilize pre-processing steps before registration
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Figure 1: We solve the problem of Dry-Wet rock Image registration. Our Registration Method (Blue box) can register Image pairs
efficiently and accurately. In this figure, the Fixed 3D Image is the Dry Image, whereas the Moving 3D Image is the Wet Image.
The registration method finds the transformation required to warp the Moving 3D image to register it to the Fixed 3D Image.

to ensure that the optimization-based registration algorithm
works robustly. The pre-processing steps are gives as fol-
lows:
Color Inversion and Histogram Matching We observe
from Fig. 1 that the wet image and dry image correspond
with each other. However, the colours seem inverted. There-
fore, we invert the colours of the wet image to ensure that it
corresponds well with the dry image. We note that a simple
inversion of the images is not sufficient. The histogram of the
wet-dry image pair must be matched prior to the execution of
the registration algorithm. The raw images from the CT scan
are provided in a 16-bit unsigned raw format. This format
means that the possible values can range from 0 to 65535.
Metallic regions with a high atomic number have high pixel
values associated with them in the 3D image, whereas the
material with a low atomic number has a lower value. In
the case of the rock sample of concern, metal objects often
shine very bright and distort the colour of the remaining
vital regions, such as pores and solids in the rock samples.
Therefore to get the best possible match between the dry-wet
images, we match the histogram of the wet image to the dry
image.

Table 1 shows a thorough comparison between dry and
wet images before and after the operation of colour inver-
sion and histogram matching. This comparison has been
performed on all datasets used in this work. The details of
each dataset will be provided in the experiment section. It
can be seen that the colour shift between dry-wet pairs is
a colour inversion in all cases. The matching regions are
made more prominent after an inversion of colours. We
always perform this procedure for the Wet image only. After
the inversion, the results of this operation are shown in the
column ‘Inverted W’ in Table 1. It can be seen that in the
row ‘ST C14’, the ‘Wet Image (W)’ seems washed out after
inversion. This is because of the metallic regions (white

Figure 2: Deadzone: A microCT image of a sample contains
dead-zones of variable length due to padding material placed
at the end to hold sample in place.

spots) in the ‘Dry Image (D)’. Therefore, we apply histogram
matching to solve this problem. After applying histogram
matching, we observed that the ‘Histogram Matched (W)’
image corresponds well with the ‘Dry Image (D)’.
Dead Zones A special consideration for image registration
in digital rock analysis is the existence of so-called ‘dead
zones’ as shown in Fig. 2. These exist since the cylindrical
sample is padded on top and bottom before putting the
sample inside a CT scan. This extra padding leads to blank
regions included in the final image. These regions must be
considered to ensure that they do not negatively affect the
automatic registration process.
Extreme Transformation Another aspect that makes our
problem different from typical 3D image registration is the
characteristic of the transformation. The transformation is a
similarity transformation in nature. This setting means that
there are nine elements in the transformation. These include
translation, rotation and scaling for their respective axes. Of
particular importance are the rotations as shown in Fig. 3.
Along z-axis, this rotation can be ±180 ◦ Since the wet
sample can be placed at any angle. The second important
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Table 1
Image Samples from each of the dataset used have been shown in this table. The Dry Image (D) and Wet Image (W) do not
correspond with eachother. The Colors of Wet Image are inverted and shown in Column ’Inverted W’. The Inverted W image’s
histogram is matched to Dry Image (D) to create ’Histogram Matched W’ Image.

Dataset
Image

Dry Image (D) Wet Image (W) Inverted W Histogram Matched W

Wang et al. (2021)

ST C14

Spurin et al. (2021)

Figure 3: Extreme Rotation: A microCT image of a wet and
dry sample are shown. Note that The wet sample can have
extreme rotation of ±180◦ along z-axis and a 180◦ inversion
around the x or y axes.

aspect is the possible inversion of the sample along the x or
y axes. This means that a 180◦ inversion of the sample is also
possible.
3.1. Registration Algorithm

After the pre-processing steps mentioned before, the
samples are ready for registration. We use the normalized
cross correlation between the dry and wet image to find
the perfect matching. The details are given in algorithm

1. We utilize the similarity transformation along with the
normalized cross-correlation similarity objective which is
given as follows:

NCC ∶=
∑

𝐼𝑚𝐷𝑟𝑦 ⋅ (𝐼𝑚𝑊 𝑒𝑡◦𝑓 ) −
∑E(𝐼𝑚𝐷𝑟𝑦)E(𝐼𝑚𝑊 𝑒𝑡◦𝑓 )

|| ⋅∑Var(𝐼𝑚𝐷𝑟𝑦)Var(𝐼𝑚𝑊 𝑒𝑡◦𝑓 )
(1)

The sum in the above mentioned equation is over over the
image domain  , E is the expectation value (or mean) and
Var is the variance of the respective image. The registration
algorithm aims to find the best match between the two 3D
images. For the scope of this work, the dry and we image
can contain translation of about 40 pixels in the x and y axes.
Only 5 pixels in the z axis. A uniform scaling factor of 0.95 to
1.05 can also be present along any of the three axes. Rotation
along x-axis and y axis can be about ± 5◦. If the samples
are inverted about x-axis or y-axis, the rotation can still be
about ±5◦. The rotation along z axis can be a ±180◦. We
design our method to be suitable for the worst case scenario.
It assumes two worst case scenarios i.e. it contains a rotation
of ±180◦ about the z axis and the second is that the sample
to be registered is inverted about the x or y axis as shown in
Fig. 3.
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Algorithm 1: How to write algorithms
𝐿𝑏𝑒𝑠𝑡 = ∞ and 𝛿𝜃 = 20◦ and 𝑆𝑏𝑒𝑠𝑡 = 0 ;
𝐼𝑡𝑒𝑟𝑖𝑛𝑖𝑡 = 25 , 𝐼𝑡𝑒𝑟𝑓𝑖𝑛𝑎𝑙 = 1000 ;
𝐿𝑟𝑖𝑛𝑖𝑡 = 0.01 , 𝐿𝑟𝑓𝑖𝑛𝑎𝑙 = 0.0005;
Fetch 𝐼𝑚𝐷𝑟𝑦 and ̃𝐼𝑚𝑊 𝑒𝑡 ;
𝐿, 𝑆𝑗 ,𝐹 = 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝐼𝑛𝑣𝑒𝑟𝑡 = 𝐹𝑎𝑙𝑠𝑒);
�̃�, �̃�𝑗 , 𝐹 = 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝐼𝑛𝑣𝑒𝑟𝑡 = 𝑇 𝑟𝑢𝑒);
if 𝐿 ≦ �̃� then

𝐿𝑏𝑒𝑠𝑡 = 𝐿;
𝑆𝑏𝑒𝑠𝑡 = 𝑆𝑗 ;

else
𝐿𝑏𝑒𝑠𝑡 = �̃�;
𝑆𝑏𝑒𝑠𝑡 = �̃�𝑗 ;

end
if 𝐹 is False then

Rotate ̃𝐼𝑚𝑤𝑒𝑡 by 𝛿𝜃 × 𝑆𝑏𝑒𝑠𝑡 along z-axis ;
else

Rotate ̃𝐼𝑚𝑤𝑒𝑡 by 𝛿𝜃 × 𝑆𝑏𝑒𝑠𝑡 along z-axis and
invert along x-axis ;

end
Define 𝐿𝑜𝑠𝑠𝑁𝐶𝐶 and Optimizer(𝐿𝑟𝑓𝑖𝑛𝑎𝑙);Start Similarity Transformation
Registration(𝐼𝑡𝑒𝑟𝑓𝑖𝑛𝑎𝑙,𝐼𝑚𝐷𝑟𝑦, ̃𝐼𝑚𝑊 𝑒𝑡);

Function 𝐿𝑏𝑒𝑠𝑡, 𝑆𝑏𝑒𝑠𝑡, 𝐹𝑏𝑒𝑠𝑡 =

LocalRegistration(𝐹𝐼𝑛𝑣𝑒𝑟𝑡):
𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0
𝑆𝑗 = 0
for 𝑆𝑗 ≦ 360

𝛿𝜃
do

if 𝐹𝐼𝑛𝑣𝑒𝑟𝑡 is False then
Rotate ̃𝐼𝑚𝑤𝑒𝑡 by 𝛿𝜃 × 𝑆𝑗 along z-axis ;

else
Rotate ̃𝐼𝑚𝑤𝑒𝑡 by 𝛿𝜃 × 𝑆𝑗 along z-axis
with 180◦ inversion along x-axis ;

end
𝐿𝑜𝑠𝑠𝑁𝐶𝐶 and Optimizer(𝐿𝑟𝑖𝑛𝑖𝑡);Rigid Transformation
Registration(𝐼𝑡𝑒𝑟𝑖𝑛𝑖𝑡,𝐼𝑚𝐷𝑟𝑦, ̃𝐼𝑚𝑊 𝑒𝑡);

Update 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;
if 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is less than 𝐿𝑏𝑒𝑠𝑡 then

if 𝐹𝐼𝑛𝑣𝑒𝑟𝑡 is False then
𝐿𝑏𝑒𝑠𝑡 ⟵ 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;
𝑆𝑏𝑒𝑠𝑡 ⟵ 𝑆𝑗 ;
𝐹𝑏𝑒𝑠𝑡 ⟵ False;

else
𝐿𝑏𝑒𝑠𝑡 ⟵ 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;
𝑆𝑏𝑒𝑠𝑡 ⟵ 𝑆𝑗 ;
𝐹𝑏𝑒𝑠𝑡 ⟵ True;

end
else

pass;
end
𝑆𝑗 = 𝑆𝑗 + 1

end

Sector Search For Rotation about Vertical Axis We
first describe how to deal with the first scenario i.e. rotation
about the z axis. . This scenario can occur if the operator
places the sample after rotating it in the CT chamber for
obtaining the Wet image. The rotation about the z-axis can be
determined by the NCC loss based optimization. However,
we notice that if the rotation in the z-axis is more than ±
10◦ then the algorithm starts to fail. Therefore we propose a
localized registration check, where we divide the image to be
registered into sectors. The chunk of each sector corresponds
to a angle 𝛿𝜃 . We set this angle empirically to a value that
does not break the algorithm. We then check all sectors until
a 360◦ rotation is complete about the z axis. We also log the
scores of matching of each sector using the NCC loss. At
the end of this process, we get a best sector. We use the best
sector ID to rotate the image to be registered to the best sector
for a more fine registration for 𝐼𝑡𝑒𝑟𝑓𝑖𝑛𝑎𝑙 iteration. Note that
since this is an initial step therefore we do not perform a lot of
iteration and only use 𝐼𝑡𝑒𝑟𝑖𝑛𝑖𝑡. Where as in the final iteration
step we use 𝐼𝑡𝑒𝑟𝑓𝑖𝑛𝑎𝑙 such that 𝐼𝑡𝑒𝑟𝑖𝑛𝑖𝑡 are significantly less
than 𝐼𝑡𝑒𝑟𝑓𝑖𝑛𝑎𝑙. We call this step a ’sector search’.
Sector Search Inversion about Horizontal Axis The
second extreme scenario is that the image to be registered
is inverted along the horizontal axis (i.e. x or y axis). This
scenario can occur if the operator places the sample upside
down in the CT chamber for obtaining the Wet image. To
handle this we first perform sector search without invert-
ing the image to be registered and log the best loss value
achieved. Later we perform a sector search after inverting
the image to be registered and again log the best loss. Finally
we compare the loss value achieved by both the inverted and
original sector search to determine the correct sector and if
inversion is needed or not.

Once the registered image is catered for extreme ro-
tations. We perform a final set of iterations 𝐼𝑡𝑒𝑟𝑓𝑖𝑛𝑎𝑙 to
find all elements of the similarity transformation namely 3
translation, 3 rotations and 3 scaling factors. The detailed
steps of our method are given in the algorithm 1. Please note
that 𝐿𝑏𝑒𝑠𝑡 is the best loss value achieved, 𝛿𝜃 is the angle in
degree that , 𝑆𝑏𝑒𝑠𝑡 is the best sector, 𝐼𝑡𝑒𝑟𝑖𝑛𝑖𝑡 are the initial
iterations used for sector search and inversion, 𝐿𝑟 is the
learning rate used for optimization algorithm.

4. Experiments and Results
4.1. Open Source Libraries

We utilize AIRLab Sandkühler et al. (2018) for the reg-
istration algorithm. It allows for fast prototyping and utiliza-
tion of GPUs since it utilizes Pytorch Paszke et al. (2017).
Our program’s execution is finished in under a minute due
to the utilization of GPU. We also use Pytorch Paszke et al.
(2017) and MONAI Consortium (2020) libraries for creating
transformations in the dataloader on the moving Image for
validation of our approach.

Sarmad et al.: Preprint submitted to Elsevier Page 5 of 9



GPU Assisted Fast and Robust 3D Image Registration

Table 2
DataSet: Dimensions (in Pixels) and Properties Of the Dataset
used

Data-set x y z
Wang et al. (2021) 630 630 1087
ST C14 1300 1300 2500
Spurin et al. (2021) 445 445 445

4.2. Dataset
This work considers various types of dry and wet 3D

images of rocks. We use two open-source datasets freely
available from Wang et al. (2021) and Spurin et al. (2021).
In addition, we utilize an in-house dataset of rock samples
which we call the ST C14 dataset. The dimensions of images
in these datasets are shown in the Table. 2. All samples are
imbibed with fluids such as water or brine to obtain the wet
image. For each sample, we have two perfectly registered dry
and wet 3D image pairs of the same dimension.

Table Table. 1 shows the detailed pre-processing steps
for images. As shown in the Table, we only process the
Wet Image by first inverting the colour of the Wet Image.
However, this is not enough, and we additionally perform
Histogram matching by matching the histogram of the Wet
Image with the Dry Image. The corresponding image is
shown in the column ‘Histogram Matched W’.
4.3. Dataset Generation for Evaluation

To evaluate the effectiveness of our algorithm, we need
to create many possible combinations of three translations,
three rotations and one scaling. Please note that the three
rotations about x and y can include a possible inversion of
the image. At the same time, the rotation about the z-axis
can be a 360-degree rotation. We use the three perfectly
registered samples in our dataset and transform the wet
image randomly on the fly using the a custom Pytorch data
loader Paszke et al. (2017). This provides us with a large
number of transformations to evaluate our dataset. We limit
the randomly generated data transformations to 200 for each
of the three datasets.
Padding Requirement: Padding the moving image is es-
sential before transforming the image with the data loader
since every transformation causes some amount of image
information loss near the image border. The padding require-
ment for synthetic translation and scaling is linearly related
to each parameter’s value. However, a unique challenge
from a rotation can be observed in Fig. 4a. Consider an
original image as shown in red lines. Upon rotation, the
image becomes an image shown in yellow lines. However,
the image we can utilize after rotation is in green lines due to
information loss due to rotation. This image is smaller than
the intended size of the image. In order to get an image of
the size shown in red lines. We need to start with an image
of the size shown in blue lines.

Consider the Fig. 4b, where the image with red lines of
size 𝑥 has been rotated by 45; then we can extract the image
with blue lines of size ℎ from this square. It can be seen that

(a) Why padding is needed? (b) Padding factor
Figure 4: Fig.4a demonstrates that loss of image information
occurs due to rotation. Fig.4b shows how to derive a padding
factor 𝑝 such that starting from image of size 𝑥 = ℎ + 𝑝 we
obtain ℎ after cropping with 𝑝 without loss of any information

when we rotate an image by a certain angle, some parts of
the image are permanently lost due to the rotation operation.
Therefore, we must calculate the padding value 𝑝 needed to
add to the original image of size ℎ such that when starting
with an image of size 𝑥 = ℎ + 𝑝, we obtain a rotated image
which can be cropped by 𝑝 to obtain a final image of size ℎ
such that no loss of information occurs. The calculation of
this pad factor 𝑝 will be maximum when 𝜃 is 45◦ as shown
in Fig. 4b. It can be seen that ℎ = 𝑥 ∗ sin (45◦). Then since
𝑥 = ℎ + 𝑝, the pad factor 𝑝 can be given as follows:

𝑝 = ℎ × ( 1
sin (45◦)

− 1) (2)

To scale this value to be dynamic from 0◦ to 45◦. We use
a scale factor based on the angle 𝜃 as follows:

𝑝 = ℎ × ( 1
sin (45◦)

− 1) × sin (2𝜃) (3)

4.4. Metric
We use the root mean square error (RMSE) metric be-

tween the ground truth and the predicted transformations to
report our algorithm’s performance in registering various
dry and wet rock images on the dataset. The formula of
RMSE is

√
1
𝑛
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2.
4.5. Quantitative Results

We used the synthetic data described in the previous
section to generate various transformations, including ex-
treme transformations such as rotation about the z-axis and
complete inversion about the x-axis and y-axis. We com-
pare each transformation prediction’s root mean square er-
ror (RMSE) and ground truth transformation. We use 200
random transformations for each rock dataset to find the
predicted transformation parameters for the registration task.
The results in Table 4 demonstrate the RMSE value for each
transformation quantity. It can be noted that ST C14 is a
relatively tricky sample. It is not surprising, as it can be seen
from Table 1 that ST C14 contains fewer correspondences
and therefore is naturally a complex sample to register. From
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Table 3
The performance of our method on image samples from each dataset is shown in the table. The algorithm calculates the
transformation needed to warp the ’Moving Image’ and align it with the ’Fixed Image’. The table compares the warped moving
image with the ’Ground Truth (GT) Moving Image’ and displays the quantitative parameters of the transformation: translation
in x, y, and z in pixels (Trans X, Trans Y, Trans Z), rotation in x, y, and z respectively in degrees (Angle X, Angle Y, Angle Z),
and scaling in x, y, and z respectively (Scale X, Scale Y, Scale Z).

Dataset
Image

Fixed Image Moving Image Warped Moving Image GT Moving Image Difference Image Parameter Prediction Ground Truth

Wang et al. (2021)

Trans X : -27.73 -28.00
Trans Y : 1.04 1.00
Trans Z : -16.20 -16.00
Angle X : -4.83 -4.82
Angle Y : 177.09 177.06
Angle Z : 80.91 80.88
Scale X : 1.05 1.04
Scale Y : 1.05 1.04
Scale Z : 1.04 1.04
Trans X : 10.22 10.00
Trans Y : -27.92 -28.00
Trans Z : -16.92 -17.00
Angle X : -1.93 -1.93
Angle Y : 1.15 1.13
Angle Z : -57.06 -57.00
Scale X : 1.03 1.02
Scale Y : 1.03 1.02
Scale Z : 1.03 1.02
Trans X : 27.89 28.00
Trans Y : -12.35 -12.0
Trans Z : 3.15 3.00
Angle X : -4.74 -4.74
Angle Y : -3.36 -3.36
Angle Z : 162.23 162.23
Scale X : 1.02 1.02
Scale Y : 1.02 1.02
Scale Z : 1.03 1.02

ST C14

Trans X : -6.10 -5.00
Trans Y : 3.80 3.00
Trans Z : -9.88 -10.00
Angle X : -3.34 -4.38
Angle Y : 0.16 -0.78
Angle Z : 93.23 94.17
Scale X : 1.08 0.97
Scale Y : 1.01 0.97
Scale Z : 1.00 0.97
Trans X : -4.49 -3.00
Trans Y : -0.50 -1.00
Trans Z : 2.06 3.00
Angle X : -0.69 -1.59
Angle Y : 179.69 178.57
Angle Z : -90.27 -87.77
Scale X : 1.03 1.00
Scale Y : 1.07 1.00
Scale Z : 1.14 1.00
Trans X : -7.92435 -10.0
Trans Y : 10.66 11.00
Trans Z : -2.86 -2.00
Angle X : 3.33 3.94
Angle Y : 0.34 0.85
Angle Z : -7.11 -7.87
Scale X : 1.00 0.98
Scale Y : 1.00 0.98
Scale Z : 1.03 0.98

Spurin et al. (2021)

Trans X : -10.71 -10.00
Trans Y : -8.17 -9.00
Trans Z : 9.45 10.00
Angle X : 2.70 2.23
Angle Y : 184.28 184.14
Angle Z : -35.39 -35.77
Scale X : 1.06 0.99
Scale Y : 1.02 0.99
Scale Z : 1.02 0.99
Trans X : -13.29754 -13.0
Trans Y : -16.31 -16.00
Trans Z : -5.65 -6.00
Angle X : -1.14 -1.76
Angle Y : -1.25 -1.75
Angle Z : 128.61 128.53
Scale X : 1.02 0.98
Scale Y : 0.98 0.98
Scale Z : 0.99 0.98
Trans X : 0.70478 1.0
Trans Y : 1.92 2.00
Trans Z : 10.57 11.00
Angle X : -2.82 -2.83
Angle Y : 4.28 4.44
Angle Z : -20.30 -20.25
Scale X : 0.97 0.96
Scale Y : 0.97 0.96
Scale Z : 0.97 0.96

the table, it can be observed that our algorithm performs
robustly. This method is robust enough to be deployed in the
industry to solve the registration of wet and dry images.

4.6. Qualitative Results
Table 3 shows the qualitative results of our method. It

should be noted that both qualitative and quantitative values
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Table 4
Root mean square error (RMSE) of the Registration Algorithm

Dataset
Error Angle x Angle y Anlge z Translation x Translation y Translation z Scale x Scale y Scale z

Wang et al. (2021) 0.989 0.473 0.432 0.876 0.415 0.670 0.016 0.030 0.046
ST C14 1.411 1.201 1.297 1.501 1.136 1.826 0.102 0.075 0.051
Spurin et al. (2021) 0.345 0.337 0.466 0.429 0.218 0.179 0.039 0.017 0.014

Figure 5: The trade-off between Computational time (sec) vs
Registration Error (RMSE) is shown.

for each example are given. This gives a good idea of real-
term performance. e.g. note that for ST C14, the error seems
more significant for specific transformation parameters com-
pared to the rest of the samples from other data set. However,
visual inspection reveals that the results are very accurate in
reality.
4.7. Timing and Efficiency Analysis
Computational Time We compare the effect of computa-
tional time (linearly related to optimization steps) algorithm
in the form of a scatter plot. From the scatter plot in Fig.
5, we can observe that increasing the computational time
generally leads to a better registration error up to a certain
point, whereas the computation times needed also increases.
This experiment was performed for the dataset provided
by Wang et al. (2021) et al.. For each data point in the
figure, the average RMSE is calculated for all transformation
parameters (translation, rotations and scalings) and multiple
runs (50 runs). Using multiple runs ensures that noisy data
points are removed.
Human Expert Time Comparison: We compare the
speed of our method with those of a human expert in terms
of time. The human performance data was only available
for ST C14 dataset. Our method takes under 1 minute for
most examples. On the other hand, the human expert uses a
combination of manual labour and expert tools to achieve the
task in 120 minutes. It is also pertinent to note that the human
expert performed this transformation for just one case. It was
relatively easy, as no inversion of the sample was present in
the unregistered image.

5. Conclusion
In this work, we have presented an algorithm for fast and

accurate registration of 3D dry and wet digital rock images.
We have used a cross-correlation-based optimization pro-
cess for this task. The process of 3D registration based on op-
timization is considered slow and usually shunned in many
cases due to the advent of one-shot methods. However, one-
shot methods either do not provide a robust enough solution
or sometimes do not provide a solution at all. Therefore, this
work demonstrated that the optimization process could be
sped up considerably using GPU. In addition, we provide an
algorithm that is robust enough to ensure the high accuracy
of the registration solution. We demonstrate the effectiveness
of our results under plausible industrial scenarios, such as
extreme rotation along the vertical axis and inversion of the
sample.
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ABSTRACT 

Rock typing is an essential tool for reservoir characterization and management in the 

petroleum industry. It is the process of grouping portions of a rock sample based on their 

physical and chemical properties. This process is currently done by experts in the 

industry, which consumes valuable industry resources. Precise and efficient rock typing 

can build accurate geological models, optimize exploration and production strategies, and 

reduce exploration and production risks. This work proposes a deep learning method to 

identify and classify rocks based on their pore geometry, mineralogy, and other 

characteristics. The proposed technique segments a micro-CT image into different rock 

types using a neural network for automated rock typing. We suggest using a UNet 

architecture for the neural network for this task. The network has been trained in a 

supervised manner on expert-labelled images. The method's performance has been 

evaluated using qualitative and quantitative metrics. The neural network takes less than 

200 milliseconds to provide the rock types, which is much faster than a human expert. 

We perform an explainability analysis of the neural network using class activation 

heatmaps approach to get insight into the learned weights. Rock typing using deep 

learning can improve the petroleum industry's workflow.  

Keywords: rock typing, digital rock analysis, deep learning, segmentation.  

INTRODUCTION 

Rock analysis is critical in the oil and gas industry, yielding vital information about 

reservoir properties for efficient production and effective reservoir management. The 

traditional method for rock analysis is called conventional core analysis. This analysis 

involves using actual rock samples and various laboratory equipment to determine 

physical and chemical properties. However, this process is costly and time-consuming 

since experiments need to be conducted on actual samples. This process also sometimes 

leads to the destruction of the sample because of the analysis [1]. With the advent of 

advanced imaging techniques, such as micro-computed tomography (micro-CT) and 

scanning electron microscopy (SEM), a new approach to rock analysis has emerged. This 

approach, known as digital rock analysis, leverages high-resolution images of core 

samples obtained digitally, preventing the need for physical testing and consequently 

preventing sample destruction. In addition to preserving the sample's integrity, digital 
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rock analysis offers the advantage of performing multiple analyses on the same sample 

[2].  

Digital rock analysis allows for the application of various numerical simulations and 

algorithms to scrutinize the microstructures at the pore scale level. The transition to the 

digital domain is particularly advantageous as it facilitates using data-driven and 

machine-learning methods for analyzing rock samples and determining significant 

properties. The properties deduced from digital rock analysis include but are not limited 

to, fluid flow under various transport scenarios through the rock's pore spaces, 

permeability, and porosity. Through this process, we can ascertain the rock's behaviour 

under different conditions and predict its response to various operational strategies, aiding 

in optimizing production and reservoir management. 

Rock typing groups rock samples from reservoirs into categories based on their physical 

and chemical properties. Rock typing is an essential tool for predicting reservoir 

behaviour in the petroleum industry. Rock typing typically involves analyzing core 

samples taken from the subsurface reservoir and characterizing the rock based on various 

parameters such as mineralogy, texture, porosity, permeability, and fluid saturation. By 

grouping rocks with similar properties, geoscientists can create geological models that 

accurately represent the subsurface reservoir and help to predict its behaviour.  

Utilizing Digital rock analysis for rock typing can provide valuable insights into the 

microstructure and properties of rocks. It can make the process of rock characterization 

more efficient by allowing us to use data-driven and machine-learning methods to 

perform rock typing efficiently. Using a semantic segmentation model, we utilize 

convolutional neural networks (CNNs) to segment different regions of a rock sample into 

rock types. This work uses images of rock samples obtained through micro-CT scanning 

to train a CNN model to identify and classify different rock types. The model is trained 

on an annotated image dataset, where each pixel is labelled with the corresponding rock 

type. 

Figure 1 shows how rock typing builds accurate geological models. Once classification 

is performed, we obtain the rock types. Each rock type can be used to calculate and 

propagate various properties, e.g., porosity permeability etc., for each type. This 

information can then be combined in an upscaling step to obtain the properties of the 

complete sample.   

 

Figure 1 : Rock typing and Upscaling Workflow: There are multiple steps involved from classification to upscaling. 

In this work, we are dealing with the first step in the figure, i.e. Classification of the rock 

sample in various rock types. One of the most common approaches is segmenting the rock 

types based on porosity, a key parameter in rock typing. Porosity is the percentage of the 

total rock volume that is occupied by pores, and it can distinguish between different rock 

types. We train a neural network to identify and segment various porosity regions within 

the rock sample and then use this information to classify the rock type. Once the neural 
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network is trained, we segment and classify new unseen rock images from the test set. In 

this work, we use an expert annotated dataset of rock images to train a neural network to 

identify rock types. Neural networks are black boxes; therefore, to explain the network 

decision, we use the explainability technique to get insight into the decision-making 

process of the neural networks.  

Our contributions in this work are as follows: 

1. We propose a fast and efficient deep learning-based method for rock typing. 

2. A new expert annotated dataset is used to train our model in a supervised manner. 

3. We provide insight into the network’s decisions using class activation heatmaps. 

 

RELATED WORKS 

Convolutional neural networks (CNNs) have significantly developed over the past few 

decades. The first CNN architecture, LeNet-5, was proposed by Yann LeCun in 1998 and 

was designed for handwritten digit recognition [3]. However, it was only in the ImageNet 

challenge in 2012 that CNNs gained widespread attention. AlexNet achieved state-of-the-

art results on the ImageNet dataset [4]. This breakthrough sparked a wave of research in 

CNNs, developing many new architectures such as VGGNet, GoogLeNet (Inception), 

and ResNet. VGGNet uses tiny convolutional filters to achieve high accuracy on 

ImageNet [5]. GoogLeNet (Inception), introduced the concept of "inception modules" for 

efficient computation [6]. ResNet allowed for very deep neural networks using residual 

connections [7]. 

There has been much research on using CNNs for semantic segmentation, which involves 

labelling each pixel in an image with its corresponding class. FCN uses a fully 

convolutional network to produce dense predictions [8]. SegNet introduced a novel 

pooling method to handle upsampling [9]. U-Net was specifically designed for 

biomedical image segmentation tasks and has since been widely used in other domains 

[10]. U-Net uses an encoder-decoder architecture with skip connections to produce highly 

accurate segmentations even with limited training data. Overall, the development of 

CNNs and their applications in semantic segmentation has led to significant 

improvements in many areas of computer vision. We also use U-Net since we segment 

each rock type in an image.  

Rock typing is a fundamental aspect of reservoir characterization and management in the 

petroleum industry. Various approaches have been developed to identify and classify 

different rock types based on their physical and chemical properties. Most works use 

conventional techniques while recently deep learning is also becoming popular to solve 

this problem. [11] used regional Minkowski measures and a multivariate Gaussian 

mixture model to classify rock types. [12] proposed an image-based rock typing method 

using local homogeneity filtering and the Chan-Vese model to segment binary images 

into different rock types. [13] assessed the impact of diffusional coupling on Nuclear 

Magnetic Resonance (NMR) measurements of saturated laminated sandstone at the layer 

scale to evaluate the feasibility of NMR rock-typing approaches. On the other hand, [14] 

introduced fast numerical techniques based on the Minkowski functionals to derive fields 

of regional Minkowski measures over large regional support for large 3D data sets as 

generated from x-ray tomography techniques. They demonstrated the application of these 
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3D feature fields to microstructure classification for a set of heterogeneous 

microstructures using a multivariate Gaussian mixture model and thin-bedded sandstone. 

Finally, [15] explored the conventional interpretation of NMR measurements on fluid-

saturated reservoir rocks, showing that the T2 and pore size distributions are not directly 

related in many multi-scale porosity systems due to diffusion coupling between different 

pores. Some previous works also deal with rock typing using deep learning, but they 

classify the rock type in an image patch instead of segmenting the full image [16]. 

Therefore, our method can obtain better boundaries between two different rock types. 

MATERIALS & METHOD 

Our research employs a deep learning method to automatically detect laminar segments 

within rock types using 2D slices of 3D micro-CT rock sample images. The labelled 

images from this process inform the determination of segment-scale properties, which 

can later be upscaled to the whole sample scale. 

A. Model Architecture 

As depicted in Figure 2, we utilize the U-Net architecture in our deep learning-based rock 

typing method. This network processes each input image (Height: 192, Width: 64 pixels), 

potentially containing multiple rock types, to produce a similarly sized output 

segmentation image. The U-Net architecture, favored for image segmentation tasks, 

features an encoder-decoder structure. The encoder, comprised of convolutional and max-

pooling layers, extracts and condenses input image features. The decoder reconstructs the 

segmented image from these condensed features through up sampling and additional 

convolutional layers. Skip connections between the encoder and decoder preserve spatial 

information throughout the process. The outcome is a segmentation map that assigns a 

rock type to each pixel, providing an efficient, scalable methodology for rock typing and 

enhancing our understanding of various geological formations. 

 

Figure 2 Neural Network architecture: We use the U-Net architecture, the input image is of size 192 x 64 and the output 

image is of the same size 
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B. Binary Cross-Entropy Loss: 

The binary cross-entropy loss is used to train the U-Net model for binary image 

segmentation tasks. For a given pixel, the binary cross-entropy loss compares the 

predicted probability of the pixel belonging to the target class (rock type) to the true 

probability of the pixel belonging to the target class. The loss function is defined as: 

𝐿(𝑦, �̂�) = 𝑥 = −
1

N
∑[𝑦𝑖𝑙𝑜𝑔(𝑦�̂�) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦�̂�)]

𝑁

𝑖=1

 

Where 𝑦 is the ground truth segmentation map, �̂� is the predicted segmentation map, and 

N is the total number of pixels in the image. The loss function penalizes the model for 

incorrect predictions and encourages it to produce accurate segmentation maps. 

C. Explainability analysis using Grad-CAM 

Due to their opacity, deep learning models, such as the UNet used herein, are frequently 

labelled as "black box" models. To illuminate the decision-making process within our 

UNet model, we employed Gradient-weighted Class Activation Mapping (Grad-CAM), 

a technique for interpreting deep neural network predictions [17]. 

Grad-CAM illuminates the regions of an input image that contribute significantly to a 

specific prediction, offering visual insight into model decisions. The technique utilizes 

the gradients of a target segmentation class, flowing from the final layers of the neural 

network, to generate a coarse heatmap highlighting the crucial regions in the input image. 

Our work applied Grad-CAM to the UNet model's output to determine the input image 

regions crucial for predicting distinct rock types. Precisely, the gradient of the predicted 

class score relative to the feature maps of the penultimate convolutional layer in our UNet 

model's encoder was calculated. These gradients were then deployed to weigh the feature 

maps, which were subsequently aggregated to produce a class activation map. The 

resulting map emphasizes the input image regions most vital for predicting the associated 

rock type, allowing for a more transparent interpretation of the model's decision-making 

process. 

D. Data 
1) Sample Collection and Labelling 
We use two samples, Rock Sample 1 (dimensions: 1300 x 7880) and Rock Sample 2 

(dimensions:  1405 x 13940), for training and evaluating our network, as shown in Figure 

3. We label the data with the help of in-house experts. A 2D sample of the labelled data 

is shown in the figure. All the 2D images were labelled by hand. We categorized the 

images into different rock types based on the size of their visual properties that affect 

flow properties. These properties include porosity and grain size. Since labelling is a 

complex and time-consuming task, we only labelled a limited number of images, 8 and 

13 images for Rock Sample 1 and Rock Sample 2, respectively, which were used for 

training and evaluation. The total number of segmentation classes in our data is six. It is 

important to note that unsupervised methods do not work well for the segmenting laminar 

rock types. Therefore, we use a supervised approach. By laminar, we mean that each rock 

type is horizontally laid upon each other instead of having complex topologies of rock 

types.  
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Figure 3 Training data consists of two different rock samples which have diverse pores and solid regions. 

 

2) Data Split 
To train and evaluate the performance of the U-Net model, we split the labeled dataset 

into a training set and a test set. We used 70% of the data for training and 30% for testing. 

The split was done randomly, while ensuring that both the training and test sets had 

similar proportions of different rock types. 

3) Image Pre-processing: 
We start with a high-resolution 3D image of a rock sample obtained through micro-CT 

scanning. We fix the size of the input image to be 192 x 64 so that input to U-Net is 

always fixed in size. Therefore, we crop and resize the original images for training and 

inference. We normalize the image to have pixel values in the range [0,1].  

4) Data Augmentation: 
We apply data augmentation techniques to increase the training dataset's diversity. The 

first data augmentation technique is the random cropping of the images vertically. The 

horizontal direction is not cropped. To ensure a good learning process, we select the size 

of the vertical crop to be three times the width of the horizontal image. This setting 

provides sufficient rock types encountered in the training image. At the same time, 

random crops are chosen in the vertical direction to ensure that the data augmentation 

effect is achieved to avoid overfitting. In addition to cropping, we randomly flipped along 

the x and y directions of the input image, improving the training process. The final image 

is resized by downsampling to 192 x 64 to ensure that input to the U-Net is always 

standardized. 

5) Training Parameter detail: 
We use the Adam optimizer with a learning rate of 0.001 and a batch size of 64. We train 

the model for 150 epochs. 
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6) Evaluation Metrics: 
Dice coefficient, mean Intersection over Union (mIoU), and mean Average Precision 

(mAP) are widely recognized evaluation metrics for semantic segmentation tasks. 

The Dice coefficient, or Sørensen–Dice index, quantifies the similarity between two sets 

of pixels, specifically the predicted segmentation mask and the actual, or ground truth, 

segmentation mask. This metric is computed as twice the area of overlap between the 

two-pixel sets, divided by their total pixel count. 

The mIoU, another prevalent evaluation metric for semantic segmentation, gauges the 

overlap extent between the predicted and ground truth segmentation masks. It calculates 

the intersection over union (IoU) between these two masks for each class and 

subsequently averages these values across all classes. 

The Average Precision (AP) metric assesses the algorithm's precision and recall at 

varying confidence thresholds. To compute the mean Average Precision (mAP), the AP 

is initially calculated for each class at different decision thresholds, after which the mean 

of these AP values over all classes is determined. 

In essence, while the Dice coefficient measures pixel-wise agreement between the 

predicted and ground truth masks, the IoU provides a measure of region-wise agreement. 

The AP, conversely, focuses on the trade-off between precision and recall for each class. 

Together, these metrics provide a comprehensive evaluation of the performance of 

semantic segmentation tasks. 

RESULTS 

A. Qualitative Results 

The performance evaluation of our U-Net model involved a thorough visual analysis of 

the model-generated segmentation maps, which were then compared to the ground truth 

labels. Depicted in Figure 4 The Qualitative results of our model are shown. From left to right 

we have the input image, ground truth segmentation mask and predicted segmentation mask., are 

the qualitative results of our methodology. This figure features the original 2D image, the 

corresponding ground truth label, and the U-Net model-produced segmentation map for 

a selection of images. 

As seen in the figure, the model's output confirms the U-Net model's proficiency in 

delineating the laminar rock types in our dataset. The segmentation maps generated by 

our model demonstrate an impressive alignment with the ground truth labels, particularly 

in discerning the boundaries differentiating various rock types. 
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Figure 4 The Qualitative results of our model are shown. From left to right we have the input image, ground truth 

segmentation mask and predicted segmentation mask.  

B. Quantitative results 

For a quantitative assessment of our proposed method, we calculated the Dice score, 

mAP, and mIOU on the test set. 

Table 1 summarises these quantitative results, encompassing the Dice score, mIOU, and 

AP metric for the test set. For the algorithm to be effective, each metric should score 

above 50, with higher scores indicating better performance. 

The results affirm the effectiveness of our method in segmenting the laminar rock types 

within the 2D images. Given its success, this method holds promise for addressing similar 

challenges in geology and materials science. 

 

Table 1 Summary of Dice Score, mean Intersection over union score (mIOU) and Average precion (AP) of our model. 

Model Dice Score mIOU AP 

U-Net 94.71 85.18 85.93 
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C. Explainability Analysis 

Using the Grad-CAM [17] technique, we analyzed our model's decision-making and 

identified regions vital for rock-type predictions. 

The technique involves overlaying a heatmap onto the original image, highlighting 

regions most crucial for rock-type predictions. This process, demonstrated in Figure 5, 

enables visual examination of class activation maps and improves understanding of our 

model's predictions.  

 

Figure 5 Grad Cam Explain ability Analysis: We query each class as shown by tag 'Chosen Class' in the GT masks. It 

can be seen that the CAM mask image shows the area where the neural network is paying attention for obtaining the 

Pred Mask. 

In our Grad-CAM analysis, we focused on the neural network's decision-making by 

identifying pixels responsible for detecting the 'Chosen Class'. This is depicted in each 

sub-figure, excluding the bottom right one, where the chosen class for each figure is 

shown. Observations show that the neural network accurately concentrates on the 

significant regions for decision-making. As a sanity check, we queried the network to 

highlight pixels responsible for a class that is not present in the input image. As seen from 

the bottom right sub-figure, the network correctly does not highlight any region, 

suggesting a sound decision-making process. 

Overall, the Grad-CAM analysis provides qualitative evidence that our U-Net method is 

performing well in rock-type segmentation tasks and has a logical basis for its predictions. 

DISCUSSION 
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In this study, we proposed a U-Net-based approach for rock-type segmentation from 2D 

micro-CT images. Our method achieved promising results on the test set, with good 

scores in evaluation metrics. We demonstrate that learning-based methods can produce 

accurate rock types. These maps can be used in the digital rock workflow, making the 

overall workflow more efficient. 

One limitation of our approach is that it only deals with laminar rock types, where each 

rock type is horizontally laid upon the other. This limitation could be addressed in the 

future by increasing the amount of training data that is also diverse. Another line to 

explore is the unsupervised methods for rock-type segmentation. In our observation, these 

methods fail on laminar rock types.   

CONCLUSION 

In conclusion, we have demonstrated that U-Net is a powerful tool for rock-type 

segmentation in 2D images. Our model achieved high accuracy on a test dataset and 

provided visually meaningful results. The data set we used was limited to laminar rock 

types. Experts labelled the data and images. Due to the black-box nature of deep learning 

models, we utilized Grad-CAM to visualize the features that contributed to the 

segmentation map, providing insights into the model's decision-making process. Our 

study showcases the potential of deep learning methods for rock-type segmentation and 

offers a method to make the overall digital rock workflow more efficient. 
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Abstract

Three-dimensional (3D) images provide a comprehensive view of mate-
rial microstructures, enabling numerical simulations unachievable with two-
dimensional (2D) imaging alone. However, obtaining these 3D images can be
costly and constrained by resolution limitations. We introduce a novel method
capable of generating large-scale 3D images of material microstructures, such as
metal or rock, from a single 2D image. Our approach circumvents the need for 3D
image data while offering a cost-effective, high-resolution alternative to existing
imaging techniques.
Our method combines a denoising diffusion probabilistic model (DDPM) with
a generative adversarial network (GAN) framework. To compensate for the lack
of 3D training data, we implement chain sampling, a technique that utilizes the
3D intermediate outputs obtained by reversing the diffusion process. During the
training phase, these intermediate outputs are guided by a 2D discriminator. This
technique facilitates our method’s ability to gradually generate 3D images that
accurately capture the geometric properties and statistical characteristics of the
original 2D input.
This study features a comparative analysis of the 3D images generated by our
method, SliceGAN (the current state-of-the-art method), and actual 3D micro-
CT images, spanning a diverse set of rock and metal types. The results shown an
improvement of up to three times in the FID (Frechet Inception Distance) score,

1



a typical metric for evaluating the performance of image generative models, and
enhanced accuracy in derived properties compared to SliceGAN. The potential of
our method to produce high-resolution and statistically representative 3D images
paves the way for new applications in material characterization and analysis
domains.

Keywords: 3D image generation, Material microstructures, Denoising diffusion
probabilistic models, Single-image-based generation

1 Introduction

Three-dimensional (3D) volumetric images are a critical resource in various disciplines,
including geophysics, petroleum, and materials science, due to their role in the numeri-
cal analysis and computational modeling of materials’ internal structures. These data,
represented as a 3D grid of voxels (volumetric pixels), provide an intricate view of the
internal structure of diverse materials, which is vital for deriving physical properties
in different industries.

The acquisition of 3D images often poses significant challenges. Traditional image
acquisition methods, such as computed tomography (CT) scanners, require substantial
financial investment and skilled operators. Conventional techniques like micro-CT are
often limited by the resolution capabilities of the imaging equipment. Practical issues
related to sample preparation can further complicate acquiring high-resolution 3D
images for specific materials or structures. Micro-CT scanners, which utilize X-rays,
may also encounter difficulties penetrating radiodense materials, particularly metals,
creating additional challenges in capturing comprehensive 3D images of such materials.

In contrast, sub-micrometer 3D scanning solutions such as nano-CT [1] and FIB-
SEM (Focused Ion Beam Scanning Electron Microscope) [2] may offer higher resolution
capabilities. However, these technologies come with a significantly higher price tag
compared to micro-CT, have limited scanning sample sizes, and face limitations related
to image quality, inhibiting their widespread application across various sectors within
academia and industry [3] [4].

Given these challenges, there has been growing interest in developing techniques
that can generate 3D volumetric data using 2D images. This approach offers a promis-
ing alternative, as 2D imaging methods such as optical microscopes or Scanning
Electron Microscopes (SEM) are in many cases more cost-effective and flexible in terms
of resolution capabilities, including at the nanoscale [5]. Currently, 2D images are
primarily used alongside 3D images for quality control or as supplementary material
when the resolution of 3D imaging fails to fully capture the studied sample’s structure.
Consequently, the capability to create 3D images from 2D images could reduce costs
associated with the imaging process, enhance accessibility, and improve the efficiency
of 3D image generation across diverse scientific fields.

Most previous approaches for generating 3D voxelized data from 2D input require
learning from 3D image data. Our work belongs to the category of methods that gen-
erate 3D images from a single 2D input, as shown in Figure 1. In addition, they can
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do so by learning from 2D images. The uniqueness of our work is that we propose a
framework that utilizes a denoising diffusion-based probabilistic model (DDPM) [6].
Since DDPM requires ground truth (GT) data for training, we propose modifications
to enable it to operate without needing 3D GT. This is achieved through utilizing the
reverse diffusion process (chain sampling). In addition, we utilize the generative adver-
sarial network (GAN) loss [7] since it helps to generate realistic samples. GANs can
be unstable when used in a standalone setting to learn from 2D images generating 3D
images. However, we propose to stabilize training by combining GANs with diffusion
models.

Fig. 1: Diffusion-GAN Model: The proposed method is based on a denoising diffusion
process combined with a generative adversarial framework. In this setting, at test time,
starting from a cube of noise, the noise is iteratively estimated using a Unet, removed
and then added back to the sample. This process is repeated to obtain a noise-free
representative sample. Our method can learn from only a few 2D slices of the training
image, as shown on the left.

Additionally, addressing the practical requirements of 3D image generation for
industrial applications, we have adapted the diffusion process to converge into the final
image with just a few denoising steps, specifically 11 in this study, as opposed to the
thousands of steps typically used in 2D image generation. This modification is crucial
for reducing computation time when working with 3D data, where a large image with
over a billion voxels (1000×1000×1000) is often necessary for comprehensive material
characterization.

Our results prove to be more accurate than previous works in both visual quality
and physical/statistical properties. We further showed that our model can successfully
learn to generate 3D images from a single 2D input across a wide variety of cases,
ranging from rocks to metal alloys.

The contributions of our work can be summarized as follows:
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• We propose a method based on the Denoising Diffusion Probabilistic Model
(DDPM) for generating 3D microstructures from a single 2D image.

• We demonstrated the feasibility of applying DDPM without the need for training
on GT data.

• Our method significantly outperforms existing approaches in terms of visual quality
and statistical properties. Moreover, it demonstrates robust performance even on
complex images with high heterogeneity, where current state-of-the-art methods fail.

The ability to generate 3D images from a single 2D image would allow us to perform
characterizations and analyses that require the availability of 3D data. This technique
would be suitable for application in cases where micro-CT imaging is not feasible, such
as when capturing features at sub-micrometer resolution or for materials without any
density contrast, or in the case of high-density materials like metals [5].

1.1 Related Works

Creating 3D models or images of specific porous structures or materials has been a
long-standing research challenge since the advent of image-based numerical analysis.
Existing methodologies for tackling this problem can be broadly classified into three
main categories: process-based modeling, properties-based generation, and machine
learning-based generation.

Process-based modeling

Process-based modeling approaches aim to emulate the mechanisms underlying the
natural formation of materials. In these models, the physical and chemical processes
that occur during material formation, such as deposition, compaction, cementation,
dissolution, and fracturing, are translated into mathematical and computational algo-
rithms. By closely imitating these natural processes, process-based models allow for
extensive control over the properties and characteristics of the generated samples, mak-
ing them useful for hypothesis testing or simulating a wide array of possible scenarios
[8–13].

Despite their benefits, process-based models also have certain limitations. Sim-
ulating natural processes with satisfactory accuracy is computationally intensive,
time-consuming, and challenging due to the complex interplay of numerous factors and
the stochastic nature of many processes. Furthermore, operating these models requires
a comprehensive understanding of the processes being replicated and the simplifica-
tion of actual phenomena. As a result, there can be substantial discrepancies between
the structures produced by these models and the real materials.

Properties-based generation

Generating 3D images can also be achieved through an iterative generation process
that aims to converge toward a structure with desired statistical properties. This
approach encompasses both stochastic-based modeling and optimization-based mod-
eling [14–16] where statistical descriptors such as the Minkowski functional and the
n-point correlation function are commonly used. One of the main advantages of this
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method is its capability to generate models with specific desired properties. However,
this approach is restricted to binary segmented images since most statistical descrip-
tors for images are specifically designed for binary data. In more complex scenarios,
especially for heterogeneous material, accurately capturing non-statistical representa-
tive features becomes challenging, potentially leading to the generation of unrealistic
images even when the material’s statistical properties are matched.

Machine learning-based generation

The recent advancements in 3D image generation have predominantly focused on uti-
lizing machine learning techniques with existing 3D data to generate new images.
One prominent approach in this field is the use of Generative Adversarial Networks
(GANs) [7]. GANs have been applied for unconditional generation [17, 18] and con-
ditional generation [19? –23] of 3D images for micro-CT data. However, training a
GAN-based model requires careful attention to ensure stability [24, 25]. Challenges
such as mode collapse and catastrophic forgetting can arise when using GANs for
conditional generation tasks, necessitating the incorporation of additional consistency
loss [26, 27].

To overcome the limitations of GAN-based methods, hybrid models that combine
transformers and VQ-VAEs have emerged as an alternative solution. These models
offer stable training and the ability to generate high-fidelity 3D rock samples from 2D
conditional images [28].

However, all of the mentioned works rely on the availability of 3D GT data for
training, which can pose limitations in terms of accessibility, particularly when dealing
with samples that contain a significant number of sub-micrometer features. In a recent
study, Kench et al. [29] showcased the capability of generating 3D microstructures
with only 2D images as training data. Nevertheless, their approach relied on GANs,
which are prone to common issues like unstable training and mode collapse.

In contrast to existing approaches, we propose a novel and stable diffusion-based
method that achieves 3D image generation of material microstructures using only a
single 2D image.

1.2 Background

Denoising Diffusion Probabilistic Models

This section provides a basic understanding of Denoising Diffusion Probabilistic Mod-
els (DDPM), also known as diffusion models, which serve as the foundation for our
proposed method. DDPM consists of two main processes: the forward and reverse
processes [6].

In the forward process, noise, typically Gaussian noise, is gradually added to the
data distribution q(x0), where x0 is the noise-free target. This process proceeds step by
step, with the variance of the added noise changing according to a predefined schedule
βt (β1, . . . , βT ). The forward process can be expressed as follows:
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q(x1:T |x0) =
∏

t≥1

q(xt|xt−1)

= N (xt;
√

1− βtxt−1, βtI),

(1)

In the reverse process, the aim is to recover the data from noise in steps. A diffusion
model is required, which is parameterized by θ with mean µθ(xt, t) and variance σ2

t .
The reverse denoising process is given as:

pθ(x0:T ) = p(xT )
∏

t≥1

pθ(xt−1|xt)

= N (xt−1;µθ(xt, t), σ
2
t I),

(2)

To train this model, the variational bound on the negative log-likelihood objective
pθ(x0) is optimized, defined as

∫
pθ(x0:T )dx1:T . The variational lower bound is equiv-

alent to matching the true denoising distribution q(xt−1|xt) with the parameterized
denoising model pθ(xt−1|xt) using the loss function:

L = −
∑

t≥1

Eq(xt) [DKL (q(xt−1|xt)∥pθ(xt−1|xt))] + C (3)

where DKL represents the Kullback-Leibler (KL) divergence between the two
distributions, i.e., the true denoising distribution q(xt−1|xt) and the parameterized
denoising model pθ(xt−1|xt). C is a constant.

Two fundamental assumptions are commonly made in diffusion models: First, the
denoising distribution pθ(xt−1|xt) is modeled as a Gaussian distribution. Second, the
number of denoising steps T is assumed to be large.

Denoising Diffusion GANs

To address the challenge of requiring a large number of denoising steps in diffusion
models, Xiao et al. [30] proposed a combination of Denoising Diffusion Probabilis-
tic Models (DDPM) and Generative Adversarial Networks (GANs). Their work
introduced two major modifications to the original diffusion process:

• Adversarial Loss: Instead of using typical loss functions like Mean Squared Error
(MSE) or Mean Absolute Error (MAE), this method used an adversarial loss from
a conditional discriminator.

• Direct Output of Noise-Free Images: Rather than training the DDPM to output the
noise for a given image, which is then subtracted to obtain the noise-free image, this
method directly generates the noise-free image.

By combining DDPM with GANs and implementing the mentioned modifications,
the method proposed by Xiao et al. achieved a drastic reduction in the number of
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denoising steps required by a factor of 103, while also improving the quality of the
generated images and maintaining stable training.

2 Method

Denoising diffusion models alone are inherently unsuitable for solving the problem of
generating 3D images from a single 2D image, as they require a noise-free GT image
x0 for training. The absence of x0 renders the forward process q(x1 : T |x0) mentioned
in Equation 1 invalid. Consequently, to adapt DDPM to our specific problem, we
changed the original DDPM pipeline to cater to learning with only 2D GT data.

Inspired by the SliceGAN architecture introduced by Kench et al. [29], which
utilized a 2D discriminator as the adversarial loss for a 3D generator, we have adapted
the method proposed in the Denoising Diffusion GANs work by Xiao et al. [30] to a
similar setting as SliceGAN. An overview of our method is shown in Fig. 2. The main
difference between SliceGAN and our method is that SliceGAN uses only generative
adversarial networks. However, we use the diffusion model with GANs to get a more
stable and robust training pipeline. However, using the diffusion model for this task
is not trivial. Therefore, we provide a novel method to deploy diffusion models for 3D
image generation from 2D slices.

Fig. 2: Our Method: This figure shows the overview of our diffusion GAN based
model for 3D generation using only 2D data for training.
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Chain Sampling as a means of Data generation

The lack of a noise-free GT x0 presents a significant challenge when adapting the
Denoising Diffusion Probabilistic Models (DDPM) framework to the task of generat-
ing 3D images from a single 2D input. To overcome this challenge, we propose a novel
approach called chain sampling, which involves leveraging the reverse diffusion pro-
cess during training alongside the forward diffusion process. This departure from the
conventional usage of the reverse process solely for inference or testing purposes is a
key distinction in our method. By employing chain sampling, we can utilize intermedi-
ate results during training as a substitute for the missing noise-free 3D GT x0, under
the assumption that the denoising model is still progressing in the correct direction.
The chain sampling process, illustrated in Figure 2, involves adding the corresponding
level of noise using a simplified noise addition process as shown in Equation 4. The
denoising model G then performs the denoising operation on the image, as described
in Equation 5.

xt = q(x̂t+1) = βt ∗ x̂t+1 + (1− βt) ∗ N (µθ(x̂t+1, t+ 1), σ2
t ) (4)

x̂t = G(xt, t) (5)

Discriminator setting

To ensure the training of our denoising model in the absence of noise-free GT x0,
we employ a 2D discriminator trained on both the 2D image and the intermediate
results from the chain sampling process. Similar to any GANs-based architecture, our
discriminator requires both real data and fake (generated) data to train:

Fake Data: In the lower part of Figure 2, we illustrate the process for generating
fake data. During each training iteration, we sample an image from the output array
of the chain sampling process, which corresponds to a denoised generated image x̂t.
From this image, we randomly select a slice from each axis (X,Y, Z) and feed these
slices to their respective discriminators Dx, Dy, Dz (Eq. 6). While it is possible to use
a single discriminator, we have found that utilizing three separate discriminators leads
to more stable training and enables us to handle asymmetrical images effectively.

Dϕ(x
3D
t−1,x

3D
t , t) = Dx(x

3Dx
t−1 ,x

3Dx
t , t)+

Dy(x
3Dy
t−1 ,x

3Dy
t , t) +Dz(x

3Dz
t−1 ,x

3Dz
t , t)

(6)

Real data: In the upper part of Figure 2, we depict the process of generating real
data for training the discriminator. Since our discriminator consists of 2D convolu-
tional layers, we can easily add different levels of noise into the 2D image to retrieve
the corresponding xt−1 and xt. These noisy images, with noise added according to
predefined βt values, serve as the real data inputs for training the discriminator.
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Dϕ(x
2D
t−1,x

2D
t , t) = Dx(x

2D
t−1,x

2D
t , t)+

Dy(x
2D
t−1,x

2D
t , t) +Dz(x

2D
t−1,x

2D
t , t)

(7)

min
θ

∑

t≥1

Eq(xt)

[
Dx

(
q(x2D

t−1|x2D
t )∥q(x3Dx

t−1 |x3Dx
t )

)

+Dy

(
q(x2D

t−1|x2D
t )∥q(x3Dy

t−1 |x3Dy
t )

)

+Dz

(
q(x2D

t−1|x2D
t )∥q(x3Dz

t−1 |x3Dz
t )

)
],

(8)

To manage the computational intensity of generating large 3D images, we had
to restrict the number of denoising timesteps to a smaller value, specifically T =
11. Consequently, this resulted in larger βt values for each diffusion step. Since our
approach involved a significantly reduced number of denoising timesteps compared to
the original Denoising Diffusion GANs, we paid close attention to selecting suitable βt

values. The aim was to maintain a similar level of denoising complexity for each step,
despite the reduced overall number of steps.

For the adversarial training, we define the sum of the three time-dependent dis-
criminators as Dϕ(xt−1,xt, t) : RN ×RN ×R → [0, 1], with parameters ϕx, ϕy, and ϕz,
as shown in Equation 8. This discriminator takes the N -dimensional 2D slices x2D

t−1

and x2D
t of xt−1 and xt as inputs and determines whether the input is a plausible

denoised version of x2D
t or not.

3 Experiments

3.1 Data

In this study, we used a combination of internal data and publicly available data to
evaluate the performance of our model. In the first case, we validated the quality of
the generated images compared to 3D GT (Table 1) using four micro-CT 3D images:
a Glass Bead image, two sandstone images with different resolutions, and a Savoniere
carbonate image from the digital rock portal [31]. For each 3D image, we randomly
selected five unrelated 2D slices to train our model.

In the second case (Table 2), we considered scenarios where only a single 2D image
was available for both training and evaluation. The images used in this case include
a Cast Iron with magnesium-induced spheroidized graphite and a Brass (Cu 70%,
Zn 30%) with recrystallized annealing twins from Microlib [32]. Both images were
captured using reflected light microscopy [33]. In addition, we also used an SEM image
of kaolinite clay minerals.

3.2 Evaluation Metric

We utilize Fréchet Inception Distance (FID) as our evaluation metric [34]. FID is a
popular choice for assessing the quality of generated images in tasks such as GAN
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evaluations. It can serve as a measure of similarity between two datasets of images.
The FID metric calculates the Fréchet distance between two multivariate Gaussian
distributions that are fitted to feature representations of the Inception network. One
distribution represents real images, while the other represents generated images. The
lower the FID score, the more similar the two datasets of images are in terms of their
distribution in the high-dimensional space defined by the Inception network. Hence,
a lower FID signifies a higher quality of generated images. It captures how well the
generated images mimic the real ones.

3.3 Resources and Hyper-parameters

Each experiment in this study is conducted using PyTorch on a single Nvidia RTX
3090 GPU. The training time for both SliceGAN and our method was set to 24 hours.
In our experiments, we used 11 denoising time steps (T = 11) with corresponding
βt values ranging from 0.9100 to 0.0000, as follows: [0.9100, 0.8109, 0.7058, 0.5985,
0.4929, 0.3931, 0.3025, 0.2238, 0.1586, 0.1070, 0.0685, 0.0000].

4 Results and Discussions

4.1 Glass beads generation

Our study introduces a novel 3D image generation method, the efficacy of which we
assessed through a comparative analysis with glass bead pack images. These images,
which naturally depict spherical formations in a densely packed array, are reduced to
varying sizes of 2D circles in their planar representations. Our validation approach
involved contrasting our method’s output with results from similar studies, focusing
specifically on the fidelity of reconstructing 3D spherical shapes from these 2D circular
projections. For this purpose, we selected benchmark studies by [29], [35], [36],[22] and
[18] for comparison.

Figure 3 showcases the cross-sectional views of structures synthesized using our
method, alongside those generated by an authentic glass bead image, the SliceGAN
algorithm, and the methods employed in the aforementioned studies. This highlights
our method’s unique capability in accurately rendering spherical shapes in 3D from
2D inputs, a feature distinctively absent in the comparative methods, especially in
terms of artifact-free shape generation.

4.2 Comparison with 3D GT

Visual comparison and FID score

Our first case study used four different 3D micro-CT images to evaluate both the
visual quality and the accuracy of the characterized properties of our generated 3D
images against the GT. For each image, five 2D slices of the xy plane, taken from
different locations along the z-axis, were used to train our model and SliceGAN. We
chose to use five 2D images since a single 2D slice might not fully capture the range of
structural variation present in the 3D image. A step length of 11 was selected for our
model to ensure fast generation times for large images. During each training iteration,
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Fig. 3: Visual comparison of spherical shape generation from 2D circular inputs
in glass bead packs. This study contrasts our method’s results with previous deep
learning-based 3D image generation techniques, highlighting our approach’s enhanced
accuracy in generating spherical shapes.

we used a batch of random 64x64 pixel crops as input, which subsequently produced
outputs of 64x64x64. The cross-sections of the images used in the training, as well as
the images generated by both methods, are shown in Figure 4.

In assessing the performance of our method compared to SliceGAN, we used the
Frechet Inception Distance (FID) scores as a measure of visual quality [37]. To compute
the FID score, the original requirement was for 2D images as input. To adapt this
calculation to 3D images, we treated them as stacks of 2D images and computed the
FID score across three dimensions (x, y, z). In comparison to other studies that used
the FID score for image generation evaluation, the FID scores presented in Table 1
are notably higher. These higher FID scores are due to the few slices from the 3D
image used for training not being able to cover the real data distribution of the 3D
GT, especially for heterogeneous materials like the Savoniere Carbonate.

Rock type Dimension Our (x, y ,z) SliceGAN (x, y ,z)
Glassbead 200x200x200 54.78 60.95 59.67 87.37 99.02 72.33

Bentheimer Sandstone 256x256x256 35.62 49.13 40.99 46.91 61.59 54.65
Sandstone 500x500x500 23.58 23.81 20.46 25.25 29.82 21.76
Savoniere 250x250x250 171.57 186.60 172.20 476.33 436.95 435.58

Table 1: Measured FID score across three dimensions (x, y, z) between the generated
image and the GT, the closer to 0 the better

Comparison of Porous Media Properties

In the context of porous media, it is crucial to evaluate our model’s performance in
terms of physical properties. To calculate these properties, we used Porespy [38], an
open-source tool specifically designed to analyze 3D images of porous materials. With
Porespy, we calculated local porosity, the two-point correlation function, and pore size
distribution of the images depicted in Figure 4.

Porosity (ϕ) – Porosity, representing the volume fraction of void spaces, is a fun-
damental characteristic of porous media. To calculate porosity, we first convert the
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Fig. 4: Visual comparison with micro-CT images: Cross-sections of 3D images
generated by our method and SliceGAN, alongside their respective ground truth or
training data. The GT images are 3D X-ray microCT scans obtained at varying
resolutions. The Glassbeads case showcases our method’s superior performance over
SliceGAN. Our model can capture the spherical shape of the object, even though it
only sees circles at the 2D input. In more challenging cases like the Savoniere - a car-
bonate of fossilized microorganism - our method proves its robustness by generating
images that bear a higher resemblance to reality, despite the heterogeneous nature of
the original image.
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images into binary format through thresholding. Subsequently, we divide the gener-
ated images into overlapping cubes with a side length of 128 voxels. The process of
calculating porosity is then applied to these cubes, and the results are visualized using
box plots shown in Figure 5.

(a) Glass bead (b) Bentheimer Sandstone

(c) Sandstone (d) Savoniere Carbonate

Fig. 5: Porosity – These box plots show the comparison of porosity between the
ground truth, our model and SliceGAN.

Two-Point Correlation Function (ξ) – The two-point correlation function is a
significant metric in image analysis, utilized to describe the spatial arrangement and
connectivity of the porous structure. In this study, we calculated the probability that a
pair of points, separated by a certain distance, both reside within the pore space. This
statistical measure is sensitive to the image’s degree of homogeneity and isotropy, thus
allowing us to capture subtle geometric features of the pore network. The two-point
correlation function plots are shown in Figure 6.

Pore Size Distribution – Pore size distribution is a metric that characterizes the
range of pore sizes within a porous material, and it plays a vital role in determining
how fluids flow and permeate through the material. Ensuring the accuracy of pore size
distribution in our 3D generation from 2D images is important because the sizes and
arrangement of pores define the transport properties of the porous medium. Accurate
pore size distribution in the generated 3D images is essential for maintaining physical
accuracy and predictive usefulness in representing the actual material. We calculated
the pore size distribution through a process known as porosimetry, which interprets
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(a) Glass bead (b) Bentheimer Sandstone

(c) Sandstone (d) Savoniere Carbonate

Fig. 6: Two-Point Correlation – These plots depict the two-point correlation func-
tion in 3D for the Ground Truth (GT) and the images generated by both SliceGAN
and our method. They display the relationship between distance and the probability
of a given pixel appearing in a binarized segmented image.

each voxel in the image as the radius of the largest sphere that would overlap it. For
this, we used the Porespy library and the result is shown in Figure 7.

4.3 3D Generation Experiments from 2D Image of a sample

In the final part of our evaluation, we went beyond testing our method’s performance
with 3D GT data and tested it in scenarios where only a single 2D image was available,
as shown in Figure 8. We used two metal images (Cast Iron and Brass) from Microlibs
[32], an online database for images generated by SliceGAN, as our test data. We trained
our model on the downloaded 2D image and subsequently compared our output with
both the original training image and the 3D image created by SliceGAN, also sourced
from the same Microlibs platform. Our study also included an SEM-acquired image
of kaolinite clay, recognized for its complex nanostructure that necessitates capturing
in 2D. This is due to the high resolution required to capture the sub-microscopic
structure of kaolinite, which is beyond the capabilities of current 3D CT scanners.

These cases represent the scenarios where our algorithm may find its most practical
use - situations where acquiring 3D images is infeasible, hence the necessity to generate
a 3D model from a 2D image.
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(a) Glass Bead (b) Bentheimer Sandstone

(c) Sandstone (d) Savoniere Carbonate

Fig. 7: Pore Size Distribution – These plots shown the comparison of pore size
distribution between the generated images and the ground truth. They aid in under-
standing our model’s effectiveness and SliceGAN’s matching the pore structures to
the original 3D micro-CT images.

The comparison in terms of FID score is shown in Table 2.

Material type Dimension Our (x, y ,z) SliceGAN (x, y ,z)
Magnesium treated Cast Iron 800x528 60.03 62.90 63.37 63.81 67.89 66.04

Brass (Cu 70%, Zn 30%) 542x800 107.18 97.37 109.18 266.78 252.17 216.54
Kaolinite clay mineral 256x256 177.78 177.21 183.78.65 360.52 335.13 317.98

Table 2: Measured FID score across three dimensions (x, y, z) between the generated
image and the GT

5 Discussion

Our method demonstrates a significant improvement over SliceGAN, evident at a
visual level, as shown in Figures 4 and 8. For example, in the glass bead case, our
method successfully manages to generate 3D spherical structures from training with 2D
circular input, while SliceGAN and other machine learning based method failed. In the
Sandstone cases, our method demonstrated its capability to handle various resolutions
and grain sizes. The Savoniere case, owing to the image’s heterogeneity, presents a
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Fig. 8: Visual comparison with non-CT data sources: Cross-sections of 3D
images produced by our method and SliceGAN, presented alongside their respective
2D training images. This figure includes images of cast iron, brass, and kaolinite clay
mineral.

challenge in generating a representative 3D image solely from 2D information. Despite
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this, our method manages to produce a more visually accurate output compared to
SliceGAN with a significantly lower FID score (Table 1).

Our evaluation of porosity (Figure 5), the two-point correlation function (Figure
6), and pore size distribution (Figure 7), further affirms our method’s efficacy in
representing the statistical properties of the 3D GT, even when trained only on five
2D slices. In the final study case where only a single 2D image is available for training
and evaluation, we downloaded the 2D image for training and the 3D image created
by SliceGAN from Microlib. As seen in Figure 8, our method exhibits versatility by
generating high-quality images across different material types. Due to the absence
of 3D GT images for these cases, we relied on visual inspection and FID scores for
evaluation. Despite the insignificant difference in the visual quality and FID score for
the cast iron case, the FID score measured in the Brass case clearly favors our method
over SliceGAN (see Table 2).

In all study cases included in this work, our method has shown comparable or
better performance compared to SliceGAN. Additionally, the generated 3D images
for materials with simple and homogeneous structures closely match the real images,
exhibiting both comparable visual quality and measured properties. However, for more
complex and heterogeneous materials, especially those with asymmetrical 3D features,
there are areas that indicate potential for improvement. Nevertheless, the results of
this study lay a promising foundation for future exploration in the domain of 3D
porous media image generation from 2D inputs.

6 Conclusion

In this study, we introduced a novel approach to 3D image generation using denoising
diffusion probabilistic models (DDPMs) with only a single 2D slice as training data.
While DDPMs are not inherently designed for learning from 2D data to represent 3D
structures, we introduced a modified reverse diffusion step that effectively denoises a
3D noise vector using a 2D GAN-based discriminator. Our method outperforms state-
of-the-art techniques in terms of key physical validation metrics for various types of
materials.

Our work marks a significant advancement in the domain of 3D material
microstructure generation from 2D inputs. By reducing the dependency on extensive
3D image data and offering a cost-effective, high-resolution alternative to prevail-
ing imaging techniques, our approach paves the way for novel research and practical
applications in material characterization and analysis.
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